

The **IKO** Needle Roller Bearing Series has been produced at a quality level in conformance with ISO-14001 and ISO-9001 using a production system that reduces negative impact on the global environment.

This catalog adopts the SI system (system of international units) in conformance with ISO (International Organization for Standardization) Standard 1000.

In the table of dimensions, standard products are referred to using identification numbers marked with ______. The products are reputed for high quality, reasonable price and quick delivery. The identification numbers marked with ______ refer to our semi-standard products.

The basic dynamic load rating values are based on the equation in JIS B 1518-1992 which takes into consideration the fact that improvements in the quality of bearing materials and manufacturing technologies have extended bearing lives.

In addition, the basic static load rating values have been revised according to ISO 76-1987. The bearing accuracy are based on JIS B 1514-2000.

Index

General Explanation

Characteristics of Needle Roller Bearings	6
Types and Features of Bearings	8
Outline of Bearing Selection	19
Basic Dynamic Load Rating and Life	20
Basic Static Load Rating and Static Safety Factor	24
Calculation of Bearing Loads	25
Boundary Dimensions and Identification Number	29
Accuracy	33
Clearance	40
Fit	42
Design of Shaft and Housing	47
Lubrication	<u>52</u>
Friction and Allowable Rotational Speed	<u>59</u>
Operating Temperature Range	60
Handling of Bearings	60

Description of Each Series & Table of Dimensions

Shell Type Needle Roller Bearings	TA·TLA·BA·BHA	68
Needle Roller Cages for general usage	KT	118
Needle Roller Cages for engine connecting rods	KT···EG•KTV···EG	134
Machined Type Needle Roller Bearings	NA·TAFI·TRI·BRI	····· 140
Needle Roller Bearings with separable cage	NAF	230
Roller Bearings	NAG·NAU·TRU·NAS	246
Thrust Bearings	NTB·AS·AZK·WS·GS	268
Combined Type Needle Roller Bearings	NAX·NBX·NATA·NATB	284
Inner Rings	IRT·IRB·LRT·LRB	294
Cam Followers	CF·NUCF·CFS·CR	326
Roller Followers	NAST·NART·NURT	392
Crossed Roller Bearings	CRBH·CRBC·CRB·CRBS	412
Spherical Bushings	SB·GE·SBB	434
Pilloballs	PB·PHS·POS·PHSB·POSB·PHSA	462
L-balls	LHSA·LHS	478
Super Flexible Nozzles	SNA·SNM·SNPT	488
Parts For Needle Roller Bearings	OS·DS·WR·AR·Needle Roller	493
Applications Miscellaneous Ta	ıbles	519
Presentation of Linear Motion R	Rolling Guide and Mechatronics Series	566
Alphabetical Index		576

General Explanation

Nippon Thompson Co., Ltd. is a bearing manufacturer that launched the technical development of needle roller bearings for the first time in Japan and is proud of the high quality level and abundant varieties of its products.

Needle roller bearings are bearings for rotary motion that incorporate needle-shaped thin rollers instead of ordinary bearing balls or rollers. Compared with other rolling bearings, they are small-sized and lightweight but have a large load capacity. They are widely used with high reliability in the fields of automobiles, industrial machinery, OA equipment, etc. as resource-saving type bearings that make the whole machine compact.

Characteristics of Needle Roller Bearings

Bearings can be classified into two main types, namely rolling bearings and sliding bearings. Rolling bearings can be subdivided further into ball bearings and roller bearings according to the rolling elements.

INCONeedle Roller Bearings are high-precision rolling bearings with a low sectional height, incorporating needle rollers as the rolling element. They have the following features.

Merits of Rolling Bearings

Compared with sliding bearings, rolling bearings have the following merits:

Static and kinetic friction is low.

Since the difference between static friction and kinetic friction is small and the frictional coefficient is also small, drive units or machines can be made more compact and lightweight, saving machine costs and power consumption.

2 Stable accuracy can be maintained for long periods.

Owing to less wear, stable accuracy can be maintained for long periods.

3 Machine reliability is improved.

Since the bearing life can be estimated based on rolling fatigue, machine reliability is improved.

4 Lubrication is simplified.

Since grease lubrication is sufficient in most cases, lubrication can be simplified for easy maintenance.

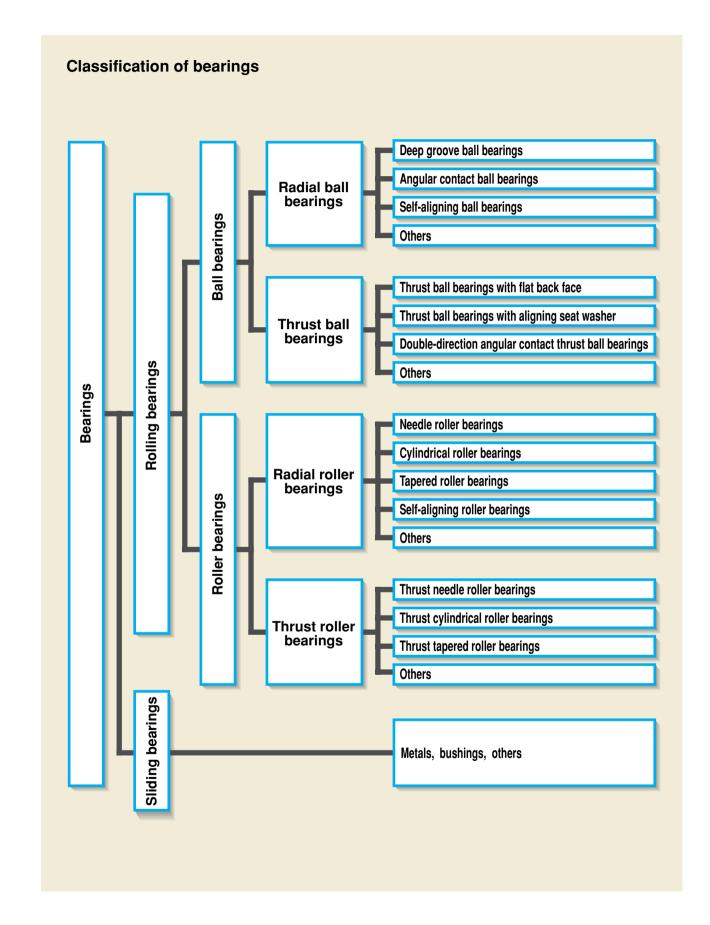
Merits of Needle Roller Bearings

Compared with other rolling bearings, IMD Needle Roller Bearings have the following advantages:

With a low sectional height, they can withstand heavy loads.

Since they have a low sectional height compared with other rolling bearings and yet can withstand heavy loads, machines can be made more compact and lightweight, thus saving costs.

Rotating torque is small, improving mechanical efficiency.

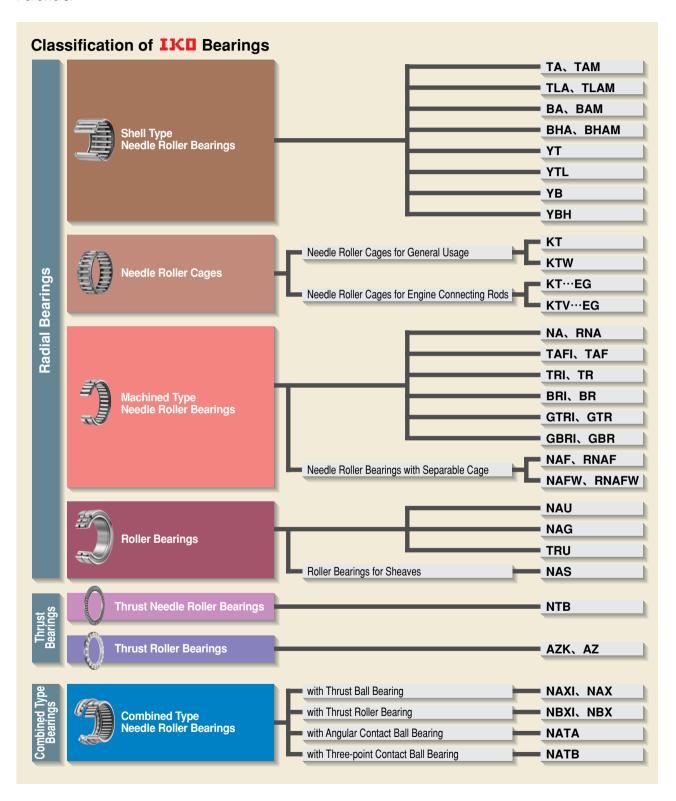

Since the rotating radius is small, the rotating torque is also small under the same frictional conditions, thus improving mechanical efficiency.

1 Inertia is minimized.

Since the bearing volume and weight are small, the moment of inertia of the bearing is minimized when it is put in motion.

4 Most suited to oscillating motions.

Many rolling elements are arranged at a small spacing pitch, and this configuration is most suited to oscillating motions.



Types and Features of Bearings

Bearings can be roughly classified into radial bearings and thrust bearings according to applicable load direction. Radial Bearings are grouped into Shell Type Needle Roller Bearings, Machined Type Needle Roller Bearings, and various other types. Thrust Bearings are grouped into Thrust Needle Roller Bearings and Thrust Roller Bearings. Follower Bearings that are used for cam mechanisms and linear motion are grouped into Cam Followers and Roller Followers.

Crossed Roller Bearings are special shape bearings that can simultaneously receive loads in all directions with a single bearing.

Bearings other than rolling bearings, such as self-aligning Spherical Bushings that can support radial loads and axial loads and PILLOBALLs and L-Balls that are used for link mechanisms, are also available.

Shell Type Needle Roller Bearings

Shell Type Needle Roller Bearings are lightweight with the lowest sectional height among needle roller bearings with outer ring, because they employ a shell type outer ring made from a thin special-steel plate which is accurately drawn, carburized and quenched.

Since these bearings are press-fitted into the housing, no axial positioning fixtures are required. They are ideal for use in mass-produced articles that require economy.

Radial Bearings

Page 68

Machined Type Needle Roller Bearings

Machined Type Needle Roller Bearings have an outer ring made by machining, heat treatment, and grinding. The outer ring has stable high rigidity and can be easily used even for light alloy housings.

These bearings are available in various types and optimally selectable for different conditions such as heavy loads, high-speed rotation and low-speed rotation. They are most suitable for general-purpose applications.

Radial Bearing

Page 140

Needle Roller Cages for General Usage

Needle Roller Cages for General Usage are bearings that display excellent rotational performance. Their specially shaped cages with high rigidity and accuracy, precisely guide the needle rollers.

Since needle rollers with extremely small dimensional variations in diameter are incorporated and retained, Needle Roller Cages for General Usage are useful in small spaces when combined with shafts and housing bores that are heat treated and accurately ground as raceway surfaces.

Radial Bearing

Page 118

Needle Roller Bearings with Separable Cage

In Needle Roller Bearings with Separable Cage, the inner ring, outer ring and Needle Roller Cage are combined, and they can be separated easily. This type has a simple structure with high accuracy. In addition, the radial clearance can be freely selected by choosing an assembly combination.

These bearings have excellent rotational performance, because Needle Roller Cages are used.

Radial Bearing

Page 230

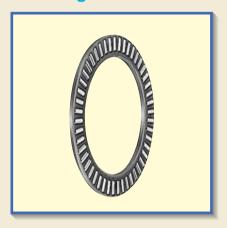
Needle Roller Cages for Engine Connecting Rods

Needle Roller Gages for Engine Connecting Rods are used for motor cycles, small motor vehicles, outboard marines, snow mobiles, general-purpose engines, highspeed compressors, etc. that are operated under extremely severe and complex operating conditions such as heavy shock loads, high speeds, high temperatures, and stringent lubrication.

Needle Roller Cages for Engine Connecting Rods are lightweight and have high load ratings and high rigidity as well as superior wear resistance.

Radial Bearing Page 134

Roller Bearings



Roller Bearings, in which rollers are incorporated in double rows, are non-separable heavy-duty bearings. They can withstand not only radial loads but axial loads as well, which are supported at the contacts between the shoulders of inner and outer rings and the end faces of rollers. Therefore, they are most suitable for use at the fixing side of a shaft.

Radial Bearing Page 246

Thrust Bearings

Thrust Bearings consist of a precisely made cage and rollers, and can receive axial loads. They have high rigidity and high load capacities and can be used in small

Thrust Needle Roller Bearings use needle rollers, while Thrust Roller Bearings use cylindrical rollers.

Thrust Bearing

Page 268

Cam Followers

Cam Followers are bearings with a stud incorporating needle rollers in a thick walled outer ring.

They are designed for outer ring rotation, and the outer rings run directly on mating track surfaces.

Various types of Cam Followers are available. They are widely used as follower bearings for cam mechanisms and for linear motions.

Follower Bearing Page 326

Combined Type Needle Roller Bearings

Combined Type Needle Roller Bearings are combinations of a radial bearing and a thrust bearing. Caged Needle Roller Bearings are used as radial bearings and Thrust Ball Bearings or Thrust Roller Bearings are used as thrust bearings.

They can be subjected to radial loads and axial loads simultaneously.

Combined Type Bearing Page 284

Roller Followers

Roller Followers are bearings in which needle rollers are incorporated in a thick walled outer ring.

These bearings are designed for outer ring rotation, and the outer rings run directly on mating track surfaces.

They are used as follower bearings for cam mechanisms and for linear motions.

Follower Bearing

Page 392

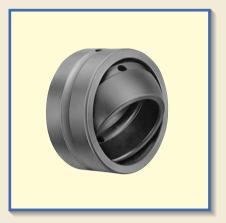
Inner Rings

Inner Rings are heat-treated and finished by grinding to a high degree of accuracy and are used for Needle Roller Bearings.

In the case of Needle Roller Bearings, normally the shafts are heat-treated and finished by grinding and used as raceway surfaces. However, when it is impossible to make shaft surfaces according to the specified surface hardness or surface roughness, Inner Rings are used.

Component part Page 294

Crossed Roller Bearings


Crossed Roller Bearings are high-rigidity and compact bearings with their cylindrical rollers alternately crossed at right angles to each other between inner and outer rings. A single Crossed Roller Bearing can take loads from any directions at the same time such as radial, thrust, and moment loads.

These bearings are widely used in the rotating parts of industrial robots, machine tools, medical equipment, etc. which require compactness, high rigidity and high rotational accuracy.

Crossed Roller Bearing Page 412

Spherical Bushings

Spherical Bushings are self-aligning spherical plain bushings, which have inner and outer rings with spherical sliding surfaces. They can take a large radial load and a bi-directional axial load at the same time.

They are divided into steel-on-steel types that are suitable for applications where there are alternate loads or shock loads, and maintenance-free types which require no lubrication.

Spherical Sliding Bearing

Page 434

PILLOBALLS

PILLOBALLs are compact self-aligning spherical plain bushings which can support a large radial load and a bi-directional axial load at the same time.

PILLOBALL Rod Ends have either a female thread in the body or a male thread on the body, so they can be easily assembled onto machines.

PILLOBALLs are used in control and link mechanisms in machine tools, textile machines, packaging machines,

Spherical Sliding Bearing Page 462

L-Balls

14

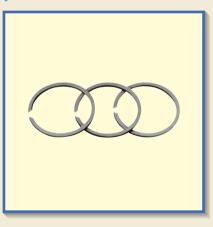
L-Balls are self-aligning rod-ends consisting of a special die-cast zinc alloy body and a studded ball which has its axis at right-angles to the body.

They can perform tilting movement and rotation with low torque, and transmit power smoothly due to the uniform clearance between the sliding surfaces.

They are used in link mechanisms in automobiles, construction machinery, farm and packaging machines,

Spherical Sliding Bearing Page 478

Seals for Needle Roller Bearings

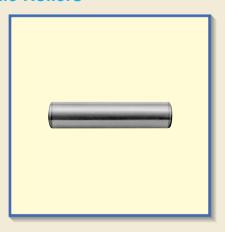

Seals for Needle Roller Bearings have a low sectional height and consist of a sheet metal ring and special synthetic rubber.

As these seals are manufactured to the same sectional height as Needle Roller Bearings, grease leakage and the penetration of foreign particles can be effectively prevented by fitting them directly to the sides of combinable bearings.

Component Part

Page 494

Cir-clips for Needle Roller Bearings


Cir-clips for Needle Roller Bearings have been specially designed for needle roller bearings on which, in many cases, generally available Cir-clips cannot be used. They have a low sectional height and are very rigid.

There are Cir-clips for shafts and for bores, and they are used for positioning to prevent bearing movement in the axial direction.

Component Part

Page 510

Needle Rollers

Needle Rollers are used for needle roller bearings and are rigid and highly accurate.

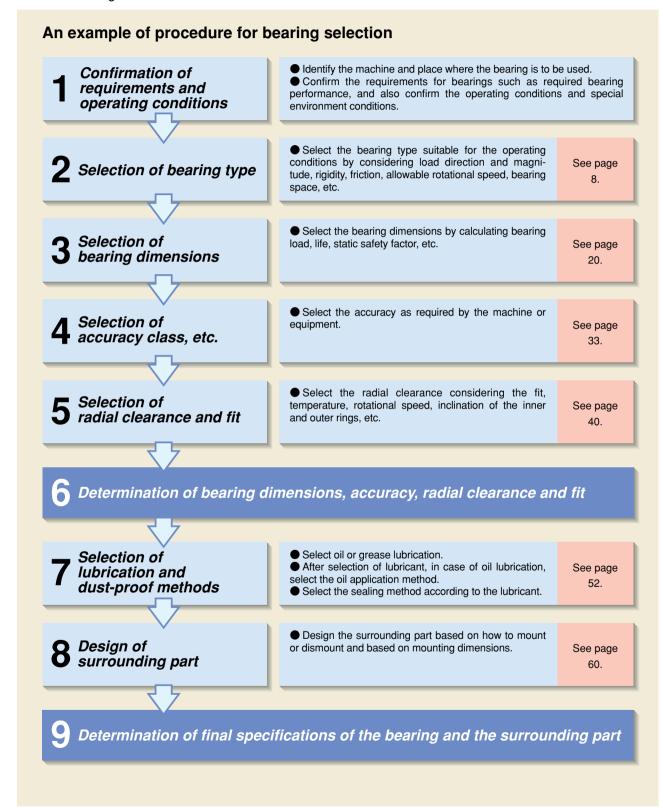
These needle rollers are widely used as rolling elements for bearings, and also as pins and shafts.

Component Part Page 516

Features of IKD Bearings

Bearing s	series	Appearance	Direction of motion	Load direction and capacity	Allowable rotational speed	Friction	Sectional height	Reference page
Shell Type Needle Roller	Caged type			 	0	0		68 ~
Bearings	Full complement type			†	\triangle	\triangle		66.5
Needle	For general usage							118~
Roller Cages	For engine connecting rods							134~
Machined Type Needle Roller	Caged type				0		0	140
Bearings	Full complement type			1	\triangle	\triangle	0	140~
Needle Roller Bearings with Separable Cage	Caged type						0	230~
	Caged type		G		0	0	0	
Roller Bearings	Full complement type					\triangle	0	246~
	For sheaves			1	\triangle	\triangle	\triangle	
0		ating Badial			m Heavy			

Bearing s	series	Appearance	Direction of motion	Load direction and capacity	Allowable rotational speed	Friction	Sectional height	Reference page
Thrust	Needle roller bearings		Θ	•	0	0		268~
Bearings	Roller bearings	The same of the sa	Θ	•	0	0	0	200.0
	With thrust ball bearing		\bigcirc		0	0	\triangle	
Combined Type Needle Roller	With thrust roller bearing		\bigcirc		0	0	\triangle	284~
Bearings	With angular contact ball bearing		\bigcirc		0	0	0	204.9
	With three-point contact ball bearing		\bigcirc		0	0	0	
Cam Followers	Caged type		Θ		0	0	\triangle	326~
Calli Followers	Full complement type		Θ	†		\triangle		320.0
	Separable caged type		\bigcirc		0	0	\triangle	
Roller Followers	Non-separable caged type	5	\bigcirc		0	0	\triangle	392~
	Non-separable full complement type	3	\bigcirc	†	\triangle	\triangle	\triangle	



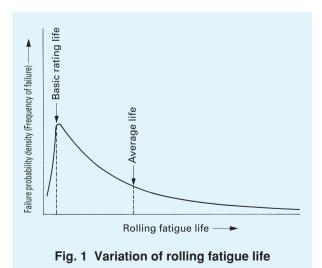
Features of **IKO** Bearings

Bearing	series	Appearance	Direction of motion	Load direction and capacity	Allowable rotational speed	Friction	Sectional height	Reference page
	Caged type, Separator type		Θ		\triangle	0	0	
Crossed Roller Bearings	Full complement type		Θ			\triangle	0	412~
	Slim type		\bigcirc		\triangle	0		
Spherical	Steel-on-steel type					\triangle		434~
Bushings	Maintenance-free type					\triangle		434.5
	Insert type, Lubrication type				\triangle	\triangle	\triangle	
PILLOBALLS	Die-casting type, Lubrication type				\triangle	\triangle	\triangle	462~
	Maintenance-free type					\triangle		
L-Balls	Lubrication type				\triangle	\triangle	\triangle	478~
Symbol Pota	tion Oscilla motion	ating Radial	Axial Li	ight	m Heavy load	Especially excellent	Excellent	△ Normal

Outline of Bearing Selection

Bearings are available in many types and sizes. To obtain satisfactory bearing performance in machines and equipment, it is essential to select the most suitable bearing by carefully studying the requirements for the application. Although there is no particular procedure or rule for bearing selection, an example of a commonly adopted procedure is shown in the figure below.

Basic Dynamic Load Rating and Life


Life

Rolling bearings will suffer damage due to various causes during service. Damage such as abnormal wear, seizure, and cracks is caused by improper use, including incorrect mounting, lack of oil, dust intrusion and so on, and can be avoided by remedying these causes. However, bearings will eventually be damaged due to fatigue-flaking even if used properly. When a bearing rotates under load, the raceways and the rolling elements are subjected to repeated stresses concentrated on the part close to the surface. Fatigue, therefore, occurs in the surface layer, producing damage in the form of scaling. This is called flaking (spalling). When this occurs, the bearing can no longer be used.

Bearing Life

Bearing life is defined as the total number of revolutions (or total service hours at a constant rotational speed) before a sign of the first flaking appears on the rolling surface of raceway or rolling elements. However, even when bearings of the same size, structure, material and heat treatment are subjected to the same conditions, the bearing lives will show variation (See Fig. 1.). This results from the statistical nature of the fatigue phenomenon.

In selecting a bearing, it is incorrect to take an average life for all bearings as the design standard. It is more practical to consider a bearing life that is reliable for the greater proportion of bearings used. Therefore, the basic rating life defined in the following is used.

Basic rating life

The basic rating life is defined as the total number of revolutions that 90% of a group of identical bearings can be operated individually under the same conditions free from any material damage caused by rolling fatigue.

For rotation at a constant rotational speed, the basic rating life can be represented by the total service hours

Basic dynamic load rating

The basic dynamic load rating is defined as the constant radial load (in the case of radial bearings) or the constant axial load acting along the bearing central axis (in the case of thrust bearings) that allows a basic rating life of 1,000,000 revolutions.

Calculation of rating life

The relationship among the basic rating life, basic dynamic load rating and dynamic equivalent load (bearing load) of rolling bearings is as follows:

where, L_{10} : Basic rating life, 10⁶ rev.

C: Basic dynamic load rating, N

P: Dynamic equivalent load, N

Exponent, Roller bearing: 10/3

Ball bearing: 3

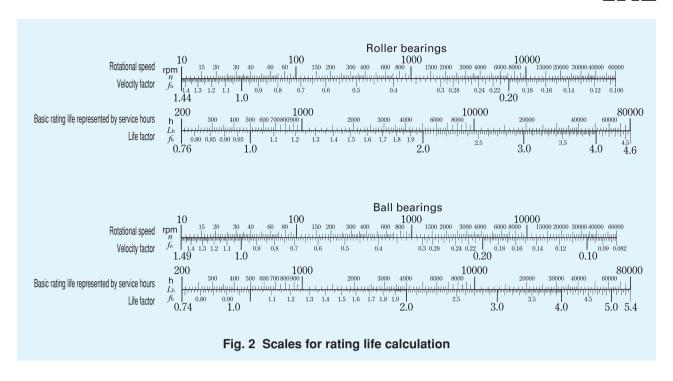
Accordingly, when the rotational speed per minute is given, the basic rating life is represented as the total service hours according to the following equations:

$$L_{\rm h} = \frac{10^6 L_{10}}{60n} = 500 f_{\rm h}^p$$
(2)

$$f_{\rm h} = f_{\rm n} \frac{C}{P} \qquad (3)$$

$$f_{n} = \left(\frac{33.3}{n}\right)^{1/p} \cdots (4)$$

where, $L_{\rm h}$: Basic rating life represented by


service hours, h

n : Rotation speed, rpm

 $f_{\rm h}$: Life factor

 $f_{\rm n}$: Velocity factor

In addition, the rating life can be calculated by obtaining $f_{\rm h}$ and $f_{\rm n}$ from the life calculation scales of Fig. 2.

Bearing life factors for various machines

The required life of the bearing must be determined according to the machine in which the bearing is to be used and the operating conditions.

Table 1 shows reference values of life factors for selecting a bearing for each machine.

Table 1 Life factor of bearings $f_{\rm b}$ for various machines

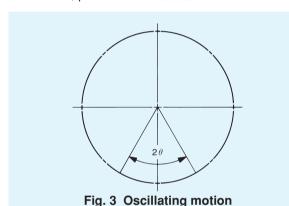
Operating conditions		Machine and life factor $f_{ m h}$				
Operating conditions	~3	2~4	3~5	4~7	6~	
Occasional or short term usage	Power tools	Agricultural machines				
Infrequent usage but requiring reliable operation		Construction machinery	- Conveyors - Elevators			
Intermittent operation but for comparatively long periods	- Roll neck of rolling mills	Small motors Deck cranes General cargo cranes Passenger cars	Factory motors Machine tools General gear units Printing machines	Crane sheaves Compressors Important gear units		
Operated in excess of 8 hours per day or continuously for an extended time		Escalators	Centrifugal separators Blowers Wood working machines Plastic extruding machines		Paper making machines	
Continuous use for 24 hours and accidental stops not allowed					Water supply equipment Power station equipment	

TIKCO

Life of oscillating bearing

The life of an oscillating bearing can be obtained from equation (5).

$$L_{\rm OC} = \frac{90}{\theta} \left(\frac{C}{P}\right)^p \dots (5)$$


where, $L_{\rm OC}$: Basic rating life of oscillating bearing. 10 6 cycles

 2θ : Oscillating angle, deg. (See Fig.3)

P: Dynamic equivalent load, N when the oscillating frequency n_1 com

Therefore, when the oscillating frequency n_1 cpm is given, the basic rating life as represented by total oscillating hours can be obtained by substituting n_1 for n in equation (2) on page 20.

When 2θ is small, an oil film cannot be formed easily between the contact surfaces of the raceway and the rolling elements. This may cause fretting corrosion. In this case, please consult IND.

Corrected rating life

When a rolling bearing is used in ordinary applications, the basic rating life can be calculated by equations (1) and (2) mentioned previously.

This basic rating life applies to bearings which require a reliability of 90%, have ordinary bearing properties being made of materials of ordinary quality for rolling bearings, and are used under ordinary operating conditions.

In some applications, however, it is necessary to obtain a rating life that applies to bearings which require high reliability, have special bearing properties or are used under special operating conditions. The corrected rating life for these special cases can be obtained from the following equation by using the

bearing life adjustment factors a_1 , a_2 and a_3 , respectively.

$$L_{\text{na}} = a_1 a_2 a_3 L_{10}$$
 (6)

where, $L_{\rm na}$: Corrected rating life, 10⁶ rev.

 a_1 : Life adjustment factor for reliability

a₂ : Life adjustment factor for special bearing properties

a₃ : Life adjustment factor for operating conditions

Life adjustment factor for reliability a_1

The reliability of rolling bearings is defined as the proportion of bearings having a life equal to or greater than a certain specified value when a group of identical bearings are operated under identical conditions. With respect to individual bearings, it refers to the probability of the life of a bearing being equal to or greater than a certain specified value.

The corrected rating life for a reliability of (100-n)% can be obtained using equation (6). Table 2 shows the values of the life adjustment factor a_1 for various reliabilities.

Table 2 Life adjustment factor for reliability a_1

Reliability %	L_{n}	a_1
90	L_{10}	1
95	L_5	0.62
96	L_4	0.53
97	L_3	0.44
98	L_2	0.33
99	L_1	0.21

Life adjustment factor for special bearing properties a_{γ}

The bearing life is extended or shortened according to the quality of the material, the manufacturing technology of the bearing and its internal design. For these special bearing life properties, the life is corrected by the life adjustment factor for special bearing properties a_2 .

The table of dimensions for \square Bearings shows the values of the basic dynamic load rating which are determined taking into consideration the fact that bearing life has been extended by improved quality of materials and advances in manufacturing technologies. Therefore, the bearing life is calculated using equation (6) usually assuming $a_2 = 1$.

Life adjustment factor for operating conditions a_3

This factor helps take into account the effects of operating conditions, especially lubrication on the bearing. The bearing life is limited by the phenomenon of fatigue which occurs, in general, beneath surfaces subjected to repeated stresses. Under good lubrication conditions where the rolling element and raceway surfaces are completely separated by an oil film and surface damage can be disregarded, a_3 is set to be 1. However, when conditions of lubrication are not good, namely, when the viscosity of the lubricating oil is low or the peripheral speed of the rolling elements is especially low, and so on, $a_3 < 1$ is used.

On the other hand, when lubrication is especially good, a value of $a_3 > 1$ can be used. When lubrication is not good and $a_3 < 1$ is used, the life adjustment factor a_2 cannot generally exceed 1.

When selecting a bearing according to the basic dynamic load rating, it is recommended that a suitable value for reliability factor a_1 is chosen for each application. The selection should be made using the (C/P) or $f_{\rm h}$ values determined by machine type and based upon the actual conditions of lubrication, temperature, mounting, etc., which have already been experienced and observed in the same type of machines.

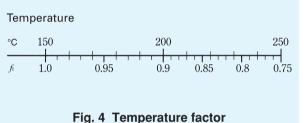
Limiting conditions

These bearing life equations are applicable only when the bearing is mounted and lubricated normally without intrusion of foreign materials and not used under extreme operating conditions.

Unless these conditions are satisfied, the life may be shortened. For example, it is necessary to separately consider the effects of bearing mounting errors, excessive deformation of housing and shaft, centrifugal force acting on rolling elements at high-speed revolution, excessive preload, especially large radial internal clearance of radial bearings, etc.

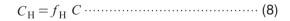
When the dynamic equivalent load exceeds 1/2 of the basic dynamic load rating, the life equations may not be applicable.

Correction of basic dynamic load rating for temperature and hardness

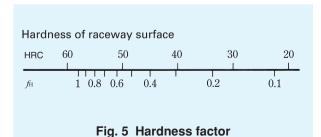

Temperature factor

The operating temperature for each bearing is determined according to its material and structure. If special heat treatment is performed, bearings can be used at temperatures higher than +150 °C. However, the allowable contact stress decreases gradually as the operating temperature increases. Accordingly, the basic dynamic load rating is lowered and can be obtained by the following equation:

where, C_t : Basic dynamic load rating considering temperature rise, N f_t : Temperature factor (See Fig. 4.)


 f_t . Temperature factor (See Fig. 4.) C : Basic dynamic load rating, N

Hardness factor


When the shaft or housing is used as the raceway surface instead of the inner or outer ring, the surface hardness of the part used as the raceway surface should be $58\sim64$ HRC.

If it is less than 58HRC, the basic dynamic load rating is lowered and can be obtained by the following equation:

where, $C_{\rm H}$: Basic dynamic load rating considering hardness, N

 $f_{
m H}$: Hardness factor (See Fig. 5.) C: Basic dynamic load rating ${\sf N}$

Basic Static Load Rating and Static Safety Factor

Basic static load rating

When a bearing at rest sustains a heavy load or a bearing rotating at a relatively low speed receives a heavy shock load, the contact stress may exceed a certain limiting value, producing a local permanent deformation in the raceways or the rolling elements, and subsequently causing noise or vibration or lowering the rotating performance. The basic static load rating is, therefore, determined as a guideline for the maximum allowable load for the bearing at rest, under which the permanent deformation will not exceed a certain limit value, and the lowering of the rotating performance will not occur. Its definition is given as follows.

The basic static load rating is the static load that gives the contact stress shown in Table 3 at the center of the contact area of the rolling element and the raceway receiving the maximum load. A radial load constant in direction and magnitude is used in the case of radial bearings, while an axial load constant in magnitude acting along the bearing central axis is used in the case of thrust bearings.

Table 3

Type of bearing	Contact stress MPa
Roller bearings	4 000
Self-aligning ball bearings	4 600
Other ball bearings	4 200

Static safety factor

The basic static load rating gives the theoretical allowable limit of the static equivalent load. Normally, this limit is corrected by considering the operating conditions and the requirements for the bearing. The correction factor, namely, the static safety factor $f_{\rm s}$ is defined as in the following equation and its general values are shown in Table 4.

$$f_{\rm s} = \frac{C_0}{P_0} \qquad (9)$$

where, C_0 : Basic static load rating, N

Table 4 Static safety factor

Operating conditions of the bearing	$f_{ m S}$
When high rotational accuracy is required	≧3
For ordinary operation conditions	≧ 1.5
For ordinary operation conditions not requiring very smooth rotation When there is almost no rotation	≧1

In case of Shell Type Needle Roller Bearings of which outer ring is drawn from a thin steel plate and then carburized and quenched, it is necessary to use a static safety factor of 3 or more.

Calculation of Bearing Loads

The loads acting on bearings include the weight of the machine parts supported by the bearings, the weight of the rotating body, loads produced when operating the machine, loads by belts or gears transmitting power, and various other loads.

These loads can be divided into radial loads perpendicular to the central axis of the bearings and axial loads parallel to the central axis, and they act independently or in combination with other loads. In addition, the magnitude of vibration or shocks on the bearings varies depending on the application of the machine. Thus, theoretically calculated loads may not always be accurate and have to be corrected by multiplying various empirical factors to obtain the actual bearing loads.

Load distribution to bearings

Table 5 shows examples of calculations where static loads are acting in radial direction.

Load factor

Although radial loads and axial loads can be obtained by calculation, it is not unusual for the actual bearing loads to exceed the calculated loads, due to vibration and shocks produced when operating the machine. The actual bearing load is obtained from the following equation, by multiplying the calculated load by the load factor:

$$F = f_{\rm w} F_{\rm c}$$
 ······(10)

where, F: Bearing load, N

 $f_{
m w}$: Load factor (See Table 6.)

 $F_{
m c}$: Theoretically calculated load, $\,$ N

Table 6 Load factor

Operating conditions	Example	$f_{ m W}$		
Smooth operation without shocks	Electric motors, Air conditioning equipment, Measuring instruments, Machine tools	1 ~1.2		
Ordinary operation	Reduction gearboxes, Vehicles, Textile machinery, Paper making machinery	1.2~1.5		
Operation subjected to vibration and shocks	Rolling mills, Rock crushers, Construction machinery	1.5~3		

Table 5 Load distribution to bearings

Table 5 Load distribution to bearings Example	Bearing load
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$F_{r1} = \frac{dK_{r1} + bK_{r2}}{f}$ $F_{r2} = \frac{cK_{r1} + aK_{r2}}{f}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$F_{r1} = \frac{gK_{r1} + bK_{r2} - cK_{r3}}{f}$ $F_{r2} = \frac{aK_{r2} + dK_{r3} - eK_{r1}}{f}$

KKO

Bearing loads in case of belt or chain transmission

When power is transmitted by a belt or chain, the load acting on the pulley or sprocket wheel is obtained from the following equations:

$$T=9550000 \frac{H}{n} \cdots (11)$$

$$K_{\rm t} = \frac{T}{R}$$
(12)

where, T: Torque acting on pulley or sprocket wheel. N-mm

 K_{t} : Effective transmitting force of belt or chain, $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ $\,$

H: Transmitting power, kW

n: Rotation speed, rpm

R : Effective radius of pulley or sprocket wheel, mm

For belt transmission, the load $K_{\rm r}$ acting on the pulley shaft is obtained from the following equation, multiplying the effective transmitting force $K_{\rm t}$ by the belt factor $f_{\rm b}$ shown in Table 7.

$$K_{\rm r} = f_{\rm b} K_{\rm t}$$
 ······(13)

Table 7 Belt factor

Type of belt	f_{b}
V-belts	2 ~2.5
Timing belts	1.3~2
Plain belts (with tension pulley)	2.5~3
Plain belts	4 ~5

In the case of chain transmission, a value of 1.2 to 1.5 is taken as the chain factor corresponding to $f_{\rm b}$. The load acting on the sprocket wheel shaft is obtained from equation (13) in the same manner as the belt transmission.

Bearing loads in case of gear transmission

When power is transmitted by gears, the force acting on the gears varies according to the type of gear. Spur gears produce radial loads only, but helical gears, bevel gears and worm gears produce axial loads in addition to radial loads. Taking the simplest case of spur gears as an example, the bearing load is obtained from the following equations:

$$T = 9550000 \frac{H}{n} \cdots (14)$$

$$K_{\rm t} = \frac{T}{R}$$
 ·····(15)

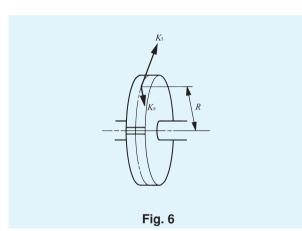
$$K_s = K_t \tan \theta$$
(16)

$$K_c = \sqrt{K_s^2 + K_s^2} = K_t \sec \theta$$
(17)

where, T: Torque applied to gear, N-mm

 K_t : Tangential force acting on gear, N

 K_s : Radial force acting on gear, N


 $K_{\rm c}$: Resultant normal force on gear tooth surface, $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ $\,$

H: Transmitting power, kW

n: Rotational speed, rpm

R: Pitch circle radius of drive gear, mm

 θ : Pressure angle of gear, deg.

In this case, the resultant normal force on the tooth surface acts as the radial force to the shaft and the magnitude of vibration or shocks varies depending on the accuracy and surface finish of the gear. Therefore, the radial load $K_{\rm r}$ applied to the shaft is obtained from the following equation, multiplying the resultant normal force $K_{\rm c}$ on gear tooth surface by the gear factor $f_{\rm z}$ shown in Table 8.

$$K_r = f_z K_c \cdots (18)$$

Table 8 Gear factor

Type of gear	f_{z}
Precision gears (Pitch error and form error: Less than 0.02mm)	1.05~1.1
Ordinary machined gears (Pitch error and form error: 0.02 \sim 0.1mm)	1.1 ~1.3

Mean equivalent load corresponding to fluctuating load

When the load applied to the bearing fluctuates, the bearing life is calculated by using the mean equivalent load $F_{\rm m}$, which is a constant load that will give the bearing a life equal to that produced under the fluctuating load. The mean equivalent load is obtained from the following equation:

$$F_{\rm m} = \sqrt[p]{\frac{1}{N} \int_0^N F_{\rm n}^{\ p} \, dN} \cdots (19)$$

where, $F_{\rm m}$: Mean equivalent load, N

N: Total number of revolutions, rev.

 F_n : Fluctuating load, N

p: Exponent, Roller bearing = 10/3

Ball bearing = 3

Table 9 shows examples of the calculation of mean equivalent loads for various fluctuating loads.

Table 9 Mean equivalent load for the fluctuation load

1	Type of fluctuating load	Mean equivalent load $F_{ m m}$
Step load	$F_{\rm m}$ $F_{\rm m}$ $F_{\rm m}$ $F_{\rm m}$	$F_{\mathrm{m}} = \sqrt[p]{\frac{1}{N}} (F_{1}{}^{p} \ N_{1} + F_{2}{}^{p} \ N_{2} + \dots + F_{n}{}^{p} \ N_{n})$ where, N_{1} : Total number of revolutions under load F_{1} rev. N_{2} : Total number of revolutions under load F_{2} rev. N_{n} : Total number of revolutions under load F_{n} rev.
Monotonously changing load	F _{min} F _{min}	$F_{\rm m}\!=\!\frac{1}{3}\;\left(2F_{\rm max}\!+\!F_{\rm min}\right)$ where, $F_{\rm max}$: Maximum value of fluctuating load, N $F_{\rm min}$: Minimum value of fluctuating load, N
Sinusoidally fluctuating load	F \downarrow F_{max} \downarrow F_{m}	$F_{\rm m} \doteq 0.65 F_{\rm max}$
	F F_{max} F_{m}	$F_{\rm m} \doteq 0.75 F_{\rm max}$
Stationary load plus rotating load	F _s	$F_{\rm m}\!=\!F_{\rm S}\!+F_{\rm R}-\frac{F_{\rm S}F_{\rm R}}{F_{\rm S}\!+F_{\rm R}}$ where, $F_{\rm S}$: Stationary load, N $F_{\rm R}$: Rotating load, N

The loads applied to the bearing are divided into radial loads that are applied perpendicular to the central axis and axial loads that are applied in parallel to the central axis. These loads act independently or in combination with other loads.

Dynamic equivalent load

When both radial load and axial load are applied to the bearing simultaneously, the virtual load, acting on the center of the bearing, that will give a life equal to that under the radial load and the axial load is defined as a dynamic equivalent load.

In the case of needle roller bearings, radial bearings receive only radial loads and thrust bearings receive only axial loads. Accordingly, radial loads are directly used in the life calculation of the radial bearings, while axial loads are directly used for the thrust bearings.

[For radial bearings]

$P_{\rm r} = F_{\rm r}$	(20))
[For thrust bear	rings]	
$P_a = F_a$	(21))

where, $P_{\rm r}$: Dynamic equivalent radial load, $\,$ N

 $P_{\rm a}$: Dynamic equivalent axial load, N $F_{\rm r}$: Radial load, N $F_{\rm a}$: Axial load, N

Static equivalent load

When both radial load and axial load are applied to the bearing simultaneously, the virtual load, acting on the center of the bearing, that will produce a maximum contact stress on the contact surface between the rolling element and the raceway equal to that given by the radial load and the axial load is defined as a static equivalent load.

In the case of needle roller bearings, radial bearings receive only radial loads and thrust bearings receive only axial loads. Accordingly, radial loads are directly used for the radial bearings, while axial loads are directly used for the thrust bearings.

[For radial bearings]

 $P_{0r} = F_r \cdots (22)$ [For thrust bearings]

 $P_{0a} = F_a \cdots (23)$

where, P_{0r} : Static equivalent radial load, N P_{0a} : Static equivalent axial load, N

 $F_{\rm r}$: Radial load, N $F_{\rm a}$: Axial load, N

Boundary Dimensions and Identification Number

Boundary dimensions

Examples of symbols for quantities indicating the boundary dimensions of INO Needle Roller Bearings are shown below. For details, see the table of dimensions for each model.

Machined Type Needle Roller Bearing

d : Nominal bearing bore diameter

D : Nominal bearing outside diameter

B : Nominal inner ring width

C : Nominal outer ring width

 $F_{\rm w}$: Nominal roller set bore diameter

r : Chamfer dimensions of inner and outer rings

min: Smallest permissible single chamfer

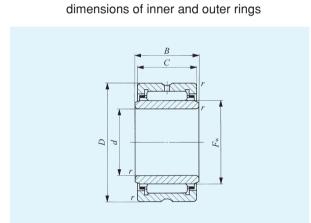


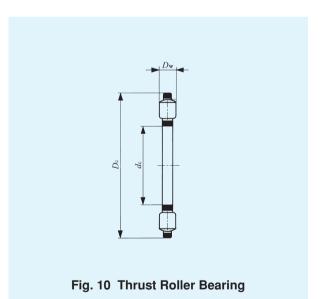
Fig. 7 Machined Type Needle Roller Bearing

Shell Type Needle Roller Bearing

D: Nominal bearing outside diameter $F_{\rm w}$: Nominal roller set bore diameter

C: Nominal outer ring width

Needle Roller Cage


 $E_{\rm w}$: Nominal roller set outside diameter $F_{\rm w}$: Nominal roller set bore diameter

 B_c : Nominal cage width

Thrust Roller Bearing

 $D_{\rm c}$: Nominal cage outside diameter $d_{\rm c}$: Nominal cage bore diameter $D_{\rm w}$: Nominal roller diameter

KKI

31

Identification Number

The identification number of IXI Bearings consists of a model number and supplemental codes. The descriptions of typical codes and their arrangements are shown below. There are many codes other than those described. See the section of identification number of each bearing.

Table 10 Arrangement of identification number of bearing

Table 10 Arrangement of Identification fidiliber of bearing								
Model number	Model code	0						
woder number	Boundary dimensions	2						
	Material symbol	8						
Supplemental code	Cage symbol	4						
	Shield symbol Seal symbol,	6						
	Bearing ring shape symbol	6						
	Clearance symbol	0						
	Classification symbol	8						

1 Model code

The model code represents the bearing series. The features of each bearing series are shown on pages 8 to 18.

2Boundary dimensions

One of the following four kinds of presentation methods is used for showing boundary dimensions in the identification number, which vary depending on the bearing series. Table 11 shows the presentation methods of boundary dimensions for each model code.

- (a)Dimension series + Bore diameter number
- (b)Bore diameter or roller set bore diameter +
 Outside diameter or roller set outside diameter +
 Width
- (c)Bore diameter or roller set bore diameter + Width (d)Basic diameter

Material symbol

30

Symbol	Type of material
F	Stainless steel for bearing rings and rolling elements

4 Cage symbol

Symbol	Descriptions
N	Made of synthetic resin
V	No cage or full complement

5Seal or shield symbol

Symbol	Descriptions
Z	With dust cover
ZZ	With shields on both sides
U	With a seal on one side
UU	With seals on both sides
2RS	With seals on both sides

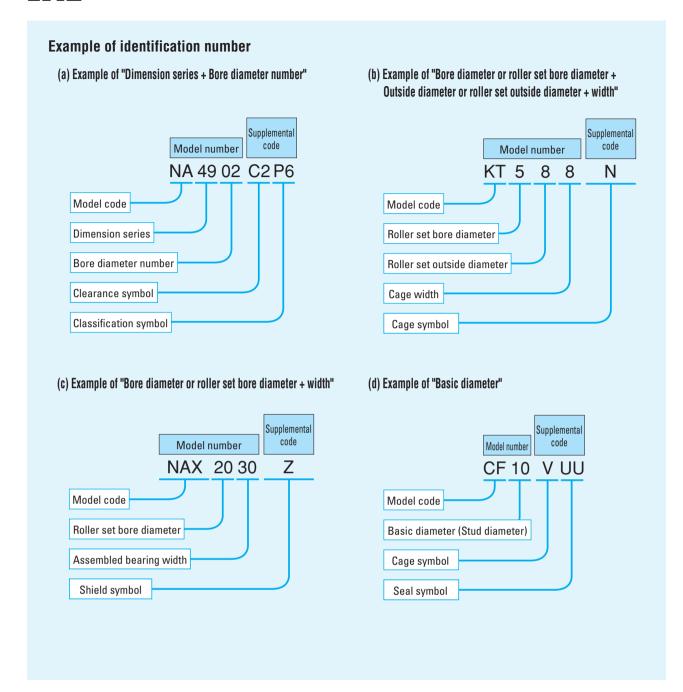
6Bearing ring shape symbol

Symbol	Descriptions
NR	With stop ring on outer surface of outer ring
OH (1)	With oil hole in bearing ring
J	No oil hole

Note(1) This differs depending on the type of bearing. See the section of each bearing.

Clearance symbol

Symbol	Descriptions							
C2	C2 clearance							
(None)	CN clearance							
C3	C3 clearance							
C4	C4 clearance							
C5	C5 clearance							
T1	Chariel walliel alexande							
C1	Special radial clearance (Applicable to Crossed Roller Bearings)							
C2	• • • • • • • • • • • • • • • • • • • •							


3Classification symbol

Symbol	Descriptions
(None)	JIS Class 0
P6	JIS Class 6
P5	JIS Class 5
P4	JIS Class 4

Table 11 Indication of boundary dimensions

Danimatora	Model number							
Bearing type	Model code	Indication of boundary dimensions						
Chall Torra Nandla Dallar Daning	TA, TLA, YT, YTL	Roller set bore diameter + Outer ring width						
Shell Type Needle Roller Bearings	BA, BHA, YB, YBH	Roller set bore diameter + Outer ring width (1)						
Needle Roller Cages for General Usage	KT, KTW	Roller set bore diameter + Roller set outside diameter + Cage width						
Needle Roller Cages for Engine Connecting Rods	KT···EG, KTV···EG	Roller set bore diameter + Roller set outside diameter + Cage width						
	NA, RNA	Dimension series + Bore diameter number						
	TR, TAF, GTR	Roller set bore diameter + Bearing outside diameter + Bearing width						
Machined Type Needle Roller Bearings	TRI, TAFI, GTRI	Bearing bore diameter + Bearing outside diameter + Outer ring width						
	BR, GBR	Roller set bore diameter + Bearing outside diameter + Bearing width (1)						
	BRI, GBRI	Bearing bore diameter + Bearing outside diameter + Outer ring width (1)						
Needle Roller Bearings with Separable Cage	RNAF, RNAFW	Roller set bore diameter + Bearing outside diameter + Bearing width						
Needle Koller Bearings with Separable Cage	NAF, NAFW	Bearing bore diameter + Bearing outside diameter + Bearing width						
Dellas Dessinas	NAU, NAG, NAS	Dimension series + Bore diameter number						
Roller Bearings	TRU	Bearing bore diameter + Bearing outside diameter + Bearing width						
	NTB, AS, WS, GS	Bearing bore diameter + Bearing outside diameter						
Thrust Bearings	AZ	Bearing bore diameter + Bearing outside diameter + Bearing height						
	AZK	Bearing bore diameter + Bearing outside diameter + Roller diameter						
	NAX, NBX	Roller set bore diameter + Assembled bearing width						
Combined Type Needle Roller Bearings	NAXI, NBXI	Innerring bore diameter + Assembled bearing width						
	NATA, NATB	Dimensional series + Bore diameter number						
Com Fallowana	CF, NUCF, CFS	Stud diameter						
Cam Followers	CR, CRH	Bearing outside diameter (1)						
Dellay Fellesses	NAST, NART, NURT	Bearing bore diameter						
Roller Followers	CRY	Bearing outside diameter (1)						
Crossed Roller Bearings	CRBH, CRB, CRBS	Bearing bore diameter + Bearing width						
Only arised Bushings	SB···A, GE	Inner ring bore diameter						
Spherical Bushings	SBB	Inner ring bore diameter (1)						
PILLOBALLs	PB,PHS,POS,PHSB,POSB,PHSA	Inner ring bore diameter						
L-Balls	LHSA, LHS	Screw size						
Seals for Needle Roller Bearings	OS, DS	Shaft diameter + Seal outside diameter + Seal width						
Cir alina for Noodla Pollar Pooringa	WR	Shaft diameter						
Cir-clips for Needle Roller Bearings	AR	Bore diameter						

Note(1) The nominal dimensions of inch series bearings are indicated in units of 1/16 inch.

Accuracy

The accuracy of INO Needle Roller Bearings conforms to JIS B 1514:2000 (Tolerances of Rolling Bearings), and the dimensional accuracy and rotational accuracy are specified. The specified items are shown in Fig. 11.

Needle Roller Bearings are classified into 4 classes of accuracy. These classes are represented by the numbers 0, 6, 5 and 4, written in order of increasing accuracy.

Table 12 shows the accuracy for the inner rings of radial bearings, Table 13 shows the accuracy for the outer rings of radial bearings, Table 14 shows the tolerances for the smallest single roller set bore diameter of radial bearings, and Table 15 shows the permissible limit values of chamfer dimensions of radial bearings. For thrust bearings, see the section on accuracy of Thrust Bearings. Note that the series of Shell Type Needle Roller Bearings, Roller Bearings, Cam Followers, Roller Followers, Combined Type Needle Roller Bearings, and Crossed Roller Bearings have special accuracy. For further details, see the section on accuracy of each bearing series.

Remarks

The meanings of the new symbols for quantities used for accuracy of radial bearings are as follows:

- ①∆ represents the deviation of a dimension from the specified value.
- ②V represents the variation of a dimension.

[Example] $V_{d\mathrm{p}}$ means the difference between the largest and the smallest of the bore diameters in a single radial plane (circularity). $V_{d\mathrm{mp}}$ means the difference between the largest and the smallest of the single plane mean bore diameters (cylindricity).

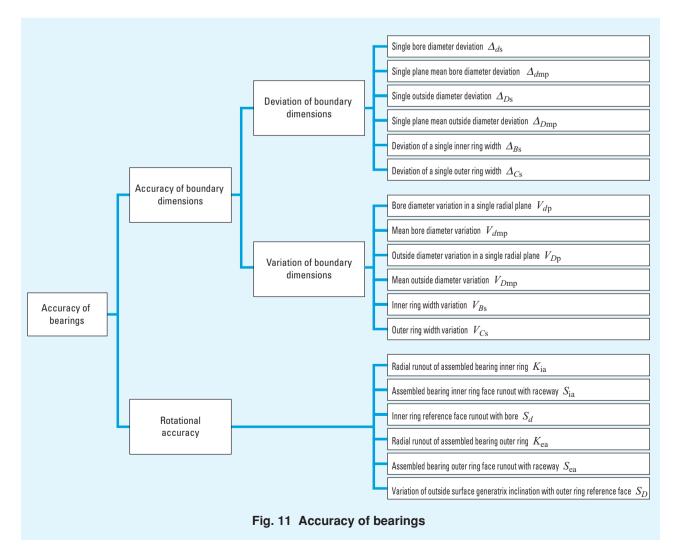


Table 12 Tolerances for inner ring

d Nominal I bore dia	U	$\Delta_{d\mathrm{mp}}$ Single plane mean bore diameter deviation							Single dian	ds e bore neter ation		e diam		riation			adial p		Mea	V_d an bore varia		eter			
mn	mm		Class 0		ss 6	Cla	Class 5		Class 5		ss 5 Class 4		ss 4										Class		_
Over	Incl.	High	Low	High	Low	High	Low	w High Low				0	6 M	5 ax.	4	0	6 Ma	5 ax.	4	0	6 Ma	5 ax.	4		
2.5 10 18	10 18 30	0 0	- 8 - 8 - 10	0 0	- 7 - 7 - 8	0 0	- 5 - 5 - 6	0 0	- 4 - 4 - 5	0 0	- 4 - 4 - 5	10 10 13	9 9 10	5 5 6	4 4 5	8 8 10	7 7 8	4 4 5	3 3 4	6 6 8	5 5 6	3 3	2 2 2.5		
30 50 80	50 80 120	0 0 0	- 12 - 15 - 20	0 0 0	- 10 - 12 - 15	0 0 0	- 8 - 9 - 10	0 0 0	- 6 - 7 - 8	0 0 0	- 6 - 7 - 8	15 19 25	13 15 19	8 9 10	6 7 8	12 19 25	10 15 19	6 7 8	5 5 6	9 11 15	8 9 11	4 5 5	3 3.5 4		
120 180 250	180 250 315	0 0 0	- 25 - 30 - 35	0 0 0	- 18 - 22 - 25	0 0 0	- 13 - 15 - 18	0	- 10 - 12	0	- 10 - 12	31 38 44	23 28 31	13 15 18	10 12	31 38 44	23 28 31	10 12 14	8	19 23 26	14 17 19	7 8 9	5 6		
315 400 500	400 500 630	0 0 0	- 40 - 45 - 50	0 0 0	- 30 - 35 - 40	0	- 23					50 56 63	38 44 50	23		50 56 63	38 44 50	18		30 34 38	23 26 30	12			
630 800 1000	800 1000 1250	0 0 0	- 75 - 100 - 125																						
1250 1600	1600 2000	0	- 160 - 200																						

Note(1) Applicable to all series except NAS series
(2) Applicable to NAS series
(3) Applicable to NATA and NATB series

Table 13 Tolerances for outer ring

Table 1		4110	00 10		01 111	.9														
D Nominal I outside d	bearing	Sir	ngle pla	ne mea	$arDelta_D$ an outs		ımeter	devia	tion	Singl side	Ds e out- diam-									
										eter o	devia- on					earin	<u> </u>			Bearing with seal or shield
										- 11	JII							series		Diameter series 0 ⁽³⁾
mr	n	Cl	ass O	Cla	ıss 6	Cla	ss 5	Cla	ss 4	Cla	ss 4	Class 0	Class 6	Class 5	Class 4	Class 0	Class 6	Class 5	Class 4	Class 6
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low		М	ax.			М	ax.		Max.
2.5 6 18	6 18 30	0 0 0	- 8 - 8 - 9	3 0	- 7 - 7 - 8	0 0 0	- 5 - 5 - 6	0 0 0	- 4 - 4 - 5	0 0 0	- 4 - 4 - 5	10 10 12	9 9 10	5 5 6	4 4 5	8 8 9	7 7 8	4 4 5	3 3 4	9 9 10
30 50 80	50 80 120	0 0 0	- 1° - 1° - 1°	3 0	- 9 - 11 - 13	0 0 0	- 7 - 9 - 10	0 0 0	- 6 - 7 - 8	0 0 0	- 6 - 7 - 8	14 16 19	11 14 16	7 9 10	6 7 8	11 13 19	9 11 16	5 7 8	5 5 6	13 16 20
120 150 180	150 180 250	0 0 0	- 18 - 25 - 30	0	- 15 - 18 - 20	0 0 0	- 11 - 13 - 15	0 0 0	- 9 - 10 - 11	0 0 0	- 9 - 10 - 11	23 31 38	19 23 25	11 13 15	9 10 11	23 31 38	19 23 25	8 10 11	7 8 8	25 30
250 315 400	315 400 500	0 0 0	- 3! - 4(- 4!	0 (- 25 - 28 - 33	0	- 18 - 20 - 23	0	- 13 - 15	0	- 13 - 15	44 50 56	31 35 41	18 20 23	13 15	44 50 56	31 35 41	14 15 17	10 11	
500 630 800	630 800 1000	0 0 0	- 50 - 75 - 100	0	- 38 - 45 - 60	0	- 28 - 35					63 94 125	48 56 75	28 35		63 94 125	48 56 75	21 26		
1000 1250 1600 2000	1250 1600 2000 2500	0 0 0 0	- 125 - 160 - 200 - 250																	

Note(1) Classes 0 and 6 are applicable to outer rings without stop rings.

(2) Applicable to all series except NAS series

(3) Applicable to NAS series

(4) Applicable to NATA and NATB series

																				u	nit: μ m
		inout o d beari		S Inner referen runout w	r ring ce face	S_{ia} Assemble inner ri runout wit	d bearing ng face		$\Delta_{B\mathrm{S}}$ Deviation of a single inner ring width				Inner		Bs idth var	riation	d Nominal b bore dia	0			
Class 0	Class 6	Class 5	Class 4	Class 5	Class 4	Class 5	Class 4	CI	ass 0	Cla	ass 6	Cla	ıss 5	Cla	iss 4	Class 0	Class 6	Class 5	Class 4	mn	า
	N	1ax.		Ma	ax.	Ma	ax.	High	Low	High	Low	High	Low	High	Low		M	ax.		Over	Incl.
10 10 13	6 7 8	4 4 4	2.5 2.5 3	7 7 8	3 3 4	7 7 8	3 3 4	0 0 0	- 120 - 120 - 120	0 0 0	- 120 - 120 - 120	0 0 0	- 40 - 80 - 120	0 0 0	- 40 - 80 - 120	15 20 20	15 20 20	5 5 5	2.5 2.5 2.5	2.5 10 18	10 18 30
15 20 25	10 10 13	5 5 6	4 4 5	889	4 5 5	8 8 9	4 5 5	0 0 0	- 120 - 150 - 200	0 0 0	- 120 - 150 - 200	0 0 0	- 120 - 150 - 200	0 0 0	- 120 - 150 - 200	20 25 25	20 25 25	5 6 7	3 4 4	30 50 80	50 80 120
30 40 50	18 20 25	8 10 13	6 8	10 11 13	6 7	10 13 15	7 8	000	- 250 - 300 - 350	0 0 0	- 250 - 300 - 350	0 0 0	- 250 - 300 - 350	0	- 250 - 300	30 30 35	30 30 35	8 10 13	5 6	120 180 250	180 250 315
60 65 70	30 35 40	15		15		20		0 0	- 400 - 450 - 500	0 0 0	- 400 - 450 - 500	0	- 400			40 50 60	40 45 50	15		315 400 500	400 500 630
80 90 100								0 0 0	- 750 - 1000 - 1250							70 80 100				630 800 1000	800 1000 1250
120 140								0	- 1600 - 2000				·			120 140				1250 1600	1600 2000

unit: μ m

	lean ou	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$V_{C m s}$ Outer ring width variation				D Nominal bearing outside diameter												
Class 0	Class 6	Class 5	Class 4	Class 0	Class 6	Class 5	Class 4	Class 5	Class 4	Class 5	Class 4	Class 0), 6, 5, 4	Class 0	Class 6	Class 5	Class 4	mn	n	
	Ma	ax.			M	ax.		М	ax.	Ma	ax.	High	Low		Ma	ix.		Over	Incl.	
6 6 7	5 5 6	3 3 3	2 2 2.5	15 15 15	8 8 9	5 5 6	3 3 4	8 8 8	4 4 4	8 8 8	5 5 5					5 5 5	2.5 2.5 2.5	2.5 6 18	6 18 30	
8 10 11	7 8 10	4 5 5	3 3.5 4	20 25 35	10 13 18	7 8 10	5 5 6	8 8 9	4 4 5	8 10 11	5 5 6		Same as the tolerance				2.5 3 4	30 50 80	50 80 120	
14 19 23	11 14 15	6 7 8	5 5 6	40 45 50	20 23 25	11 13 15	7 8 10	10 10 11	5 5 7	13 14 15	7 8 10				Same as the tolerance	8 8 10	5 5 7	120 150 180	150 180 250	
26 30 34	19 21 25	9 10 12	7 8	60 70 80	30 35 40	18 20 23	11 13	13 13 15	8 10	18 20 23	10 13	values for d o same b		for d o	f the	11 13 15	7 8	250 315 400	315 400 500	
38 55 75	29 34 45	14 18		100 120 140	50 60 75	25 30		18 20		25 30							18 20		500 630 800	630 800 1000
				160 190 220 250														1000 1250 1600 2000	1250 1600 2000 2500	

Table 14 Tolerances for smallest single roller set bore diameter $F_{\rm ws\;min}(^{\rm 1})$ unit: $\mu{\rm m}$

	0 4141110101 1	ws min 🗸	unit: Am			
Nominal roller s	, w et bore diameter m	$\Delta_{F m ws\ min}$ Deviation of smallest single roller set bore diam				
0ver	Incl.	High	Low			
3	6	+ 18	+ 10			
6	10	+ 22	+ 13			
10	18	+ 27	+ 16			
18	30	+ 33	+ 20			
30	50	+ 41	+ 25			
50	80	+ 49	+ 30			
80	120	+ 58	+ 36			
120	180	+ 68	+ 43			
180	250	+ 79	+ 50			
250	315	+ 88	+ 56			
315	400	+ 98	+ 62			
400	500	+108	+ 68			

Note(1) This is the diameter of the cylinder used instead of the inner ring, where the radial clearance becomes 0 at least in one radial direction.

Table 15 Permissible limit values for chamfer dimensions of radial bearings unit: m

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	difficitions of radial bearings								
0.1 — — 0.55 (2) 0.55 (2) 0.15 — — 0.6 (2) 0.6 0.2 — — 0.7 (2) 0.8 0.3 — 40 0.8 (2) 1 0.4 (1) — — 0.8 1 0.6 — 40 — 1.3 2 1 — — 40 1.1 (2) 2 1 — — 50 1.5 3 1 — — 50 1.5 3 1.1 — — 1.9 3 1.1 — — 1.9 3 1.1 — — 1.9 3 1.5 — — 1.9 3 1.5 — — 2.5 4 1.5 — — 3 5 2 80 220 3.5 5 2.5 — </td <td>Smallest permissible single</td> <td></td> <td></td> <td colspan="6">Largest permissible single chamfer dimension</td>	Smallest permissible single			Largest permissible single chamfer dimension					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	chamfer dimension	Over	Incl.	Radial direction	Axial direction				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1	_	_	0.55 (2)	0.55 (2)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.15			0.6 (2)	0.6				
0.3 40 — 0.8 1 0.4 (1) — — 0.8 1.2 0.6 — 40 1.1 (2) 2 1 — 50 1.5 3 1 50 — 1.9 3 1.1 120 — 2.5 4 1.5 — 120 2.3 4 1.5 — 120 2.3 4 2 80 220 3.5 5 2 80 220 3.5 5 220 — 3.8 6 2.1 — 280 4 6.5 2.5 (1) 100 280 4.5 7 2.5 (1) 100 280 4.5 6 280 — 5.5 8 4 — 6.5 9 5 — 8 10	0.2		_	0.7 (2)	0.8				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.3	40	40 —	1 1	-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4 (1)	_	_	0.8	1.2				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.6		40	, ,					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	 50	50						
1.5 120 — 3 5 2 80 220 3.5 5 220 — 3.8 6 2.1 — 280 4 6.5 280 — 4.5 7 2.5 (1) 100 280 4.5 6 280 — 5 7 3 — 280 5 8 280 — 5.5 8 4 — — 6.5 9 5 — 8 10	1.1	120	120						
2 80 220 3.5 5 220 — 3.8 6 2.1 — 280 4 6.5 280 — 4.5 7 25 — 100 3.8 6 280 — 5 7 3 — 280 5 8 280 — 5.5 8 4 — — 6.5 9 5 — 8 10	1.5	120	120						
2.1 280 — 4.5 7 2.5 (1) 100 280 4.5 6 280 — 5 7 3 — 280 5 8 280 — 5.5 8 4 — — 6.5 9 5 — 8 10	2		220	3.5	5				
2.5 (1) 100 280 4.5 6 280 — 5 7 3 — 280 5 8 280 — 5.5 8 4 — — 6.5 9 5 — 8 10	2.1	 280	280						
3 280 — 5.5 8 4 — — 6.5 9 5 — — 8 10	2.5 (1)			4.5	6				
5 — 8 10	3	280	280						
	4			6.5	9				
6 — — 10 13	5	_		8	10				
- 1.0	6	_	_	10	13				

Note(1) Not specified in JIS.

The numeric value differs from JIS.

Remark Although the exact shape of the chamfer is not specified, its profile in the axial plane must not extend beyond the imaginary circular arc of radius $r_{\rm s\,min}$ which is tangential to the inner ring side surface and bearing bore surface or to the outer ring side surface and bearing outside surface. (See Fig. 12.)

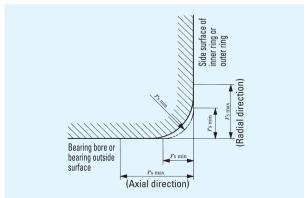


Fig. 12 Permissible values for chamfer dimensions

Methods of Measurement

Measurement of IMO Needle Roller Bearings is based on JIS B 1515:1988 (Methods of Measurement for Roller Bearings). Tables 16 and 17 show some examples of the methods.

Special methods are used to measure Shell Type Needle Roller Bearings. Therefore, refer to the section on accuracy for these bearings on page 70.

Table 16 Measurement methods of accuracy of boundary dimensions

	Measurement methods		Accuracy and definitions
Bore diameter	In principle, measurements of dimensions are carried out using a two-point measuring instrument for various radial planes.	$d_{ m mp}$ Single plane mean bore diameter	$d_{\rm mp} = \frac{d_{\rm sp\;max} + d_{\rm sp\;min}}{2}$ $d_{\rm sp\;max} : {\rm Maximum\;value\;of\;bore\;diameter\;}(d_{\rm s})$ obtained for a single radial plane $d_{\rm sp\;min} : {\rm Minimum\;value\;of\;bore\;diameter\;}(d_{\rm s})$ obtained for a single radial plane
	1.2.7s max	$\Delta_{d\mathrm{mp}}$ Single plane mean bore diameter deviation	$\Delta_{d \mathrm{mp}} = d_{ \mathrm{mp}} - d$ $d : \mathrm{Nominal bore diameter}$
	van s	$V_{d\mathrm{p}}$ Bore diameter variation in a single radial plane	$V_{dp} = d_{\rm sp max} - d_{\rm sp min}$
	This does not apply to the regions within a range of 1.2 times the largest permissible	$V_{d{ m mp}}$ Mean bore diameter variation	$\begin{split} V_{d\mathrm{mp}} &= d_{\mathrm{mp\;max}} - d_{\mathrm{mp\;min}} \\ d_{\mathrm{mp\;max}} &: \mathrm{Maximum\;value\;of\;single\;plane\;mean\;bore} \\ &= d_{\mathrm{mp\;min}} &: \mathrm{Minimum\;value\;of\;single\;plane\;mean\;bore} \\ d_{\mathrm{mp\;min}} &: \mathrm{Minimum\;value\;of\;single\;plane\;mean\;bore} \\ &= d_{\mathrm{iameters}} d_{\mathrm{mp}} \mathrm{forvarious\;radial\;planes} \end{split}$
	single chamfer dimension from both side- surfaces of the inner ring.	Δ_{ds} Single bore diameter deviation	$\Delta_{ds} = d_s - d$ $d_s : \text{Any measured bore diameter obtained in any radial plane}$
Outside diameter	In principle, measurements of dimensions are carried out using a two-point measuring instrument for various radial planes.	$D_{ m mp}$ Single plane mean outside diameter	$D_{\rm mp} = \frac{D_{\rm sp\;max} + D_{\rm sp\;min}}{2}$ $D_{\rm sp\;max} : {\rm Maximum\;value\;of\;outside\;diameter\;}(D_{\rm s})$ obtained for a single radial plane $D_{\rm sp\;min} : {\rm Minimum\;value\;of\;outside\;diameter\;}(D_{\rm s})$ obtained for a single radial plane
	1.2.7s max	$\Delta_{D\mathrm{mp}}$ Single plane mean outside diameter deviation	$\Delta_{D \mathrm{mp}} = D_{ \mathrm{mp}} - D$ D : Nominal outside diameter
	vin s	$V_{D\mathrm{p}}$ Outside diameter variation in a single radial plane	$V_{Dp} = D_{\rm sp max} - D_{\rm sp min}$
	This does not apply to the regions within a range of 1.2 times the largest permissible	$V_{D{ m mp}}$ Mean outside diameter variation	$\begin{split} V_{D\mathrm{mp}} = & D_{\mathrm{mp \; max}} - D_{\mathrm{mp \; min}} \\ D_{\mathrm{mp \; max}} : & \text{Maximum value of single plane mean outside} \\ & \text{diameters } D_{\mathrm{mp}} \text{ for various radial planes} \\ D_{\mathrm{mp \; min}} : & \text{Minimum value of single plane mean outside} \\ & \text{diameters } D_{\mathrm{mp}} \text{ for various radial planes} \end{split}$
	single chamfer dimension from both side- surfaces of the outer ring.	Δ_{Ds} Single outside diameter deviation	$\Delta_{Ds} = D_s - D$ $D_s : \mbox{Any measured outside diameter obtained in any radial plane}$

38

39

	Measurement methods		Accuracy and definitions
Roller set bore diameter	In principle, this is measured using a master gauge. The master gauge is fixed on the base with its side surface downward, and the outer ring with needle rollers is fitted onto the gauge. An indicator probe is applied radially to the approximate middle of the outside surface of the outer ring, and a measuring load is applied in that direction inward and outward alternately to obtain the amount of outer ring movement. Measurements are taken at various angular posi-	$\Delta_{F m Ws}$ Deviation of a single roller set bore diameter	$\begin{split} \Delta_{F\text{ws}} = & (d_{\text{G}} + \delta_{\text{1m}}) - F_{\text{w}} \\ d_{\text{G}} & : \text{ Outside diameter of master gauge} \\ \delta_{\text{1m}} & : \text{ Arithmetical mean value of outer ring movement} \\ F_{\text{w}} & : \text{ Nominal dimension of roller set bore diameter} \end{split}$
	tions by turning the outer ring. Measuring load load Master gauge	$\Delta_{F m wsmin}$ Deviation of smallest single roller set bore diameter	$\Delta_{F \le \min} = (d_{\rm G} + \delta_{\rm 1min}) - F_{\rm W}$ $\delta_{\rm 1min} : \mbox{Minimum value of outer ring movement}$
Inner ring width	The inner ring width is measured between the base and the indicator probe perpendicular to the base.	$\Delta_{B_{ m S}}$ Deviation of a single inner ring width	$\Delta_{B\mathrm{S}}=B_{\mathrm{S}}-B$ B_{S} : Single inner ring width B_{S} : Nominal inner ring width
		$V_{B m S}$ Inner ring width variation	$V_{Bs} = B_{s \max} - B_{s \min}$ $B_{s \max} : \text{Maximum value of single inner ring width}$ $B_{s \min} : \text{Minimum value of inner ring width}$
Outer ring width	The outer ring width is measured between the base and the indicator probe perpendicular to the base.	$\Delta_{C{ m s}}$ Deviation of a single outer ring width	$\Delta_{Cs} = C_s - C$ $C_s : \text{Single outer ring width}$ $C : \text{Nominal outer ring width}$
		$V_{C{ m s}}$ Outer ring width variation	$V_{Cs} = C_{s \max} - C_{s \min}$ $C_{s \max} : \text{Maximum value of single outer ring width}$ $C_{s \min} : \text{Minimum value of single outer ring width}$
Bearing height	In principle, the height is measured between the base plane on which the back surface of the outer ring is placed and the disk master placed on the back surface of the inner ring.	$\Delta_{T{ m s}}$ Deviation of the actual bearing height	$\Delta_{T\mathrm{S}} = T_{\mathrm{S}} - T$ $T_{\mathrm{S}} : \text{Actual bearing height}$ $T : \text{Nominal bearing height}$

Table 17 Measurement methods for rotational accuracy

Table 17 Meas	surement methods for rotational accuracy	
Accuracy	Measurement methods	
S_d Inner ring reference face runout with bore	The inner ring reference face runout with bore, in principle, is measured using a tapered arbor. The bearing is correctly fitted to the arbor, which is held by both centers so that it can rotate smoothly without play. An indicator probe is applied axially to the approximate middle of the width of the flat part of the inner ring reference side-surface. The tapered arbor together with the bearing is turned fully once to obtain the runout, which is the difference between the maximum and minimum readings of the indicator.	
S _D Variation of outside surface generatrix inclination with outer ring reference face	The outer ring reference side-surface is placed on a flat base, and the inner ring is left free. Two stoppers are applied to the outside cylindrical surface of the outer ring at a distance of 1.2 times the maximum permissible chamfer dimension ($r_{\rm S}$ $_{\rm max}$) from the base. Just above one of the stoppers, an indicator probe is applied radially to the outside cylindrical surface of the outer ring at a distance of 1.2 times the maximum permissible chamfer dimension ($r_{\rm S}$ $_{\rm max}$) from the upper side-surface. The outer ring is turned fully once along the stoppers to obtain the Variation which is the difference between the maximum and the minimum readings of the indicator.	Stopper Stopper
K_{ia} Radial runout of assembled bearing inner ring	The radial runout of the inner ring is measured by holding the tapered arbor, to which the bearing is correctly fitted, horizontally by both centers so that it can rotate smoothly without play. An indicator probe is applied radially downward to the approximate middle of the width of the outside-surface of the outer ring. The inner ring, together with the tapered arbor, is turned fully once to obtain the radial runout, which is the difference between the maximum and the minimum readings of the indicator. (The outer ring is not rotated.)	
K_{ea} Radial runout of assembled bearing outer ring	The radial runout of the outer ring is measured by holding the tapered arbor, to which the bearing is correctly fitted, horizontally by both centers so that it can rotate smoothly without play. An indicator probe is applied radially downward to the approximate middle of the width of the outside-surface of the outer ring. The outer ring is turned fully once to obtain the radial runout, which is the difference between the maximum and the minimum readings of the indicator. (The inner ring is not rotated.) In the case of needle roller bearings without inner ring, the measurement is carried out by using a cylindrical arbor instead of the inner ring.	
$S_{\rm ia}$ Assembled bearing inner ring face runout with raceway	The axial runout of the inner ring is measured by placing the outer ring on a flat base with the center axis of the bearing vertical. An indicator probe is applied axially to the approximate middle of the flat part of the inner ring reference side-surface. The specified measuring weight is applied to the inner ring reference side-surface in the direction of the center axis. The inner ring is turned fully once to obtain the runout, which is the difference between the maximum and the minimum readings of the indicator.	Weight (Measuring load)
S_{ea} Assembled bearing outer ring face runout with raceway	The axial runout of the outer ring is measured by placing the inner ring on the flat base with the center axis of the bearing vertical. An indicator probe is applied axially to the approximate middle of the flat part of the outer ring reference side-surface. The specified measuring weight is applied to the outer ring reference side-surface in the direction of the center axis. The outer ring is turned fully once to obtain the runout, which is the difference between the maximum and the minimum readings of the indicator.	Weight (Measuring load)

IKO

Clearance

The clearances between the bearing rings and rolling elements are known as bearing clearances. When either the inner or outer ring is fixed and a specified measuring load is applied to the free bearing ring inward and outward alternately in the radial direction, the displacement of the free bearing is referred to as the radial internal clearance. The amount of measuring load in this case is extremely small, and its values are specified in JIS B 1515:1988 (Methods of Measurement for Rolling Bearings).

Table 18 shows the radial internal clearances of Needle Roller Bearings with Inner Ring based on JIS B 1520:1995 (Radial internal clearances of rolling bearings). The radial internal clearances are classified into C2, CN, C3, C4, and C5, with clearances increasing in this order. CN is used under normal operating conditions. When a smaller range in radial internal clearance than the values shown in Table 18 is required, please consult TIKID.

②In the case of Shell Type Needle Roller Bearings, the correct dimensional accuracy is achieved only after the bearings are press-fitted into the specified housing bore. Therefore, the clearances shown in Table 18 are not applicable. See page 72.

3 For the radial internal clearances of Cam Followers, Roller Followers and Crossed Roller Bearings, see the relevant section for each bearing.

Table 18 Radial internal clearances of Needle Roller Bearings

Table 18	able 18 Radial internal clearances of Needle Holler Bearings unit: μm										
	d				CI	assification	of clearanc	es			
	re diameter m	C2		С	CN		C3		34	C5	
Over	Incl.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
_	10	0	25	20	45	35	60	50	75	_	_
10	24	0	25	20	45	35	60	50	75	65	90
24	30	0	25	20	45	35	60	50	75	70	95
30	40	5	30	25	50	45	70	60	85	80	105
40	50	5	35	30	60	50	80	70	100	95	125
50	65	10	40	40	70	60	90	80	110	110	140
65	80	10	45	40	75	65	100	90	125	130	165
80	100	15	50	50	85	75	110	105	140	155	190
100	120	15	55	50	90	85	125	125	165	180	220
120	140	15	60	60	105	100	145	145	190	200	245
140	160	20	70	70	120	115	165	165	215	225	275
160	180	25	75	75	125	120	170	170	220	250	300
180	200	35	90	90	145	140	195	195	250	275	330
200	225	45	105	105	165	160	220	220	280	305	365
225	250	45	110	110	175	170	235	235	300	330	395
250	280	55	125	125	195	190	260	260	330	370	440
280	315	55	130	130	205	200	275	275	350	410	485
315	355	65	145	145	225	225	305	305	385	455	535
355	400	100	190	190	280	280	370	370	460	510	600
400	450	110	210	210	310	310	410	410	510	565	665
450	500	110	220	220	330	330	440	440	550	625	735

Remark For bearings with CN clearance, no symbol is attached to the identification number. In the case of bearings with C2, C3, C4 and C5 clearances, these symbols are attached to the identification number.

Example NA 4905 C2

Selection of clearance

Radial clearances of needle roller bearings change according to bearing fit, temperature difference between bearing rings and rolling elements, loads, etc., and these factors greatly influence bearing life, accuracy, noise, generation of heat, etc. If radial clearances are too large, noise and vibration will increase, and if they are too small, abnormally great forces are exerted on the contact areas between raceways and rolling elements, resulting in abnormally high heat generation and a decrease in bearing life. Therefore, in the ideal case, the clearance provided before mounting should be such that it will become zero or slightly larger when the bearing has reached steady-state operation and the temperature has become constant (saturation temperature). However, it is difficult to achieve this ideal state for all bearings. Under general operating conditions, bearings with CN clearance are most widely used, and are manufactured to provide satisfactory performance when fitted according to Tables 21 and 22.

When radial internal clearances other than CN are used, refer to Table 19.

Table 19 Examples of selecting radial internal clearances other than CN clearance

Operating conditions	Selection of clearance
When heavy loads and shock loads are applied, and amount of interference is great.	
When directionally indeterminate loads are applied, and a tight fit is required for both inner and outer rings.	C3 or larger clearance
When temperature of inner ring is much higher than that of outer ring.	CS OF larger clearance
When shaft deflection and/or mounting error to the housing are great.	
When less noise and vibration are required. When a loose fit is required for both inner and outer rings. When preload is required.	C2 or smaller clearance

Reduction of radial clearances by fit

When the inner or outer rings are interference fitted onto shafts and into housings, respectively, they expand or shrink due to elastic deformation. As the result, the radial clearances are reduced. These reduced radial clearances are called residual (internal) clearances.

The amount of reduction is obtained by the following equation, and it is generally 70 to 90% of the interference amount.

$\Delta_C = \Delta_F + \Delta_E$ ······(24)

where, Δ_C : Amount of reduction of the radial clearance, mm

 \varDelta_F : Amount of expansion of the outside diameter of inner ring, $\,$ mm $\,$

 Δ_E : Amount of shrinkage of the bore diameter of outer ring, mm

1 Amount of expansion of the outside diameter of inner ring

· With solid shaft

$$\Delta_F = \Delta_{de} \frac{d}{F}$$
(25)

· With hollow shaft

$$\Delta_F = \Delta_{de} \frac{d}{F} \frac{1 - (d_i/d)^2}{1 - (d/F)^2 (d_i/d)^2} \cdots (26)$$

where, Δ_{de} : Effective interference of inner ring, mm d: Bore diameter of inner ring, mm F: Outside diameter of inner ring, mm d: Bore diameter of hollow shaft. mm

2 Amount of shrinkage of the bore diameter of outer ring

· With steel housing $(D_0 = \infty)$

$$\Delta_E = \Delta_{De} \frac{E}{D}$$
(27)

· With steel housing $(D_0 \neq \infty)$

$$\Delta_E = \Delta_{De} \frac{E}{D} \frac{1 - (D/D_0)^2}{1 - (E/D)^2 (D/D_0)^2} \cdots (28)$$

where, Δ_{De} : Effective interference of outer ring, mm D: Outside diameter of outer ring, mm E: Bore diameter of outer ring, mm D_0 : Outside diameter of housing, mm

Reduction of radial clearances due to temperature differences between inner and outer rings

Frictional heat generated by rotation is dissipated through the shafts and housings as well as through oil and air. Under general operating conditions, heat dissipation is larger on the housing side compared with that on the shaft side, and the temperature of the outer ring is usually lower than that of the inner ring. During operation, the temperature of the rolling elements is the highest, followed by that of the inner ring and that of the outer ring. The amount of thermal expansion, therefore, varies, and the radial clearances are reduced. This reduced radial clearance is called the effective (internal) clearance, and the amount of reduction is obtained by the following equation:

$$\Delta \delta = \alpha \Delta_t E \cdots (29)$$

where, $\Delta \ \delta$: Reduction of radial clearance, mm α : Coefficient of linear expansion for bearing steel

$$= 12.5 \times 10^{-6} \text{ 1/}^{\circ}\text{C}$$

 Δ_t : Temperature difference between the outer ring and the inner ring plus rolling elements considered as one unit, $^{\circ}$ C E: Bore diameter of outer ring, mm

The temperature difference Δ_t is considered to be 5 \sim 10 °C under normal operating conditions and 15 \sim 20 °C at high rotational speeds. Therefore, when the temperature difference is great, a correspondingly larger radial internal clearance must be selected.

Fit

Purpose of fit

To achieve the best performance of needle roller bearings, it is important that the bearing rings are correctly fitted onto the shaft and into the housing.

The purpose of fit is to provide the appropriate amount of interference required between the inner ring and the shaft or between the outer ring and the housing, to prevent harmful mutual slippage.

If the interference is insufficient, it will cause a harmful relative displacement, known as creep, between the fitted surfaces in the circumferential direction. This may lead to abnormal wear of fitted surfaces, intrusion of wear particles into the bearing, generation of abnormal heat, vibration, etc. Therefore, a suitable fit must be selected.

Table 20 Nature of radial load and fit

	Nature of the load	Fit			
		Rotating conditions	Inner ring	Outer ring	
Rotating load on inner ring		Inner ring : Rotating Outer ring : Stationary Load direction : Fixed	Interference fit	Clearance fit	
Stationary load on outer ring		Inner ring : Stationary Outer ring : Rotating Load direction : Rotating with outer ring			
Rotating load on outer ring Stationary load on inner ring		Inner ring : Stationary Outer ring : Rotating Load direction : Fixed	Clearance fit	Interference fit	
		Inner ring : Rotating Outer ring : Stationary Load direction : Rotating with inner ring			
Directionally indeterminate load	The load direction is not fixed, including cases where the load direction is fluctuating or there is an unbalanced load.	Inner ring : Rotating or stationary Outer ring : Rotating or stationary Load direction : Not fixed	Interference fit	Interference fit	

Conditions for determination of fit

When determining a suitable fit for a bearing, it is necessary to consider various conditions such as nature and magnitude of the load, temperature, required rotational accuracy, material/finish grade/thickness of the shaft and housing, ease of mounting and dismounting, etc.

Nature of load and fit

Basically, the appropriate fit depends on whether the load direction is rotational or stationary in relation to the inner and outer rings.

The relationship between the nature of radial loads and the fit is, in general, based on Table 20.

2 Load amount and interference

The greater the load, the larger the interference must be.

When selecting an interference between the inner ring and the shaft, it is necessary to estimate the reduction of interference due to the radial load. The amount of reduction of interference is obtained by the following equations.

· When $F_r \leq 0.2C_0$

$$\Delta_{dF} = 0.08 \sqrt{\frac{d}{B} F_{r}} \times 10^{-3} \dots (30)$$

· When $F_r > 0.2C_0$

$$\Delta_{dF} = 0.02 \frac{F_{r}}{B} \times 10^{-3}$$
(31)

where, $F_{\rm r}$: Radial load applied to bearing, N

 C_0 : Basic static load rating, N

 $\Delta_{d\mathrm{F}}$: Amount of reduction of inner ring interference, mm

d : Bore diameter of inner ring, mm

B : Width of inner ring, mm

Temperature conditions and change of interference

The interference of fitted surfaces is also influenced by the temperature difference between the bearing and the shaft and housing. For example, when steam is flowing through a hollow shaft, or when the housing is made of light metal, it is necessary to take into consideration the differences in temperature, the coefficient of linear expansion and other such factors.

Usually, the interference of the inner ring decreases as the bearing temperature increases during operation. If the temperature difference between the inside of the bearing and the outside of the housing is taken

as Δ_T , the temperature difference between the inner ring and the shaft can be estimated to be (0.1 \sim 0.15) Δ_T . Accordingly, the amount of reduction of the inner ring interference is obtained by the following equation.

$$\Delta_{dT} = (0.1 \sim 0.15) \Delta_{T} \alpha d = 0.0015 \Delta_{T} d \times 10^{-3} \cdots (32)$$

where, $\Delta_{d\mathrm{T}}$: Reduction amount of inner ring interference due to temperature difference. mm

 Δ_T : Temperature difference between the inside of the bearing and the outside of the housing, °C

α : Coefficient of linear expansion for bearing steel

$$= 12.5 \times 10^{-6} \text{ 1/} ^{\circ}\text{C}$$

d : Bore diameter of inner ring, mm

4 Shaft finish grade and interference

Since peaks of surface roughness of the fitted surface are crushed down when fitting the bearing, the effective interference becomes smaller than the apparent interference obtained by measurements, and it is generally obtained by the following equations.

· For ground shaft

$$\Delta_{de} = \frac{d}{d+2} \Delta_{df} \cdots (33)$$

· For machined shaft

$$\Delta_{de} = \frac{d}{d+3} \Delta_{df} \cdots (34)$$

where, $\Delta_{d\mathrm{e}}$: Effective interference of inner ring, mm

d: Bore diameter of inner ring, mm Δ_{df} : Apparent interference, mm

6 Minimum interference and maximum interference

When the load direction is rotating in relation to the inner ring, the inner ring is fitted with interference to the shaft.

For solid ground steel shafts, the minimum interference (required apparent interference) Δ_{df} is expressed by the following equation which is deduced from equations (30) or (31), (32) and (33).

$$\Delta_{df} \ge \frac{d+2}{d} (\Delta_{dF} + 0.0015 \, \Delta_T d \times 10^{-3}) \, \cdots (35)$$

It is desired that the maximum interference should be less than 1/1000 of the shaft diameter. In the case of the outer ring, the effective interference varies according to the housing material, thickness, shape, etc., so it is determined empirically.

When selecting a suitable fit, in addition to the various conditions mentioned above, it is necessary to draw on experience and practical results.

Tables 21 and 22 show the most general fit data.

When a thin housing or a hollow shaft is used, the interference is made larger than an ordinary fit.

The fit between needle roller bearings without inner ring and shafts is based on Table 23.

For the fit between Shell Type Needle Roller Bearings and housing bores, see page 72.

For the fit between inner rings for Shell Type Needle Roller Bearings and shafts, see Table 22.

Table 21 Fit between needle roller bearings and housing bores (Not applicable to Shell Type Needle Roller Bearings)

	Operating conditions	Tolerance class of housing bore (1)	Application examples (Reference)
	Heavy load on thin housing, large shock load	P7 (²)	Flywheels
Rotating load on outer ring	Heavy load, normal load	N7 (²)	Wheel bosses, transmission gears
	Light load, fluctuating load	M7	Pulleys, tension pulleys
	Large shock load	M7	Eccentric wheels, pumps
Directionally indeterminate load	Heavy load, normal load	K7	Compressors
	Normal load, light load	J7	Crankshafts, compressors
	Shock load, heavy load	J7	General bearing applications, gear shafts
Stationary load on outer ring	Normal load, light load	H7	General bearing applications
	With heat conduction through shaft	G7	Paper dryers
Light load, normal rotation and high rig	load, requirements of high-precision idity	K6	Main spindles of machine tools

Notes(1) This table applies to steel or cast iron housings. For lighter metal, a tighter fit should be selected.

For split housings, do not use a fit tighter than J7.

(2) Care should be taken so that the radial internal clearance is not too small.

Remark Light load, normal load and heavy load represent $P \le 0.06C$, $0.06C < P \le 0.12C$, and 0.12C < P, respectively, where P is the dynamic equivalent radial load and C is the basic dynamic load rating of the bearing to be used.

Table 22 Fit between needle roller bearings with inner ring and shafts

	Operating conditions		ia. mm	Tolerance class	Application examples	
			Incl.	of shaft (1)	(Reference)	
	Light load, normal load, low or medium rotating speed			g6	Wheels on dead axles	
Stationary load on inner ring	Heavy load, medium rotating speed	All shaft o	diameters	h6	Control lever gears Rope sheaves	
	Especially smooth operation and accuracy are required.			h5	Tension pulleys	
Rotating load	Light load	- 50 100 200	50 100 200 —	j5 k5 m6 (²) n6 (³)	Electric appliances, Precision machinery Machine tools, Pumps Blowers, Transportation vehicles	
on inner ring or Directionally indeterminate load	Normal load	- 50 150 200	50 150 200 —	k5 (⁴) m5, m6 (²) n6 (³) p6 (³)	General bearing applications Pumps, Transmission gearboxes, Wood working machinery, Internal combustion engines	
	Heavy load Shock load	_ 150	150 —	n6 (³) p6 (³)	Industrial vehicles, Construction machinery Crushers	

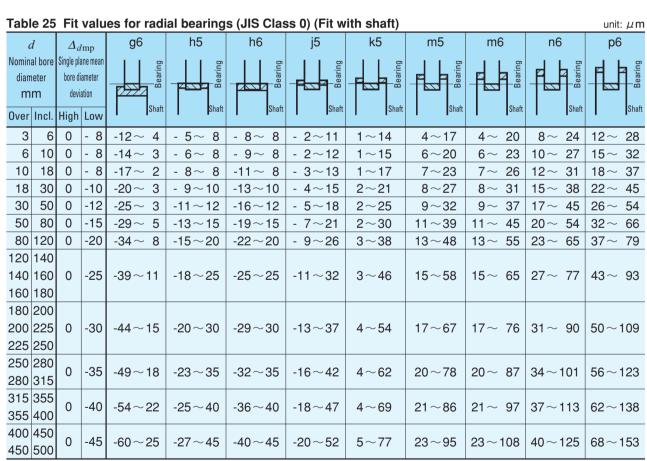
Notes(1) This table applies to solid steel shafts.

(2) It is necessary to examine the reduction of radial internal clearances caused by the expansion of inner rings after mounting.

(3) It is necessary to use bearings with radial internal clearances greater than CN clearance.

(4) For NATA and NATB, do not use a tighter fit than k5.

Table 23 Tolerance class of shafts assembled with needle roller bearings without inner ring


$F_{ m W}$ Nominal roller set bore diameter mm		Radial internal clearance			
		Smaller than CN clearance	CN clearance	Larger than CN clearance	
Over	Incl.	Tolerance class of shaft (1)			
_	65	k5	h5	g6	
65	80	k5	h5	f6	
80	160	k5	g5	f6	
160	180	k5	g5	e6	
180	200	j5	g5	e6	
200	250	j5	f6	e6	
250	315	h5	f6	e6	
315	—	g5	f6	d6	

Note(1) When the housing bore fit is tighter than K7, the shaft diameter is made smaller by considering shrinkage of roller set bore diameter after mounting.

Table	Table 24 Fit values for radial bearings (JIS Class 0) (Fit with housing bore) unit: μ m										
1	D	Δ_L	Omp	G7	H7	J7	K6	K7	M7	N7	P7
dian	l outside neter i m	Single pla	ane mean diameter	Bearing	Housing	Honsing Bearing	Bearing	Housing Bearing	Housing Bearing	Housing Bearing	Housing Bearing
0ver	Incl.	High	Low								1 1
3	6	0	- 8	- 24~- 4	- 20~0	-14~ 6	-10∼ 6	-11∼ 9	- 8~12	- 4~16	0∼ 20
6	10	0	- 8	- 28~- 5	- 23∼0	-16~ 7	-10~ 7	-13~10	- 8~15	- 4~19	1~ 24
10	18	0	- 8	- 32~- 6	- 26∼0	-18∼ 8	-10∼ 9	-14~12	- 8~18	- 3~23	3∼ 29
18	30	0	- 9	- 37~- 7	- 30~0	-21∼ 9	-11~11	-15~15	- 9~21	- 2~28	5∼ 35
30	50	0	-11	- 45~- 9	- 36∼0	-25~11	-14~13	-18~18	-11~25	- 3~33	6∼ 42
50	80	0	-13	- 53∼-10	- 43~0	-31~12	-17~15	-22~21	-13~30	- 4~39	8∼ 51
80	120	0	-15	- 62∼-12	- 50~0	-37~13	-19~18	-25~25	-15~35	- 5~45	9∼ 59
120	150	0	-18	- 72∼-14	- 58∼0	-44~14	-22~21	-30~28	-18~40	- 6∼52	10~ 68
150	180	0	-25	- 79∼-14	- 65∼0	-51~14	-29~21	-37~28	-25~40	-13~52	3∼ 68
180	250	0	-30	- 91∼-15	- 76∼0	-60~16	-35~24	-43~33	-30~46	-16~60	3∼ 79
250	315	0	-35	-104~-17	- 87∼0	-71~16	-40~27	-51∼36	-35~52	-21~66	1~ 88
315	400	0	-40	-115~-18	- 97∼0	-79~18	-47~29	-57~40	-40~57	-24~73	1~ 98
400	500	0	-45	-128 <i>~</i> -20	-108~0	-88~20	-53~32	-63~45	-45~63	-28~80	0~108

Remark The negative value denotes a clearance and the positive value denotes an interference.

Remark The negative value denotes a clearance and the positive value denotes an interference.

Design of Shaft and Housing

Accuracy and roughness of shaft and housing

Accuracy and roughness of fitting surface

Since the bearing rings of needle roller bearings are thin, their performance is easily affected by poor accuracy of shafts or housings. Under general operating conditions, the fitting surfaces of shafts and housings can be finished by lathe turning. However, when the load is great and high accuracy and low noise are required, a grinding finish is required.

Table 26 shows the accuracy and roughness of fitting surfaces for general use.

Accuracy and roughness of raceway surface

In case of needle roller bearings unlike other bearings, mating surfaces such as shaft and housing bore surfaces can be used directly as the raceway surfaces. For such use, accuracy and roughness of the raceway surfaces are important because they will influence bearing life, noise and accuracy.

In general, accuracy and roughness of raceway surfaces are based on Table 26.

Inclination of shaft

Shafts and outer rings may have some inclination between them due to deflection of the shaft, machining accuracy of shafts and housings, errors in mounting, etc.

In this case, the use of two or more bearings in tandem arrangement on a single shaft should be avoided. Instead, a bearing with large load ratings should be used.

It is recommended that inclination of shafts be less than 1/1000.

Table 27 Tolerance class IT values for basic dimensions

Basic di	Basic dimension		Tolerance class		
m	m	IT5	IT6	IT7	
Over	Incl.	To	lerance μ	m	
_	3	4	6	10	
3	6	5	8	12	
6	10	6	9	15	
10	18	8	11	18	
18	30	9	13	21	
30	50	11	16	25	
50	80	13	19	30	
80	120	15	22	35	
120	180	18	25	40	
180	250	20	29	46	
250	315	23	32	52	
315	400	25	36	57	
400	500	27	40	63	
500	630	30	44	70	

Table 26 Specifications of shafts and housings for radial needle roller bearings

ltem	Sh	aft	Housing bore		
item	Fitting surface Raceway surface		Fitting surface	Raceway surface	
	0.3 × IT6 (1)	0.3 × IT6 (1)	0.3 × IT7 (1)	0.3 × IT7 (1)	
Circularity	or	or	or	or	
	$0.3 \times IT5 (1)$	$0.3 \times IT5 (1)$	0.3 × IT6 (1)	0.3 × IT6 (1)	
	0.5 × IT6 (2)	0.3 × IT6 (1)	0.5 × IT7 (2)	0.3 × IT7 (1)	
Cylindricity	or	or	or	or	
	0.5 × IT5 (2)	0.3 × IT5 (1)	0.5 × IT6 (2)	0.3 × IT6 (1)	
Surface roughness μ m R_a	0.8	0.2 (3)	1.6	0.2 (3)	
$(\mu m R_{y})$	(3.2)	(0.8)	(6.3)	(0.8)	
Hardness	_	58~64HRC (⁴)	_	58~64HRC (⁴)	

lotes(1) 30% or less of the dimensional tolerance for shafts or housing bores is recommended.

- (2) 50% or less of the dimensional tolerance for shafts or housing bores is recommended.
- When required accuracy is not critical, a surface roughness within 0.8 μ m R_a (3.2 μ m R_y) is allowable.
- (4) An appropriate thickness of the hardened layer is required.

KKI

Raceway materials and heat treatment

When using shafts and housings as raceways, the following materials are generally used.

High-carbon chromium bearing steel

	SUJ2	JIS G 4805
Carburizing steel	$SCM415\!\sim\!421$	JIS G 4105
Carburizing steel	SNCM 220	JIS G 4103
Carburizing steel	SCr 420	JIS G 4104
Carburizing steel	SNC 415、815	JIS G 4102
Carburizing steel	S 15 CK	JIS G 4051
In addition, S50C ar	nd S55C (JIS G	1051) can be
used after through ha	rdening or induction	n hardening.

The hardened layer produced by tempering at $+160 \sim +180$ °C after hardening must have a fine uniform martensite microstructure.

When hardening the raceway surface by case hardening or induction hardening, a surface hardness of $58\sim64$ HRC and an appropriate thickness of the hardened layer must be ensured. The minimum effective thickness of the hardened layer after heat treatment and grinding is defined as the distance from the surface to the depth where the hardness is 513HV (50HRC), and it is obtained by the following equation.

$$E_{\rm ht} \ge 0.8 D_{\rm w} (0.1 + 0.002 D_{\rm w}) \cdots (36)$$

where, $E_{\rm ht}$: Minimum effective thickness of the hardened layer, mm

 $D_{\rm w}$: Roller diameter, mm

Generally, the required effective thickness of the hardened layer is at least 0.3 mm.

Dimensions related to mounting of bearings

The dimensions of shaft and housing related to mounting of the needle roller bearings are shown in the table of dimensions for each bearing. (See Fig. 13.)

The minimum value of the shaft shoulder diameter d_a which receives the inner ring, and the maximum value of the housing shoulder diameter D_a which receives the outer ring, represent the effective shoulder diameters (excluding the chamfered part) which make proper contact with the side faces of the inner and outer rings respectively.

Also, the maximum value of the shaft shoulder (or inner ring retaining piece) diameter $d_{\rm a}$ is the dimension related to the ease of mounting/dismounting of the shaft and inner ring to/from the housing and outer ring.

The largest permissible single corner radius $r_{\rm as\; max}$ of the shaft and housing must be smaller than the smallest permissible single chamfer dimension $r_{\rm s\; min}$ of the bearing so that the side surface of the bearing can make proper contact with the shoulder. Table 28 shows the related dimensions.

For dimensions of the fillet relief when finishing the shaft or housing by grinding, the values shown in Table 29 are recommended.

For other dimensions related to mounting, see the related section for each bearing as required.

In addition, for ease in dismounting of bearings, it is convenient to make notches in the shoulder of the shaft or housing to allow the insertion of dismounting hooks.

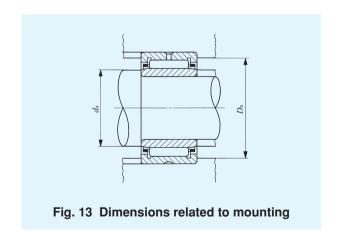


Table 28 Largest permissible single corner radius of shafts and housings $r_{
m as\ max}$

unit: mm

 $r_{\rm s \, min}$ $r_{\rm as\ max}$ Smallest nermissib Largest permissible single single chamfer orner radius of shafts and dimension housings 0.1 0.1 Housing 0.15 0.15 0.2 0.2 0.3 0.3 0.4 0.4 0.6 0.6 1.1 1.5 1.5 2 2 Shaft 2.1 2 2.5 2 3 2.5 4 3 5 4

Table 29 Fillet relief dimensions for ground shafts and housings unit: mm

r _{s min} Smallest permissible single chamfer	Fillet re	elief dime	ensions	
dimension	t	$r_{\rm gs}$	b	
1	0.2	1.3	2	
1.1	0.3	1.5	2.4	
1.5	0.4	2	3.2	
2	0.5	2.5	4	r's min
2.1	0.5	2.5	4	b
3	0.5	3	4.7	, , , ,
4	0.5	4	5.9	
5	0.6	5	7.4	
6	0.6	6	8.6	
7.5	0.6	7	10	

Sealing

To obtain the best performance of rolling bearings, it is necessary to prevent leakage of lubricant and the

entry of harmful foreign substances, such as dirt, dust and water. For this reason, sealing devices must always work effectively to seal and prevent against dust penetration under all operating conditions. Also, when selecting a suitable sealing method, it is necessary to consider such factors as the type of lubricant, peripheral speed of the seal, operating temperature, shaft eccentricity, seal friction, etc. as well as ease of assembly and disassembly.

Sealing methods are of the non-contact and contact types, and it is necessary to select the appropriate type depending on the application.

Non-contact type sealing method

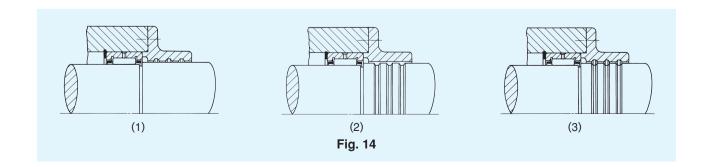
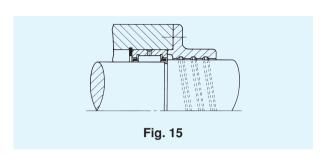
There are many methods of non-contact type sealing, including the use of oil grooves, flingers and labyrinths, which utilize the centrifugal force and narrow gaps.

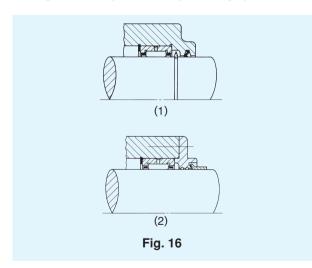
Since they do not make direct contact with the shaft or housing, it is unnecessary to consider friction and wear, and the non-contact sealing method is suitable for high speed rotation and high operating temperatures. However, because of gaps, this method is not always sufficient in preventing oil leakage and dust entry when the machine is not in operation.

1 Oil groove

Oil grooves are provided on either the shaft or housing bore, or on both for more effective sealing (See Fig. 14.). The clearance between the shaft and the housing bore should be as small as possible, and the values shown in Table 30 are generally used, taking into consideration errors in machining and assembly, shaft deformation, etc. Three or more grooves are made with a width of $3\!\sim\!5$ mm and a depth of $4\!\sim\!5$ mm. If the grooves are filled with grease, it will be more effective for dust prevention.

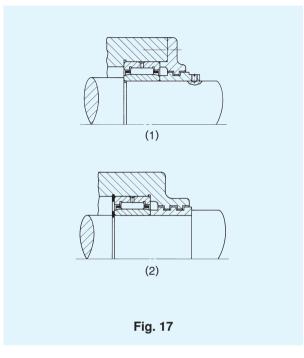
As shown in Fig. 15, helical grooves are suitable for horizontal shafts which have a fixed direction of rotation. Right or left handed grooves are used according to the direction of rotation, and they are used for oil lubrication normally in conjunction with a suitable antidust device.


Table 30 Clearance between grooved shaft and housing bore unit: m

Shaft dia.	Clearance
Incl. 50 mm	0.25~0.4
Over 50 mm	0.5 ~1

Flinger


The oil flinger is a disk attached to the shaft which throws off oil due to the centrifugal force of rotation and thus prevents oil leakage and the entry of foreign particles. Fig. 16 (1) shows an example in which the flinger is located inside the housing, mainly to prevent oil leakage. Since it sucks in dust and dirt, it should be used in a dust free environment. Fig. 16 (2) shows an example in which the flinger is located outside the housing, and is used in combination with another sealing device, to prevent entry of foreign particles.

Labyrinth

Although it is a little difficult to make, the labyrinth is very effective in preventing oil leakage especially at high speeds. At low speeds, filling the labyrinth with grease is effective in preventing the entry of dust. In Fig. 17, it is necessary to split the housing or cover plate into two. In Fig. 18, it is easy to assemble, and if combined with an oil seal, it improves the sealing effect.

Table 31 shows the labyrinth clearances generally used.

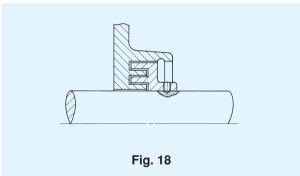


Table 31 Labyrinth clearance

unit: mm

Shaft dia.	Clearance		
Silait ula.	Radial direction	Axial direction	
Incl. 50 mm	0.25~0.4	1~2	
Over 50 mm	0.5 ~1	3~5	

Contact type sealing method

In this type of sealing, the shaft is sealed by the application of pressure resulting from the elasticity of the seal material to the sealing surface of the shaft, which rotates, reciprocates or oscillates. Synthetic rubber, synthetic resin and felt are generally used as sealing materials.

Oil seal

Synthetic rubber oil seals are the most general type of sealing used. The sealing effect is obtained when the elastic lip comes into contact with the shaft. Some lips are spring-loaded to maintain adequate pressing force

The sliding surfaces of the lip and the shaft always show frictional behavior such that the boundary lubrication and fluid lubrication are mixed. If there is an insufficient amount of oil between the contact surfaces, it will cause heat generation, wear and seizure. Conversely, if the oil film is too thick, it may cause oil leakage.

General oil seals are specified in JIS B 2402. IMO Oil Seals for Needle Roller Bearings (See page 486.) have a low sectional height to match the Needle Roller Bearings.

Nitrile rubber is generally used as the material for oil seal lips. Table 32 shows the materials and their operating temperature ranges.

The finished surface of the shaft where the seal lip makes contact must have an appropriate surface roughness, as shown in Table 33, according to the peripheral speed. It must also have accurate circularity, and the shaft eccentricity should be less than 0.05 mm

To increase wear resistance, the hardness of the sliding part of the shaft must be more than 40HRC. This can be achieved by hard-chrome plating or heat treatment.

Table 32 Seal materials and operating temperatures

	Seal	material	Operating temperature range °C
		Nitrile rubber	-25∼+120
	Synthetic rubber	Acrylic rubber	-15∼+130
		Silicon rubber	-50∼+180
		Fluoro rubber	-10∼+180
	Tetrafluo	ethylene resin	$-50 \sim +220$

Table 33 Peripheral speed and surface roughness of shaft

Peripheral speed m/s		Surface roughness
Over	Incl.	μ m $R_{ m a}(\mu$ m $R_{ m y})$
_	5	0.8(3.2)
5	10	0.4(1.6)
10		0.2(0.8)

Pelt seal

Because of their simple structure, felt seals have long been used to protect grease lubrication from dust. Since felt absorbs some grease during operation, it hardly causes heat generation and seizure, but it cannot be used when the peripheral speed of the shaft is high (more than 4 m/s). Where there is a high concentration of dirt and dust, they may become attached to the contact surface of felt, sometimes scratching the shaft surface. To prevent this, two felt seals are placed apart from each other, or a felt seal is used together with a synthetic rubber seal.

KKC

Lubrication

Purpose of Iubrication

The main purpose of bearing lubrication is to reduce friction and wear and to prevent heat generation and seizure. The lubricant and the lubricating method have a big influence on the operating performance of the bearing, and it is therefore necessary to select them suitably for the operating conditions.

The effects of lubrication are as follows.

Reduction of friction and wear

At the contact surfaces between the race rings, rolling elements and cage of the bearing, lubrication prevents metal-to-metal contact, and reduces friction and wear due to sliding and rolling, in the latter of which micro-slips occur by differential slip, skew, spin, or elastic deformation.

Elimination of frictional heat

The lubricant removes the heat generated by friction or transferred from outside, and prevents overheating of the bearing. Circulating lubrication is generally used for this purpose.

(3) Influence on bearing life

The bearing life is extended if the rolling contact surfaces between the race rings and rolling elements are separated by an oil film of adequate thickness, and is shortened if the oil film is inadequate due to low oil viscosity, etc.

A Rust prevention

The lubricant prevents rust formation on the inside and outside surfaces of the bearing.

6 Dust prevention

Grease lubrication is particularly effective for dust prevention. Oil circulating or jet lubrication is effective in washing foreign particles away from the area around the bearing.

Methods of Jubrication

Grease lubrication and oil lubrication are generally used for rolling bearings. In special cases, solid lubricants are also used.

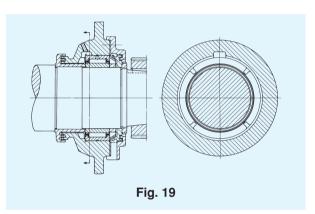
In general, grease lubrication requires the simplest sealing device. It is therefore economical, and widely used. Also, once filled with grease, the bearing can be used for a long period without replenishing the grease. However, compared with oil, its heat removal properties and cooling capacity are inferior, since grease has high flow resistance, which causes high churning heat.

Oil has greater fluidity and superior heat removal properties. It is therefore suitable for high-speed operations. In addition, it is simple to filter out dust and dirt from oil. Thus it can prevent the generation of noise and vibration and increase bearing life. Another advantage of oil lubrication is that it offers the possibility for selecting the appropriate method for particular operating conditions from among various available lubrication methods. However, measures to prevent oil leakage are required. As a guideline for selection, Table 34 compares grease and oil lubrication.

For the lubricants used for IMO Spherical Bushings, see page 435.

Table 34 Comparison between grease lubrication and oil lubrication

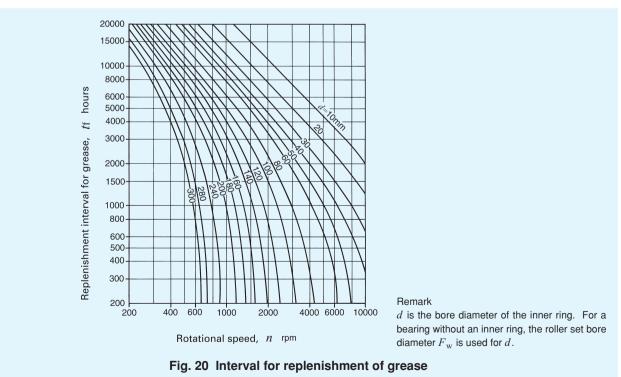
ltem	Grease lubrication (1)	Oil lubrication
Sealing, Housing structure	Simple	Slightly complicated
Temperature	High temperature not allowed	High temperature allowed (Cooling effect by circulation)
Rotational speed	Low and medium speeds	High speed allowed
Load	Low and medium loads	High load allowed
Maintenance	Easy	Elaborate (Pay special attention to oil leaks.)
Lubricant replacement	Slightly complicated	Simple
Lubrication performance	Good	Very good
Dust filtration	Difficult	Simple
Entry of dust and dirt	Easy measures for protection	Dust and dirt can be removed by filtering in circulating lubrication.


Note(1) This represents bearing grease for general use.

Grease Iubrication

Amount of grease to be filled

The amount of grease to be filled depends on the housing structure, dimensions, type of grease used and atmosphere. Generally, filling about 1/3 to 1/2 of the free space inside of the bearing and the housing is considered to be appropriate. Too much will cause a rise in temperature, and care should be taken especially at high speed rotations.


In Fig. 19, several grease pockets are provided by the grease sectors on one side of the bearing. Even if the filled grease is dispersed by the centrifugal force at high rotational speeds, it is trapped by the grease pockets and diverted back into the bearing again. Old grease accumulates in the space on the opposite side of the bearing, and this can be removed periodically by taking off the cover.

Replenishment of grease

The life of grease depends on its type and quality, the type and dimensions of the bearing, operating conditions, temperature, amount of wear, penetration of foreign particles and water, etc.

Fig. 20 shows the replenishment intervals for grease, and is used as a general guideline. The values obtained from this diagram apply to cases in which the load condition is normal, the machine body is stationary, and the operating temperature on the outer surface of bearing outer ring is less than +70°C. If the temperature exceeds +70°C, as a general rule, the replenishment interval is halved for every 15°C increase.

1N=0.102kgf=0.2248lbs.

1mm=0.03937inch

KKC

Oil lubrication

Oil bath lubrication

This is the most commonly used oil lubrication method, and is used for medium and low speeds. If the amount of oil is too large, heat will be generated by churning, and if the amount is too small, seizure will occur. Therefore, the correct amount of oil must be maintained. When the machine is stationary, the correct oil level in the case of a bearing mounted on a horizontal shaft, is near the center of the lowest rolling element. In the case of a vertical shaft, about 50% of the surfaces of the rolling elements should be submerged in oil.

It is desirable to provide an oil gauge so that the oil level can be easily checked while the machine is stationary or running.

Oil drip lubrication

Oil drips, which are fed down from a sight-feed oiler or along a fiber string, become an oil spray due to wind pressure generated by the rotating cage, shaft, nut, etc., or they strike the rotating parts and form an oil spray, which fills up the housing and every required part. Because oil spray removes frictional heat, this method has a more effective cooling effect than the oil bath method, and is widely used for high-speed rotation and medium load conditions.

In the case of the sight-feed oiler (Fig. 21), the number of drips can be adjusted. However, this is difficult using the string-feed method. The number of drips depends on the bearing type, rotational speed, etc., but $5\sim 6$ drips per minute is generally used.

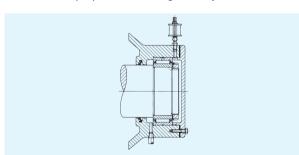


Fig. 21 Oil drip lubrication

Oil splash lubrication

In this method, oil is splashed in all directions by the rotation of the gear or disk. This can be used for considerably high-speed rotations without soaking the bearing directly in oil.

In the gear case where shafts and bearings are lubricated with the same oil, wear particles may be introduced into the bearing as they might get mixed with the oil. In this case, a permanent magnet is provided at the bottom of the gear case to collect metal particles, or a shield plate is installed next to the bearing. Fig. 22 shows another method in which the splashed

oil flows along the grooves in the case and accumulates in the oil pockets, keeping the oil level constant. So the oil is steadily supplied to the bearing.

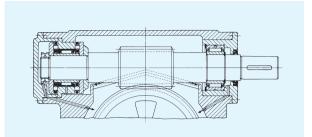


Fig. 22 Oil splash lubrication

Oil circulating lubrication

When automatic lubrication is more economical because lubrication is required at many points, or when cooling is required for high rotational speed, this method is used. The oil is supplied with a pump, which can control the oil pressure, and a filter or cooler, etc. can be set up in the circulation system, making this an ideal method of lubrication. As shown in Fig. 23, the oil supply and discharge ports are located opposite to each other, and the discharge port is made large to prevent the accumulation of oil.

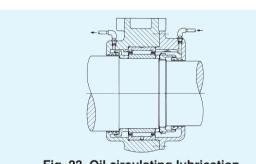
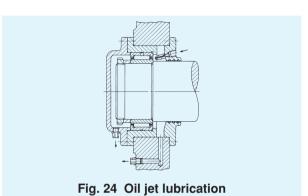


Fig. 23 Oil circulating lubrication

6 Oil mist lubrication


After dirt and dust are removed by a filter, the oil is turned into a spray by dry compressed air, and this lubricates the bearing. When the air and oil pass through the bearing, the air cools the bearing and the oil lubricates it. In addition, because the air inside the housing is at a higher pressure than the outside air, the entry of water and foreign particles is prevented. There are many other advantages of this method, and it is suitable for high rotational speed applications such as high speed internal grinding spindles.

Oil jet lubrication

This is a highly reliable lubrication method and is used under severe conditions such as ultra-high rotational speeds and high temperatures. The speed of the oil jet should be more than 20% of the peripheral speed of the inner ring raceway surface, since the air around

the bearing rotates together with the bearing forming an air wall. As shown in Fig. 24, the jet from the nozzle blows directly into the space between the inner ring and the cage. Due to the large amount of oil being used, it is more effective to make the discharge port larger, and use the forced discharge.

When the $d_{\rm m}n$ value (mean value of the bearing outside and bore diameters in millimeter x rotational speed in revolutions per minute) is more than 1,000,000, the speed of the jet should be $10\sim20$ m/s, the nozzle diameter should be about 1 mm, oil supply pressure should be $0.1\sim0.5$ MPa, and the oil supply amount should be about 500 cc/min or greater. When the rotational speed is higher, the oil supply pressure and the oil amount should be higher.

Lubricants

For rolling bearings, lubricating grease or oil is generally used. For special applications, solid lubricants are used.

Lubricating grease

Grease is a semi-solid lubricant made by mixing base oil (liquid lubricant) and a thickener under heat and adding additives as required.

There are many types of grease according to various combinations of base oil, thickeners and additives. Grease is usually classified by thickeners and base oil. Table 35 shows the general properties of each type of grease, and examples of brands and characteristics of lubricating grease can be found in the table on page 559.

Table 35 Properties of various types of grease

Name (Common name)	Calcium grease	Sodium grease	Aluminum grease	Mixed base grease	Barium grease	L	ithium greas	e		pase grease p grease)
Item	(Cup grease)	(Fiber grease)	(Mobile grease)				(Diester grease)	(Silicon grease)	(Bentone grease)	
Base oil	Mineral oil	Mineral oil	Mineral oil	Mineral oil	Mineral oil	Mineral oil	Diester oil	Silicon oil	Mineral oil	Synthetic oil
Thickener	Ca soap	Na soap	Al soap	Na + Ca soap, Li + Ca soap	Ba soap	Li soap	Li soap	Li soap	Bentone	Silica gel. Polyurea, etc.
Appearance	Buttery	Fibrous and buttery	Stringy and buttery	Fibrous and buttery	Fibrous and buttery	Buttery	Buttery	Buttery	Buttery	Buttery
Pour point °C	80~90	150~180	70~90	160~190	150~180	170~190	170~190	200~250	200~	None
Operating temperature range $^\circ\!$	-10~+70	-20~+120	-10~+80	-10~+100	-10~+135	-20~+120	-50~+120	-50∼+180	-10~+150	~+200
Pressure resistance	Strong to weak	Strong to medium	Strong	Strong	Strong to medium	Medium	Medium	Weak	Medium to weak	Medium
Water resistance	Good	Poor	Good	Good, poor for Na+ Ca soap grease	Good	Good	Good	Good	Good	Good
Mechanical stability	Fair	Good	Poor	Good	Poor	Excellent	Excellent	Excellent	Good	Good to poor
Features and application	Contains about 1% water. When the temperature rises to more than +80°C, the water evaporates and the grease separates into oil and soap. This is used for medium loads.	grease cannot withstand high speeds, but has good pres- sure resis- tance proper- ties. Short fibrous grease is compara-	It has water and rust resis- tant proper- ties, and adheres easily to metal sur- face.	Usable at fairly high speeds.	It has water and heat resis- tant proper- ties. This is an all-purpose grease.	This is the best all-purpose grease among soap based greases.	Excellent under low temperature conditions and has superior frictional prop- erties. Suitable for small bearings used in mea- suring instru- ments.	Mainly used for high tem- peratures. Not suited to high speeds and heavy loads.	oil is suitable fo	having a miner- r general use. a synthetic base or special use heat and chem-

Base oil

Petroleum lubricating oil is usually used as the base oil

As the lubricating performance of grease depends mainly on that of base oil, the viscosity of the base oil is an important property. In general, low viscosity is suitable for light-load and high-speed rotations, and high viscosity for heavy-load and low-speed rotations. Synthetic lubricants of the diester or silicon series are used instead of lubricants of the petroleum series in consideration of the pour point and high temperature stability.

2 Thickener

As shown in Table 35, metal soap bases are mostly used as thickeners. In particular, Na-soap is water-soluble and emulsifies easily, and it cannot be used in damp or wet areas. The type of thickener and the pour point of grease have a close relationship. In general, the higher the pour point, the higher the maximum usable temperature of grease. However, even when the grease uses a thickener having a high pour point, its upper operating temperature limit is low if its base oil has low heat resistance.

Occupancy Occupancy

This represents the hardness grade of grease. Grease becomes harder in proportion to the amount of thickener if the same thickener is used.

Immediately after grease has been stirred (usually 60 times), a depression is formed in the grease in a specified time using a specified cone. The consistency (combined consistency) is expressed by the value of depth of depression (mm) multiplied by 10.

This value gives an estimate of the fluidity during operation with a greater value for softer grease.

Table 36 shows the consistency number of grease and the relationship between the consistency and operating conditions.

Table 36 Consistency and operating conditions of grease

NLGI consistency number	Combined consistency	Application
0	$385\sim355$	For centralized lubrication,
1	340 ~ 310	For oscillating motion
2	$295\sim265$	For general use
3	250 ~ 220	For general use, For high temperature
4	205 ~ 175	For sealing with grease

Additives

Additives include various types of substances, which are added to grease in small quantities to improve its characteristics. For example, when a bearing is kept

running for long periods of time, its temperature rises. This results in oxidation of the lubricant and formation of oxides, which lead to corrosion of the bearing.

Thus, when a bearing is to be operated for long periods of time without regreasing, antioxidants are added. In addition, grease containing extreme pressure additives is suitable for use in places that are subjected to heavy loads.

6 Miscibility of different greases

In principle, it is desirable to use grease of the same brand. However, when the mixing of different greases is unavoidable, greases with the same type of thickener and with a similar type of base oil should be used.

It should be noted that if different types of grease are mixed, they may interact with each other and the consistency will become softer than that for the individual greases.

Lubricating oil

For rolling bearings, refined mineral oil or synthetic oil is used. To improve its properties, antioxidant additives, extreme pressure additives and detergent additives are added as required.

When selecting lubricating oil, it is important to select oil which has adequate viscosity under operating temperatures. If the viscosity is too low, the formation of the oil film will be insufficient, causing abnormal wear and seizure. On the other hand, if the viscosity is too high, it will generate excessive heat or increase power loss due to viscous resistance. As a general standard, oil having higher viscosity should be used for heavier loads and oil having lower viscosity should be used for higher rotational speeds.

Under conditions of normal use for various bearings, the values of viscosity shown in Table 37 will be a guideline.

The relationship between viscosity and temperature can be obtained from Fig. 25. Also, Table 38 shows examples of selecting lubricating oil according to the conditions of bearing use.

Table 37 Bearing series and required viscosity of lubricating oil

Bearing series	Kinematic viscosity at operating temperatures
Needle roller bearings Roller bearings	13 mm²/s or more
Crossed roller bearings	20 mm ² /s or more
Thrust needle roller bearings Thrust roller bearings	32 mm²/s or more

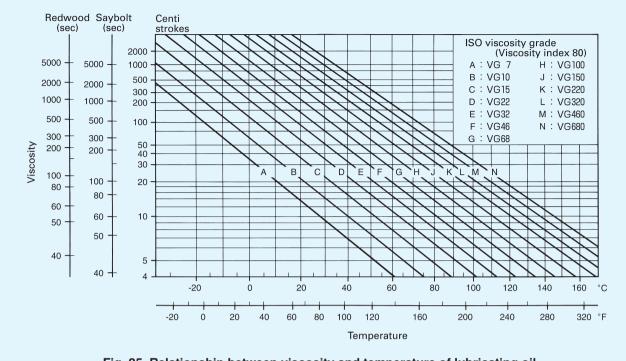
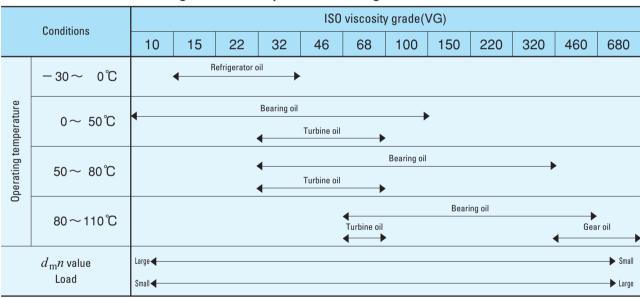



Fig. 25 Relationship between viscosity and temperature of lubricating oil

Table 38 Conditions of bearing use and examples of lubricating oil selection

Remarks · Lubricating oils are based on JIS K 2211 (Refrigerator Oil), JIS K 2239 (Bearing Oil), JIS K 2213 (Turbine Oil), and JIS K 2219 (Gear Oil).

- The method of lubrication in these cases is mainly oil bath lubrication or circulating lubrication.
- · When the temperature is on the high side within the operating temperature range, oils of high viscosity are used.
- $d_{\rm m}n$ represents the mean value of the bore and outside diameters (mm) of the bearing multiplied by the rotational speed (rpm).

KKI

Capilube Bearing

EXE Capilube Bearing is a bearing that is lubricated with a newly developed thermosetting solid-type lubricant. A large amount of lubricating oil and fine particles of ultra high molecular weight polyolefin resin are solidified by heat treatment to fill the inner space of the bearing. As the bearing rotates, the lubricating oil oozes out onto the raceway in proper quantities, maintaining the lubrication performance for a long period of time.

Capilube Bearing is available in all Needle Roller Bearing series with an outer diameter not exceeding 80 mm. When required, please consult INO for further information.

Features of Capilube Bearing

- · Most suitable for preventing grease dry-up in applications where lubrication is difficult.
- · Great reduction of maintenance work by extending the lubrication interval.
- Elimination of oil contamination, making this bearing most suitable for applications that would be adversely affected by oil.

Cautions for using Capilube Bearing

- Never wash Capilube Bearing with organic solvent and/or white kerosene which have the ability to remove fat, or leave the bearing in contact with these agents.
- The operating temperature range is $-15 \sim +80 \,^{\circ}$ C. For continuous operation, the recommended operating temperature is $+60 \,^{\circ}$ C or less.
- To ensure normal rotation of the bearing, apply a load of 1% or more of the basic dynamic load rating at use.
- The allowable rotational speed is different from that of the general needle roller bearings. See the values shown in Table 39.

Table 39 Allowable rotational speed of Capilube Bearing

Type (representative)	Allowable dn values	
	Model code (representative)	$d_{\mathrm{m}}n(1) \cdot d_{1}n(2)$
Machined type needle roller bearing	NA,TR,TAF,NAF	30 000
Shell type needle roller bearing	TA···Z,TLA···Z	20 000
Cam follower	CF···W	10 000

Notes(1) $d_{\mathrm{m}}n = \text{(bore diameter of bearing [mm]} + \text{outside diameter of bearing [mm]})$ $/2 \times \text{rotational speed [rpm]}$ (2) $d_{1}n = \text{stud diameter [mm]} \times \text{rotational speed [rpm]}$

Friction and Allowable Rotational Speed

Friction

Compared with sliding bearings, the starting (static) friction for rolling bearings is small, and the difference between the starting (static) friction and the kinetic friction is also small. The loss of power and temperature rise in machines are thus reduced, improving the mechanical efficiency.

Frictional torque is influenced by the bearing type, bearing load, rotational speed, lubricant characteristics, etc. It varies according to the lubricant when operated under light-loads and high-speed conditions, and according to the load when operated under heavy-loads and low-speed conditions.

Frictional torque of rolling bearings is complicated because it is influenced by various factors, but for convenience, it can be expressed approximately by the following equations.

• Radial bearings
$$M = \mu P \frac{d}{2}$$
 ·····(37)

Thrust bearings
$$M = \mu P \frac{d_m}{2} \cdots (38)$$

where, $\,M\,$: Frictional torque, $\,$ N-mm

 μ : Coefficient of friction P : Bearing load, N

d: Bearing bore diameter, mm

 $d_{\rm m}$: Mean value of bearing bore and outside diameters, mm

The approximate coefficients of friction of IMD Bearings under operating conditions, in which lubrication and mounting are correct and where loads are relatively large and stable, are shown in Table 40.

Table 40 Coefficient of friction

Bearing series	μ
Needle roller bearings with cage	$0.0010 \sim 0.0030$
Full complement needle roller bearings	$0.0030 \sim 0.0050$
Thrust needle roller bearings	$0.0030 \sim 0.0040$
Thrust roller bearings	$0.0030 \sim 0.0040$

Allowable rotational speed

As the rotational speed of rolling bearings is increased, the bearing temperature also increases due to the heat generated at the contact surfaces between the cage, raceways and rolling elements, until it finally leads to bearing seizure. It is therefore necessary to maintain the rotational speed of a bearing below a certain limit value to ensure safe operation for long periods. This limit value is called the allowable rotational speed.

Since the amount of heat generated is approximately proportional to the sliding speed at the contact area, this sliding speed is an approximate guide indicating the limit of the bearing rotational speed.

The allowable rotational speed of bearings thus varies according to the bearing type, size, bearing load, method of lubrication, radial clearance, and other such factors.

The allowable rotational speeds shown in the table of dimensions are empirical values. They are not absolute values and can be changed according to the bearing use conditions. Depending on the structure and accuracy around the bearing, the lubricant and the lubrication method, it is possible for some bearings to be operated at more than twice the allowable rotational speed given in the table without trouble.

Operating Temperature Range

The allowable operating temperature range for needle roller bearings is generally $-20 \sim +120$ °C.

When operating at temperatures outside this range, the operation may be limited by the allowable temperature range of prepacked grease, seal, cage material, etc.

The operating temperature range for some types of bearings is different from the above. See the section for each bearing.

Handling of Bearings

Precautions in handling

Since the bearing is a high-accuracy mechanical element, special attention must be paid to its handling. The following precautions should be noted when handling the bearings.

• Bearings and their surrounding parts should be kept clean. Bearings and their surrounding parts must be kept clean paying special attention to dust and dirt. Tools and the working environment should also be cleaned.

2 Bearings should be handled carefully.

A shock load during handling may cause scratches, indentations and even cracks or chips on the raceway surfaces and rolling elements.

3 Bearings should be mounted or dismounted with proper tools. When mounting and dismounting, tools suitable for the bearing type should be used.

4 Bearings should be protected against corrosion.

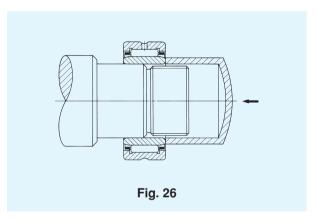
Bearings are treated with anti-corrosive oil. However, when handling them with bare hands, sweat from the hands may result in future rust formation. Gloves should be worn, or hands should be dipped in mineral oil

Mounting

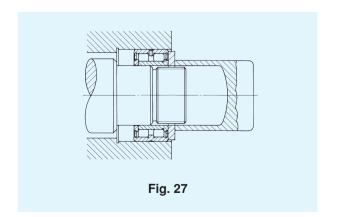
Preparation

Before mounting the bearing, the dimensions and fillets of the shaft and housing should be checked to ensure that they conform to specifications.

Bearings should be unwrapped just before mounting. In case of grease lubrication, bearings should be filled with grease without cleaning the bearings. Even in the case of oil lubrication, it is normally unnecessary to clean the bearings. However, when high accuracy is required or when using at high speeds, the bearings should be cleaned using cleaning oil to remove thoroughly oily contents. The cleaned bearings should not be left alone without anti-corrosive precautions, because bearings can easily be corroded after anti-corrosive agents are removed.


Lubricating grease is prepacked in some types of bearings. Therefore, refer to the relevant section for each bearing.

Methods of mounting


Mounting methods of bearings are different according to the type of bearing and the fit. In general, mounting of needle roller bearings is comparatively easy. However, non-separable bearings with large interferences should be handled with great care.

• Mounting by press fit

Small and medium bearings with small interferences require a small pressing-in force for mounting, and they are mounted using a press at room temperature. The bearing should be pressed in carefully, applying a force evenly to the bearing with a fitting tool as shown in Fig. 26. For separable bearings, the inner and outer rings can be mounted separately, and the mounting work is simple. However, when installing the shaft and inner ring assembly into the outer ring, care should be taken not to damage the raceway surfaces and rolling elements.

When mounting non-separable bearings, the inner and outer rings are pressed in simultaneously by applying a cover plate as shown in Fig. 27. It must never happen that the inner ring is press-fitted to the shaft by striking the outer ring, or the outer ring by striking the inner ring, because the raceway surfaces and rolling elements will be scratched or indented.

When press fitting, the friction of the fitting surfaces can be reduced by applying high viscosity oil over the fitting surfaces.

The pressing-in or pulling-out force to be applied to the bearing is given on page 62.

Mounting by shrink fitting

This method is used when the interference is great or when a large bearing is to be fitted. The housing is heated and thermally expanded when fitting the outer ring to the housing and the inner ring is heated and expanded when fitting it to the shaft allowing the bearing to be set easily within a short time. The maximum allowable temperature for the shrink fit is +120 °C, and heating should be performed appropriately. Pure non-corrosive mineral oil is recommended as the heating oil for shrink fit, and insulation oil for transformers is considered to be the best. During cooling, the bearing also shrinks in the axial direction. Therefore, to ensure that there is no clearance between the bearing and the shoulder, an axial force must be applied continuously to the bearing until it has cooled.

When the interference between the outer ring and the housing is great, an expansion fit method in which the bearing is cooled using dry ice or other cooling agent before fitting can be used. Immediately after fitting, however, moisture from the air easily condenses on the bearing. Therefore, it is necessary to take preventive measures against corrosion.

KKO

Pressing force and pulling force

Guidelines for the pressing force when pressing in the inner ring to the shaft and the pulling force when pulling it out are obtained from the following equation.

$$K = f_{k} \frac{d}{d+2} \Delta_{df} B \left\{ 1 - \left(\frac{d}{F} \right)^{2} \right\} \qquad \cdots (39)$$

where, K: Pressing or pulling force, N

 $f_{\rm k}$: Resistance factor determined by the coefficient of friction When pressing in inner ring to shaft, $f_{\rm k}\!\!=\!\!4 \times 10^4$ When pulling out inner ring from shaft, $f_{\rm k}\!\!=\!\!6 \times 10^4$

d : Bore diameter of inner ring, mm

 $\Delta_{d\mathrm{f}}$: Apparent interference, $\,\mathrm{mm}$

B: Width of inner ring, mm

F : Outside diameter of inner ring, mm

The actual pressing force or pulling force may be greater than the calculated value due to mounting errors. When designing a puller, it is necessary that the puller has the strength (rigidity) to withstand more than 5 times the calculated value.

Running test

After mounting the bearing, a running test is carried out to check whether the mounting is normal. Usually, it is first checked by manual turning. Then, it is operated by power gradually from no-load and low-speed up to normal operating conditions to check for abnormalities.

Noise can be checked by using a soundscope or similar instrument. In this test, checks are carried out for the following abnormalities.

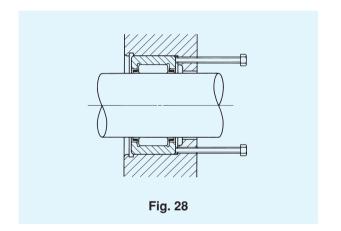
Manual turning

- (a) Uneven torque ····· Improper mounting
- (b) Sticking and rattling ··· Scratches or indentations on the raceway surface
- (c) Irregular noise ··· Penetration of dust or foreign particles

2 Power running

62

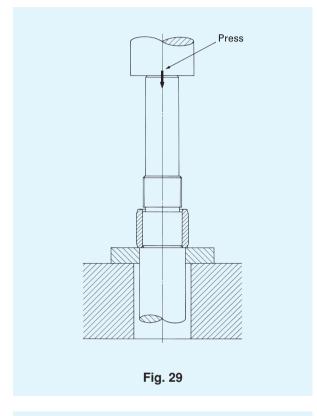
- (a) Abnormal noise or vibration ··· Indentations on the raceway surface, too great clearance
- (b) Abnormal temperature \cdots Unsuitable lubricant, improper mounting, too small clearance

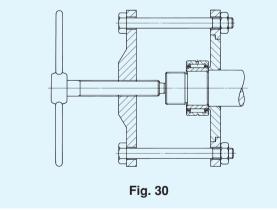

Dismounting

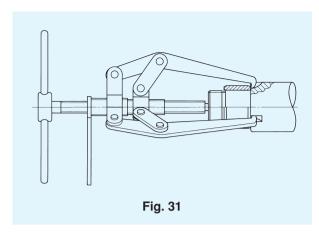
Dismounting of the bearings is carried out for the periodic inspection or repairs of machines. By inspecting the bearing, related parts or mechanisms, lubrication, etc., important data is obtained. In the same manner as in mounting, care should be taken to prevent damage to the bearing or other parts.

A suitable dismounting method should be selected according to the type of the bearing, fit, etc. Bearings mounted by interference fit are especially difficult to dismount, and it is necessary to give due consideration to the structure around the bearing during the design stage.

Dismounting of outer ring

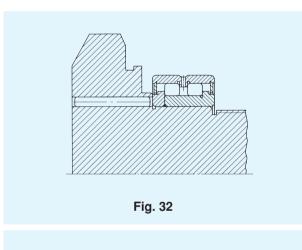

Outer rings mounted by interference fit are dismounted as shown in Fig. 28, by screwing in the push-out bolts evenly through several screw holes provided at places corresponding to the side face of the outer ring.

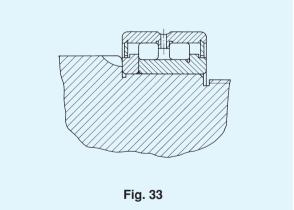



Dismounting of inner ring

In the case of bearings such as needle roller bearings in which the inner and outer rings are separable, the simplest way to press out the inner ring is by using a press as shown in Fig. 29.

The puller shown in Fig. 30 is also generally used. This is designed according to the bearing size. In addition, there are a 3-hook puller (Fig. 31) and a 2-hook puller for wide-range use.





In addition to these, when it is difficult to remove the inner ring due to high shoulders, several holes for removal pins are made through the shoulder, or several hook grooves are cut in the shoulder as shown in Fig. 32 and Fig. 33.

When a bearing is not to be used again after removal, it may be removed by heating with a torch lamp.

Inspection of bearing

Cleaning of bearing

When inspecting a bearing after removal, the appearance of the bearing should be recorded first. Then, after the residual amount of lubricant is checked and a sample of lubricant is collected, the bearing should be cleaned.

For cleaning, light oil or kerosene is commonly used. Cleaning is divided into rough cleaning and final cleaning, and wire gauze is set as a raised bottom in a container to prevent the bearing from touching the bottom of the container.

Lubricating grease and adhering substances such as foreign particles are removed with a brush, etc., using oil for rough cleaning. Care should be taken during this process, because if the bearing is turned with foreign particles attached, the raceway surfaces may be scratched.

Final cleaning is carried out by turning the bearing in cleaning oil. It is desirable that the cleaning oil is kept clean by filtering. Immediately after cleaning, the bearing must be protected against corrosion.

Inspection and evaluation of bearing

64

The judgement as to whether the removed bearing is reusable depends on the inspection after cleaning. Conditions of the raceway surfaces, rolling elements and fitting surfaces, wear condition of the cage, increase of bearing clearance, dimensions, rotational accuracy, etc. should be checked for damage and abnormalities.

The evaluation is performed based on the experience taking into consideration the degree of damage, machine performance, importance of the machine, operating conditions, period until the next inspection, and other such factors.

Maintenance and inspection

Maintenance and inspection

Maintenance and inspection are carried out to maintain good performance of bearings installed in the machine.

Maintenance is performed by checking the machine operating conditions, checking and replenishing or replacing the lubricant, checking the bearing and related parts by periodic disassembly and other such procedures.

Items for inspection of a running bearing in a machine include the bearing temperature, noise, vibration and condition of lubricant.

When any abnormality is found during operation, the cause should be investigated and measures taken by referring to the section on running test on page 62. When removing a bearing, refer to the section on dismounting on page 62.

Damage, causes and corrective action

Rolling bearings can generally be used fully up to their rolling fatigue life if they are properly selected, mounted, operated and maintained. However, they may actually be damaged earlier than their expected lifetimes creating problems or accidents. Common causes of damage include improper mounting or handling, insufficient lubrication and penetration of foreign particles.

It may be difficult to determine the exact cause of a problem by checking only the damaged bearing. The conditions of the machine before and after the occurrence of the damage, the location and the operating and ambient conditions of the bearing, the structure around the bearing, etc. should also be examined. It then becomes possible to assess the cause of the damage by linking the conditions of the damaged bearing to the probable causes arising from the machine operation, and to prevent the recurrence of similar problems.

Common types of damage, causes and corrective action are listed in Table 41.

Table 41 Damage, causes and corrective action

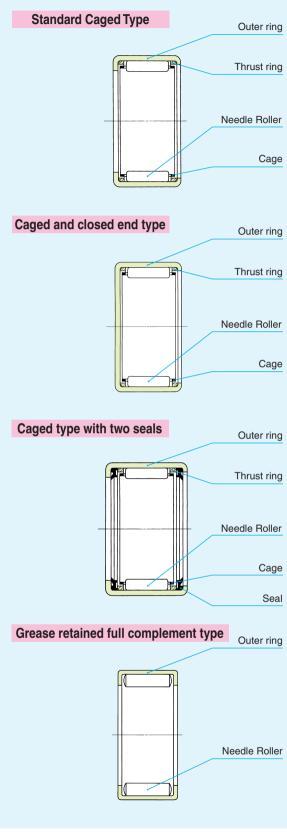
	Condition of bearing damage	Cause	Corrective action
	Flakings at opposite circumferential positions on raceway surfaces	Improper roundness of housing bore	Correction of housing bore accuracy
Flaking	Flakings in the vicinity of raceway surface edges and roller ends	Improper mounting, Shaft deflection, Poor centering, Poor accuracy of shaft or housing	Careful mounting, Careful centering, Correction of shoulders of shaft and housing for right angles
Flal	Flakings on raceway surfaces with an interval corresponding to roller pitch	Great shock load when mounting, Rusting during machine stoppage	Careful mounting, Protection against rust for long periods of machine stoppage
	Early flaking on raceway surfaces and rolling elements	Too small clearance, Too great load, Poor lubrication, Rusting, etc.	Correct selection of fit and clearance Correct selection of lubricant
Galling	Galling on raceway surfaces and rolling surfaces of rollers	Poor lubrication in early stage Grease consistency too hard High acceleration at start	Selection of softer grease, Avoiding quick acceleration
Ğ	Galling between roller end faces and collar guide surfaces	Poor lubrication, Poor mounting, Large axial load	Correct selection of lubricant Correct mounting
eß	Cracks in outer or inner ring	Excessive shock load, Too much interference. Poor cylindricity of shaft. Too large fillet radius, Development of thermal cracks, Development of flaking	Reevaluation of load conditions, Correction of fit, Correction of machining accuracy of shaft or sleeve, Making fillet radius smaller than the chamfer dimension of bearing
Breakage	Cracked rolling elements, broken collar	Development of flaking Shock to collar when mounting, Dropped by careless handling	Careful handling and mounting
	Broken cage	Abnormal load to cage by poor mounting, Poor lubrication	Minimizing mounting errors, Study of lubricating method and lubricant
Dent	Indentations on raceway surfaces at an interval corresponding to the pitch between rolling elements (brinelling)	Shock load applied when mounting, Excessive load while stopping	Careful handling
De	Indentation on raceway surfaces and rolling surfaces of rollers	Biting of foreign substances such as metal chips and sands	Cleaning of housing, Improvement of sealing, Use of clean lubricant
	False brinelling (Phenomenon like brinelling)	Vibration when the bearing is stationary such as during transportation, Oscillating motion with small amplitude	Fixing of shaft and housing, Use of lubricating oil, Application of preload to reduce vibration
Abnormal wear	Fretting Localized wear of fitted surfaces accompanied by red-brown wear particles	Sliding between fitted surfaces	Increase of interference, Application of oil
Abn	Wear on raceway surfaces, collar surfaces, rolling surfaces of rollers, cages, etc.	Penetration of foreign particles, Poor Iubrication, Rust	Improvement of sealing, Cleaning of housing Use of clean lubricant
	Creep Wear on fitted surfaces	Sliding between fitted surfaces, Insufficient tightening of sleeve	Increase of interference, Correct tightening of sleeve
Seizure	Discoloration of rolling elements and/or raceway surfaces and/or flange surfaces, Adhesion and welding, Discoloration of cage	Poor lubrication, Too small clearance, Poor mounting	Supply of proper amount of proper lubricant, Rechecking of fit and bearing clearance Rechecking of mounting dimensions and related parts
Electric corrosion	Ripples on raceway surfaces	Melting by sparks due to electric current	Insulation of bearing, Grounding to avoid electric current
Rust, corrosion	Rust or corrosion on bearing inside surfaces or on fitted surfaces	Condensation of vapor in air, Penetration of corrosive substances	Careful storage if under high temperature and high humidity, Protection against rust, Improvement of sealing

Description of Each Series & Table of Dimensions

Shell Type Needle Roller Bearings	IA·ILA·BA·BHA	68
Needle Roller Cages for general usage	KT	118
Needle Roller Cages for engine connecting rods	KT···EG·KTV···EG	134
Machined Type Needle Roller Bearings	NA·TAFI·TRI·BRI	140
Needle Roller Bearings with separable cage	NAF	230
Roller Bearings	NAG·NAU·TRU·NAS	246
Thrust Bearings	NTB·AS·AZK·WS·GS	268
Combined Type Needle Roller Bearings	NAX·NBX·NATA·NATB	284
Inner Rings	IRT·IRB·LRT·LRB	294
Cam Followers	CF·NUCF·CFS·CR	326
Roller Followers	NAST·NART·NURT	392
Crossed Roller Bearings	CRBH•CRBC•CRB•CRBS	412
Spherical Bushings	SB•GE•SBB	434
Pilloballs	PB·PHS·POS·PHSB·POSB·PHSA	462
L-balls	LHSA·LHS	478
Super Flexible Nozzles	SNA·SNM·SNPT	488
Parts For Needle Roller Bearings	OS·DS·WR·AR·Needle Roller	493

SHELL TYPE NEEDLE ROLLER BEARINGS

- Shell Type Caged Needle Roller Bearings
- Shell Type Grease Retained Full Complement Needle Roller Bearings


Structure and features

weight bearings with large load ratings. They employ a shell type outer ring made from a thin special-steel plate which is accurately drawn, carburized and quenched, thus providing the lowest sectional height among the needle roller bearings.

There are two types of bearings available in this series; the caged type and the full complement type. The appropriate type can be selected according to the operating conditions. The caged type has a structure in which the needle rollers are accurately guided by the cage and thrust rings. It is useful for applications at high-speed rotation. The full complement type needle roller bearing, on the other hand, is suitable for heavy-load applications at low-speed rotation.

Since these bearings are press-fitted into the housing, no fixtures for axial positioning are needed. They are ideal for use in mass-produced articles that require economy, and have a wide variety of applications.

Structures of Shell Type Needle Roller Bearings

Types

Numerous varieties of Shell Type Needle Roller Bearings are available as shown in Table 1.

Table 1 Type of bearing

Туре		Caged			Full complement
Series		Standard	Closed end	With seals (1)	Grease retained
Metric series	_	TLA ···Z	TLAM	TLA ··· UU	YTL
	Heavy duty	TA ···Z	TAM	_	YT
Inch series	_	BA ···Z	BAM	_	YB
	Heavy duty	BHA ··· Z	BHAM	_	YBH

Note(1) When the heavy duty type with seals or the closed end type with one seal is required, please consult \mathbb{Z} .

Remark A "W" is added to the model code to indicate that the rolling elements are of the double-row type.

Example TAW 5045 Z

Shell Type Caged Needle Roller Bearings

Standard type

This type has a narrow gap between the bore of the marked-side flange of the outer ring (brand, bearing number, etc. are marked) and the shaft, which prevents grease leaks and the entry of foreign particles. This type has wide applications.

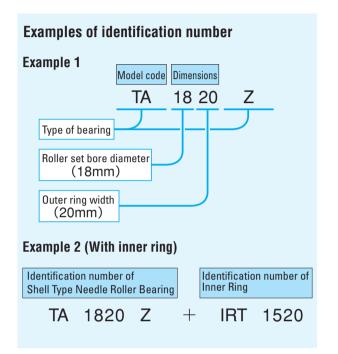
Closed end type

This type is completely closed on one side of the outer ring, and is ideal for use when perfect closing of shaft ends is desired.

The shape of the closed end surface of the outer ring is divided into two types, and the dimensions t_1 and t_2 in the illustrations shown in the dimension tables apply to the bearings with the roller set bore diameters, $F_{\rm w}$ > 22 and $F_{\rm w}$ \leq 22, respectively.

Type with seals at both sides

This type has a wider outer ring than the standard type and is installed with seals consisting of a reinforcing ring and special synthetic rubber to prevent grease leaks and the entry of foreign particles.


Shell Type Grease Retained Full Complement Needle Roller Bearings

This type has full complement rollers which extend to the full width of the outer ring raceway. It can, therefore, withstand heavy bearing loads and is most suitable for low and medium rotational speeds as well as rocking motions. As lubricating grease is prepacked with the rollers, the bearing can be operated immediately after being fitted.

Identification Number

The identification number of Shell Type Needle Roller Bearings consists of a model code and dimensions. Examples of the arrangement are shown below.

When using with inner rings, the assembled inner rings shown in the dimension tables are used. An example in this case is also shown below. Inner rings are delivered separately.

Accuracy

The outer rings of Shell Type Needle Roller Bearings are thin and therefore cannot avoid deformation due to heat treatment. It is thus not appropriate to take direct measurements of the bearing. The roller set bore diameter is measured using a plug gauge or tapered gauge after press-fitting the bearing to a suitable ring gauge. The gauge specifications are shown in Tables 2.1 and 2.2.

Tolerances of outer ring width ${\cal C}$ are shown in Table 3.

Table 2.1 Measuring gauges for metric series bearings unit: mm

$F_{ m W}$	Ring gauge		Plug gauge		
Nominal roller set bore diameter	TA Z(1)	TLA····Z(2)	Go	No-go	
4	_	7.981	4.004	4.016	
5	1	8.981	5.004	5.016	
6	_	9.981	6.004	6.016	
7	_	10.977	7.005	7.020	
8	14.992	11.977	8.005	8.020	
9	15.992	12.977	9.005	9.020	
10	16.992	13.977	10.005	10.020	
12	18.991	15.977 ⁽³⁾ 17.977 ⁽³⁾	12.006	12.024	
13	_	18.972	13.006	13.024	
14	21.991	19.972	14.006	14.024	
15	21.991	20.972	15.006	15.024	
16	23.991	21.972	16.006	16.024	
17	23.991	22.972	17.006	17.024	
18	24.991	23.972	18.006	18.024	
19	26.991	-	19.007	19.028	
20	26.991 ⁽⁴⁾ 27.991 ⁽⁴⁾	25.972	20.007	20.028	
21	28.991	_	21.007	21.028	
22	28.991 ⁽⁵⁾ 29.991 ⁽⁵⁾	27.972	22.007	22.028	
24	30.989 ⁽⁶⁾ 31.989 ⁽⁶⁾	_	24.007	24.028	
25	32.989	31.967	25.007	25.028	
26	33.989	_	26.007	26.028	
28	36.989	34.967	28.007	28.028	
29	37.989	_	29.007	29.028	
30	39.989	36.967	30.007	30.028	
32	41.989		32.009	32.034	
35	44.989	41.967	35.009	35.034	
37	46.989	_	37.009	37.034	
38	47.989	_	38.009	38.034	
40	49.989	46.967	40.009	40.034	
45	54.988	51.961	45.009	45.034	
50	61.988	57.961	50.009	50.034	
55	66.988	62.961	55.010	55.040	
60	71.988	_	60.010	60.040	
62	73.988	_	62.010	62.040	
65	76.988	_	65.010	65.040	
70	81.987	_	70.010	70.040	

Notes(1) Also applicable to TAM and YT

- (2) Also applicable to TLAM, YTL, TLA···UU
- (3) The upper value is for TLA 1210Z model, and the lower value is for TLA 1212Z model.
- (4) The lower value is for TA 202820Z model, and the upper value is for models other than TA 202820Z model.
- (5) The lower value is for TA 223016Z and TA 223020Z models, and the upper value is for models other than those models.
- (6) The lower value is for TA 243216Z and TA 243220Z models, and the upper value is for models other than those models.

Table 2.2 Measuring gauges for inch series bearings

Dodingo unit: min				
$F_{ m W}$		gauge	Plug (gauge
Nominal roller so bore diameter	DA 7(1)	BHA Z(2)	Go	No-go
3.969	7.155	_	3.990	4.016
4.762	8.730	_	4.783	4.808
6.350	11.125	_	6.388	6.414
7.938	12.713	14.300	7.976	8.001
9.525	14.300	15.888	9.563	9.588
11.112	15.888	17.475	11.151	11.176
12.700	17.475	19.063	12.738	12.764
14.288	19.063	20.650	14.326	14.351
15.875	20.650	22.238	15.913	15.938
17.462	22.238	23.825	17.501	17.526
19.050	25.387	26.975	19.063	19.088
20.638	26.975	28.562	20.650	20.676
22.225	28.562	30.150	22.238	22.263
23.812	30.150	_	23.825	23.851
25.400	31.737	33.325	25.413	25.438
26.988	33.325	_	27.000	27.026
28.575	34.912	38.087	28.588	28.613
30.162	38.087	_	30.175	30.201
31.750	38.087	41.262	31.763	31.788
33.338	41.262	_	33.350	33.378
34.925	41.262	44.437	34.938	34.966
38.100	47.612	_	38.113	38.143
41.275	50.787	_	41.288	41.318
44.450	53.962	57.137	44.463	44.496
47.625	57.137	_	47.638	47.671
50.800	60.312	_	50.815	50.848
52.388	_	64.280	52.413	52.451
53.975	63.487	_	53.990	54.028
57.150	66.662	_	57.165	57.203
66.675	76.187	_	66.700	66.738
69.850	79.362	_	69.875	69.914
Notoo(1) A	laa annliaahla	to DAM and V	D	

Notes(1) Also applicable to BAM and YB

(2) Also applicable to BHAM and YBH

Table 3 Tolerances of outer ring width *C* unit: mm

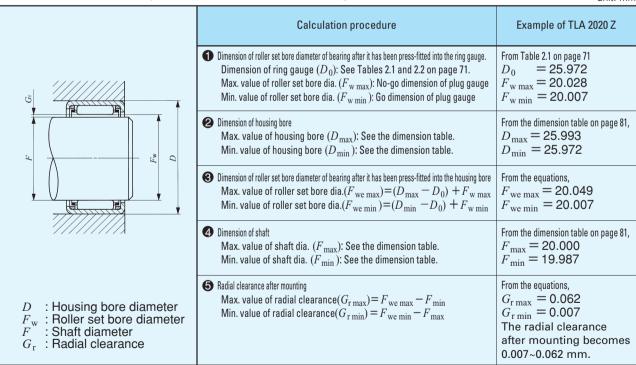
Series	Tolerance
Metric	0~-0.20
Inch	0~-0.25

As the outer ring is thin, the correct dimensions and accuracy of Shell Type Needle Roller Bearings are obtained only after they have been press-fitted into the housing bore. Bearing accuracy is directly affected by housing dimensions, shape and rigidity. This should be taken into account when considering fit and accuracy. The radial clearance after fitting the bearing to the shaft and the housing bore varies with their tolerances.

Table 4 shows the recommended fit for Shell Type Needle Roller Bearings.

Table 5 shows a calculation example of radial clearance after fitting. This calculation applies to bearings without inner ring to be fitted into rigid steel or cast iron housings. When the housing is made of light alloy or a thin steel pipe, it is necessary to check dimensions by actual measurement.

Generally, when making the radial clearance smaller, it is recommended that the shaft diameter be increased, without decreasing the housing bore diameter


Table 4 Recommended fit

		Tolerance class						
Type of bearing	Housing material	Shat	t (1)	Housing bore				
		Without inner ring	With inner ring	Tiousing bore				
TA···Z, BA···Z, BHA···Z, TAM, BAM, BHAM,	Steel Cast iron	h6	k5(j5)	J7				
YT, YB, YBH	Light alloy (Thin steel pipe)	h6	k5(j5)	M7(N7)				
TLA ···Z, TLAM, YTL,	Steel Cast iron	h6	k5(j5)	N7				
TLA…UU	Light alloy (Thin steel pipe)	h6	k5(j5)	R7(S7)				

Note(1) When housings are made of light alloy or a thin steel pipe, the roller set bore diameter is greatly affected by the housing thickness and shape. Therefore, before mass-production assembly, assembly tests should be carried out to confirm the amount of dimensional change and to determine the tolerance of the shaft which will give normal clearances.

Table 5 Calculation example of radial clearance after fitting

	ın	:4.	m	~
- 1	JN	ш.	m	п

Lubrication

Bearings with prepacked grease are shown in Table 6. ALVANIA GREASE 2 (SHELL) is prepacked as the lubricating grease.

In the case of bearings without prepacked grease, perform proper lubrication for use. If the bearings are operated without lubrication, the wear of the roller contact surfaces will increase and the bearing life will be shortened.

Table 6 Bearings with prepacked grease

	<i>Oil</i>	Ho	le
٥r	Shall	Type	Noc

For Shell Type Needle Roller Bearings with an oil hole, "OH" is appended to the end of the identification number.

Example TA 2525 Z OH

The symbol "OH" is not marked on the bearing itself, but is shown on its packaging, etc. When bearings with multiple oil holes are required, please consult IIME.

O: With prepacked grease X: Without prepacked grease

	• • •		- 1 P - P - 1		
	Bearing type		Caged		Full complement
Series		Standard	Closed end	With seals	Grease retained
Motric sories	TLA, TLAM, YTL	×	×	0	0
Metric series	TA, TAM, YT	×	×	_	0
Inch sories	BA, BAM, YB	×	×	_	0
Inch series	BHA, BHAM, YBH	×	×	_	0

Static Safety Factor

Since Shell Type Needle Roller Bearings employ an outer ring made from a thin steel plate which is drawn, carburized and quenched, excessively large loads must be avoided. The required static safety factor is usually more than 3.

Specifications of shaft and housing

Shell Type Needle Roller Bearings are commonly used without an inner ring. In such cases, the surface hardness of the raceway surface should be $58 \sim 64 \rm HRC$ and the surface roughness should not exceed 0.2 μ m $R_{\rm a}$. However, when the operating condition is not severe, a surface roughness 0.8 μ m $R_{\rm a}$ or less can be used.

If the surface hardness is low, the load rating must be corrected by the hardness factor shown on page 23. When the shaft cannot be heat treated and finished by grinding, the use of IMO Inner Rings for Shell Type Needle Roller Bearings (See page 294.) is recommended.

Mounting

Shell Type Needle Roller Bearings should be pressed into the housings gently using the appropriate tool as shown in Fig. 1, with their marked end surface up. As the outer ring is thin, it must never be struck directly with a hammer.

Since the outer rings of Shell Type Needle Roller Bearings are firmly fitted to housing bores with interference, it is unnecessary to fix them axially. Fig. 2 shows mounting examples.

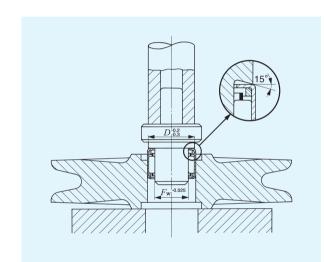
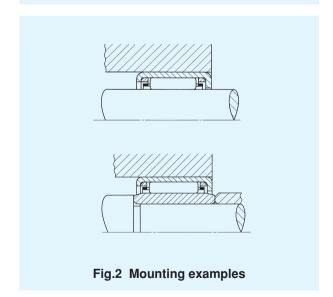
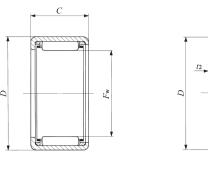



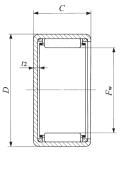
Fig.1 Example of mounting tool

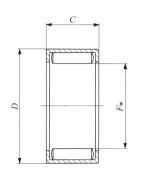
KKI

TLA BA BHA

SHELL TYPE NEEDLE ROLLER BEARINGS




Shaft dia. $4 - 10 \,\mathrm{mm}$


Shaft					Identification n	umber				
dia.	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.)
4	— —	_	_ _	_	TLA 48 Z	1.54	TLAM 48 —	1.67	 YTL 48	1.73
5	_	_	_	_	TLA 59 Z	1.9	TLAM 59	2	 YTL 59	2.4
6	_		_		TLA 69 Z	2.2	TLAM 69	2.3	_	_
7	_		_		TLA 79 Z	2.5	TLAM 79	2.7	_	_
	_	_	_	_	TLA 810 Z	3.1	TLAM 810	3.3	_	_
8	TA 810 Z TA 815 Z TA 820 Z	6.7 9.7 12.9	TAM 810 TAM 815 TAM 820	7.1 10.1 13.3	_ _ _	_				_
	——————————————————————————————————————		—	-	_				YT 810	7.7
	_ _	_	_	_	TLA 910 Z TLA 912 Z	3.4 4	TLAM 910 TLAM 912	3.6 4.3	_	_
9	TA 912 Z TA 916 Z	8.7 11.4	TAM 912 TAM 916	9.2 11.9		_	_	_	_	_
	_	_			_	_	_		YT 912	10.1
	_	_	_		TLA 1010 Z TLA 1012 Z	3.7 4.4	TLAM 1010 TLAM 1012	4 4.8	_	_
	_	_	_	_	TLA 1012 Z	5.5	TLAM 1015	5.9		_
10	TA 1010 Z	7.9	TAM 1010	8.5		_	_	_		
	TA 1012 Z	9.3	TAM 1012	10	_	_	_	_	_	_
	TA 1015 Z TA 1020 Z	11.5 15.4	TAM 1015 TAM 1020	12.2 16	_		_		_	_

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

TA…Z TLA…Z

TAM TLAM

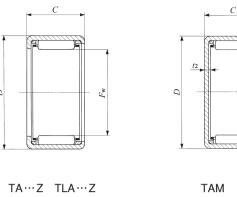
YT YTL

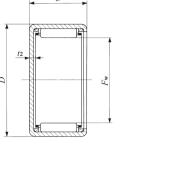
Boundary dimensions Standard mounting dimensions mm mm Shaft dia. Housing bore dia.									Basic dynamic load rating	Basic static load rating	Allowable rotational speed(1)	Assembled inner ring	
F_{w}	D	C	t_2	Shaf h		J	_	bore dia. N		C	C_0	speeu()	
T W	D		Max.	Max.	Min.	Max.	Min.	Max.	Min.	N	N	rpm	
4	8 8	8 8	1 —	4.000	3.992		_	7.996	7.981	1 350 3 010	1 010 2 900	75 000 40 000	_
5 5	9	9	1 —	5.000	4.992		_	8.996	8.981	1 880 4 320	1 600 4 750	65 000 30 000	_ _
6	10	9	1	6.000	5.992	_		9.996	9.981	2 100	1 900	55 000	_
7	11	9	1	7.000	6.991	_	_	10.995	10.977	2 490	2 450	50 000	_
8	12	10	1	8.000	7.991	_		11.995	11.977	3 320	3 670	45 000	
8 8 8	15 15 15 15	10 15 20 10	1.3 1.3 1.3	8.000	7.991	15.010	14.992	_	_	3 470 5 780 8 340 7 530	2 880 5 570 8 920 7 950	45 000 45 000 45 000 19 000	
9	13 13	10 12	1 1	9.000	8.991	_	_	12.995	12.977	3 500 4 460	4 040 5 510	45 000 45 000	_
9 9 9	16 16 16	12 16 12	1.3 1.3	9.000	8.991	16.010	15.992	_	_	5 140 6 960 9 690	4 880 7 210 11 200	45 000 45 000 17 000	_ _ _
10 10 10	14 14 14	10 12 15	1 1 1	10.000	9.991			13.995	13.977	3 870 4 920 6 390	4 740 6 460 9 040	40 000 40 000 40 000	IRT 710 IRT 712 IRT 715
10 10 10 10	17 17 17 17	10 12 15 20	1.3 1.3 1.3 1.3	10.000	9.991	17.010	16.992	_	_	4 150 5 590 6 920 9 990	3 780 5 540 7 300 11 700	40 000 40 000 40 000 40 000	IRT 710 IRT 712 IRT 715 —

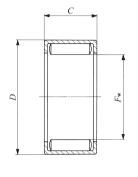
75

KKI

SHELL TYPE NEEDLE ROLLER BEARINGS




Shaft dia. 12 — 15 mm


Shaft	Identification number Shaft												
dia.	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.)			
	_ _	_	_	_	TLA 1210 Z	4.3	TLAM 1210	4.7		 5.1			
	_	_	_		TLA 1212 Z	8.6	TLAM 1212	9.4	_	_			
12	TA 1212 Z TA 1215 Z TA 1220 Z	10.5 13.1 17.3	TAM 1212 TAM 1215 TAM 1220	11.5 14 18.3	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _			
	TA 1225 Z	21.5	TAM 1225 —	22.5	_	_	_	_	YT 1212	12.8			
13	_				TLA 1312 Z	9.2	TLAM 1312	10.1	_				
14	— —	_ _	<u> </u>	_	TLA 1412 Z TLA 1416 Z	9.8 13.2	TLAM 1412 TLAM 1416	10.8 14.3	<u> </u>				
14	TA 1416 Z TA 1420 Z	18.4 23	TAM 1416 TAM 1420	19.6 24	_	_	_	_	_	_			
	_ _ _	_ _ _	_ _ _	_ _ _	TLA 1512 Z TLA 1516 Z TLA 1522 Z	10.4 14 19.1	TLAM 1512 TLAM 1516 TLAM 1522	11.5 15.2 20.5		_ _ _			
15	TA 1510 Z TA 1512 Z TA 1515 Z TA 1520 Z TA 1525 Z	10.8 12.9 15.9 21 25	TAM 1510 TAM 1512 TAM 1515 TAM 1520 TAM 1525	12.3 14.3 17.3 22.5 26.5	 					_ _ _ _			

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

YT YTL

ILA…Z	IAM	ILAM	

Bou		dime	ensions			mounting	g dimens	ions mr	n	Basic dynamic load rating	Basic static load rating	Allowable	Assembled inner ring
			,		t dia.	Housing bore dia.			C	C_0	speed(1)		
F_{w}	D	C	t_2 Max.	h Max.	6 Min.	J Max.	7 Min.	Max.	7 Min.	N	N	rpm	
12 12	16 16	10 10	1	12.000	11.989			15.995	15.977	4 350 7 470	5 810 11 800	35 000 13 000	IRT 810 IRT 810
12	18	12	1.3	12.000	11.989	_	_	17.995	17.977	6 420	7 490	35 000	IRT 812
12 12 12 12 12	19 19 19 19 19	12 15 20 25 12	1.3 1.3 1.3 1.3	12.000	11.989	19.012	18.991	_		6 000 7 440 10 700 13 800 11 800	6 310 8 320 13 300 18 300 15 200	35 000 35 000 35 000 35 000 13 000	IRT 812 IRT 815 — — IRT 812
13	19	12	1.3	13.000	12.989	_	_	18.993	18.972	6 760	8 170	30 000	IRT 1012
14 14	20 20	12 16	1.3 1.3	14.000	13.989	_	_	19.993	19.972	7 080 8 950	8 840 12 000	30 000 30 000	IRT 1012-2 IRT 1016-2
14 14	22 22	16 20	1.3 1.3	14.000	13.989	22.012	21.991	_	_	10 500 13 900	12 000 17 200	30 000	IRT 1016-2 IRT 1020-2
15 15 15	21 21 21	12 16 22	1.3 1.3 1.3	15.000	14.989	_	_	20.993	20.972	7 380 9 330 13 600	9 520 12 900 20 900	25 000 25 000 25 000	IRT 1212 IRT 1216 IRT 1222
15 15 15 15 15	22 22 22 22 22 22	10 12 15 20 25	1.3 1.3 1.3 1.3 1.3	15.000	14.989	22.012	21.991	_	_	5 290 7 120 8 830 12 700 16 300	5 680 8 310 11 000 17 600 24 200	25 000 25 000 25 000 25 000 25 000	IRT 1010-1 IRT 1012-1 IRT 1015-1 IRT 1020-1 IRT 1025-1

77

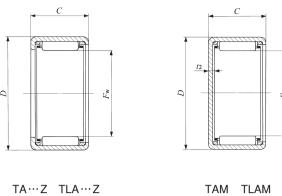
TLA

вна

TLA

вна

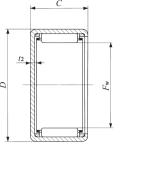
SHELL TYPE NEEDLE ROLLER BEARINGS

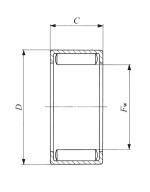


Shaft dia. 16 – 19mm

Shaft												
dia.	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.)		
16	— — — TA 1616 Z	20		22	TLA 1612 Z TLA 1616 Z TLA 1622 Z	10.9 14.8 20	TLAM 1612 TLAM 1616 TLAM 1622	12.2 16.1 21.5				
	TA 1620 Z	25	TAM 1620	27	— TLA 1712 Z	11.5	— TLAM 1712	13				
17	TA 1715 Z TA 1720 Z TA 1725 Z —	17.6 23.5 29 —	TAM 1715 TAM 1720 TAM 1725	19.5 25 31 —	— — — — — — — — — — — — — — — — — — —	- - - -		13 — — — —	YT 1715 YT 1725			
	_ _	_ _	<u> </u>	_	TLA 1812 Z TLA 1816 Z	12 16.2	TLAM 1812 TLAM 1816	13.7 17.9	_	_		
18	TA 1813 Z TA 1815 Z TA 1817 Z TA 1819 Z TA 1820 Z TA 1825 Z	16.4 18.5 21 23.5 24.5 30.5	TAM 1813 TAM 1815 TAM 1817 TAM 1819 TAM 1820 TAM 1825	18.5 20.5 23 25.5 26.5 32.5	- - - - -	_ _ _ _	— — — — —	_ _ _ _ _	— — — — —			
19	TA 1916 Z TA 1920 Z	23 29	TAM 1916 TAM 1920	25.5 31	_	_ _	_	_	_	_		

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.


Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.



19.000 | 18.987 | 27.012 | 26.991

19 27 16 1.3

19 27 20 1.3

ΥT

Bou	,		ensions	S	Standard	mounting	g dimens	ions mr	n	Basic dynamic	Basic static	Allowable	Assembled
	r	mm								load rating	load rating	rotational	inner ring
			l ,	Shaf			Ŭ	bore dia.		C	C_0	speed(1)	
F_{W}	D	C	t_2	h Nav	-	J	-	N N		N	N	rnm	
			Max.	Max.	Min.	Max.	Min.	Max.	Min.	IN	IN	rpm	
16	22	12	1.3							7 670	10 200	25 000	IRT 1212-1
16	22	16	1.3	16.000	15.989			21.993	21.972	9 700	13 800	25 000	IRT 1216-1
16	22	22	1.3							14 200	22 400	25 000	IRT 1222-1
16	24	16	1.3							11 100	13 300	25 000	IRT 1216-1
16	24	20	1.3	16.000	15.989	24.012	23.991	_	_	14 700	19 100	25 000	IRT 1220-1
17	23	12	1.3	17.000	16.989			22.993	22.972	7 960	10 900	25 000	
17	23	12	1.3	17.000	10.303	_	_	22.993	22.972	7 900	10 900	25 000	
17	24	15	1.3							9 660	12 700	25 000	IRT 1215-2
17	24	20	1.3							13 900	20 400	25 000	IRT 1220-2
17	24	25	1.3	17.000	16.989	24.012	23.991	_		17 900	28 100	25 000	IRT 1225-2
17	24	15	_							16 600	26 000	9 000	IRT 1215-2
17	24	25	_							27 200	49 000	9 000	IRT 1225-2
18	24	12	1.3		4= 40-					8 230	11 500	20 000	IRT 1512
18	24	16	1.3	18.000	17.989	_	_	23.993	23.972	10 400	15 600	20 000	IRT 1516
18	25	13	1.3							9 100	12 000	20 000	IRT 1513
18	25	15	1.3							10 100	13 600	20 000	IRT 1515
18	25	17	1.3							11 900	16 900	20 000	IRT 1515
				18.000	17.989	25.012	24.991	_	_	13 700			
18	25	19	1.3								20 200	20 000	IRT 1519
18	25	20	1.3							14 500	21 800	20 000	IRT 1520
18	25	25	1.3							18 600	30 000	20 000	IRT 1525

12 200

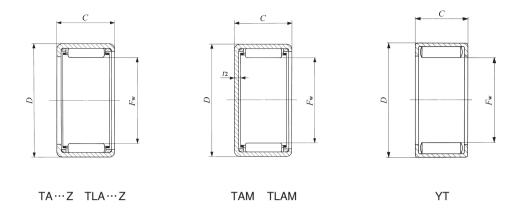
16 100

15 700 | 20 000 | **IRT 1516-1**

22 600 | 20 000 | **IRT 1520-1**

TLA BA BHA

SHELL TYPE NEEDLE ROLLER BEARINGS



Shaft dia. 20 – 21mm

Shaft					Identification n	umber				
dia.	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.) g
	_ _ _ _	— — —		— — —	TLA 2012 Z TLA 2016 Z TLA 2020 Z TLA 2030 Z	13.2 17.8 22 33	TLAM 2012 TLAM 2016 TLAM 2020 TLAM 2030	15.2 19.9 24 35		— — —
20	TA 2015 Z TA 2020 Z TA 2025 Z TA 2030 Z —	20 26.5 33 39.5 —	TAM 2015 TAM 2020 TAM 2025 TAM 2030	22.5 29 35.5 42	— — — — —		— — — — —			
	TA 202820 Z	30	TAM 202820 —	32.5	_ _	_ _	_			37.5
21	TA 2116 Z TA 2120 Z	25 31.5 —	TAM 2116 TAM 2120	28 34.5 —					YT 2116 YT 2120	31 39

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

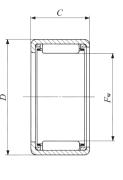
Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

Bou		/ dime	ensions			mounting				Basic dynamic load rating	Basic static load rating	Allowable rotational speed(1)	Assembled inner ring
F_{w}	D	C	t_2	Shaf h	t dia. 6	J	_	bore dia. N		C	C_0	speed()	
1 W	D		Max.	Max.	Min.	Max.	Min.	Max.	Min.	N	N	rpm	
20 20 20 20	26 26 26 26	12 16 20 30	1.3 1.3 1.3 1.3	20.000	19.987	_	_	25.993	25.972	8 740 11 100 14 500 22 300	12 900 17 500 24 700 42 900	20 000 20 000 20 000 20 000	IRT 1716 IRT 1720 IRT 1730
20 20 20 20 20 20 20	27 27 27 27 27 27	15 20 25 30 15 25	1.3 1.3 1.3 1.3 —	20.000	19.987	27.012	26.991	_	_	10 400 15 000 19 200 23 100 18 400 30 000	14 600 23 400 32 200 41 000 30 900 58 300	20 000 20 000 20 000 20 000 7 500 7 500	IRT 1515-2 IRT 1520-2 IRT 1525-2 IRT 1530-2 IRT 1515-2 IRT 1525-2
20 20	28 28	20 20	1.3	20.000	19.987	28.012	27.991	_	_	16 900 26 800	24 300 44 600	20 000 7 500	IRT 1520-2 IRT 1520-2
21 21 21 21	29 29 29 29	16 20 16 20	1.3 1.3 —	21.000	20.987	29.012	28.991	_	_	13 300 17 600 22 100 27 500	18 100 25 900 35 200 46 800	19 000 19 000 7 000 7 000	IRT 1716-1 IRT 1720-1 IRT 1716-1 IRT 1720-1

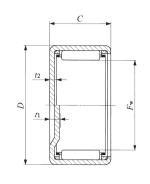
KKI

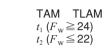
TLA BA BHA

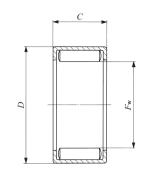
SHELL TYPE NEEDLE ROLLER BEARINGS



Shaft dia. 22 – 24mm


Shaft					Identification n	umber				
dia.	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.)
	_ _ _	_ _ _	_ _ _	_ _ _	TLA 2212 Z TLA 2216 Z TLA 2220 Z	15.6 21.5 26.5	TLAM 2212 TLAM 2216 TLAM 2220	18.1 24 29	_ _ _	_ _ _
22	TA 2210 Z TA 2215 Z TA 2220 Z TA 2225 Z	15 21.5 29 35.5	TAM 2210 TAM 2215 TAM 2220 TAM 2225	18.1 24.5 32 38.5		_ _ _ _	 		 	_ _ _ _
	TA 2230 Z TA 223016 Z TA 223020 Z	26 32.5 —	TAM 223016 TAM 223020	45.5 29 35.5 —		_ _ _ _			YT 223016 YT 223020	32
	TA 2420 Z TA 2428 Z	31 43.5	TAM 2420 TAM 2428	35 47	_ _ _ _		_ _ _		- YT 2428	- - 54
24	TA 243216 Z TA 243220 Z	28 35.5	TAM 243216 TAM 243220	32 39		_ _ _		_ _ _	YT 243216	
	_	_		_		_		_	YT 243220	43.5


Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

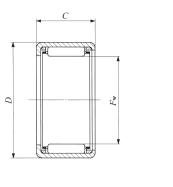

Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

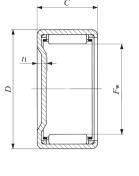
YT

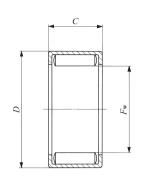
Bou		dime	ensions	S	Standard	mounting	g dimens	ions mr	n	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
					t dia.		_	bore dia.		C	C_0	speed(1)	
F_{w}	D	C	t_1 , t_2 Max.	h Max.	6 Min.	Max.	7 Min.	Max.	7 Min.	N	N	rpm	
22 22 22	28 28 28	12 16 20	1.3 1.3 1.3	22.000	21.987	_		27.993	27.972	9 230 11 700 15 300	14 300 19 300 27 300	18 000 18 000 18 000	 IRT 1716-2 IRT 1720-2
22 22 22 22 22 22	29 29 29 29 29	10 15 20 25 30	1.3 1.3 1.3 1.3	22.000	21.987	29.012	28.991	_	_	6 650 11 100 16 000 19 700 23 800	8 500 16 400 26 300 34 300 43 700	18 000 18 000 18 000 18 000 18 000	IRT 1710-2 IRT 1715-2 IRT 1720-2 IRT 1725-2 IRT 1730-2
22 22 22 22	30 30 30 30	16 20 16 20	1.3 1.3 —	22.000	21.987	30.012	29.991	_	_	13 200 17 500 22 600 28 200	18 200 26 100 36 800 48 900	18 000 18 000 7 000 7 000	IRT 1716-2 IRT 1720-2 IRT 1716-2 IRT 1720-2
24 24 24	31 31 31	20 28 28	3.4 3.4 —	24.000	23.987	31.014	30.989	_	_	17 000 24 500 36 800	29 200 46 700 79 900	16 000 16 000 6 500	IRT 2020 IRT 2028 IRT 2028
24 24 24 24	32 32 32 32	16 20 16 20	3.4 3.4 —	24.000	23.987	32.014	31.989	_	_	14 200 18 800 23 700 29 500	20 500 29 400 40 100 53 200	16 000 16 000 6 500 6 500	IRT 2016 IRT 2020 IRT 2016 IRT 2020

вна

SHELL TYPE NEEDLE ROLLER BEARINGS







Shaft dia. 25 – 28 mm

					Identification n	umber				
Shaft dia. mm	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.)
25	TA 2510 Z TA 2515 Z TA 2520 Z TA 2525 Z TA 2530 Z	19.1 28.5 36.5 45.5 54.5	TAM 2510 TAM 2515 TAM 2520 TAM 2525 TAM 2530	23 32.5 40.5 49 58.5	TLA 2512 Z TLA 2516 Z TLA 2520 Z TLA 2526 Z TLAW2538Z — — — — — — — — — — — — — — — — — — —	19.7 26 32 41.5 58.5 — — — — — —	TLAM 2512 TLAM 2516 TLAM 2520 TLAM 2526 TLAMW2538 — — — — — — — — — — — — — — — — — — —	23.5 29.5 36 45.5 62 — — — — —	YTL 2526	 51.5 22.5 33 45
26	TA 2616 Z TA 2620 Z — — — — —	30.5 38 — —	TAM 2616 TAM 2620 — —	34.5 42.5 —	TLA 2816 Z TLA 2820 Z		TLAM 2816 TLAM 2820		YT 2525	57 — 37 46.5 —
28	TA 2820 Z TA 2830 Z	45 67.5 —	TAM 2820 TAM 2830	50 72.5 —				_	 YT 2820	56.5

TA…Z TLA…Z TAM TLAM

YT	YTL
1.1	116

Bou	Boundary dimensions mm			S	Standard	mounting	g dimensi	ions mr	n	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
			,		t dia.		_	bore dia.		C	C_0	speed(1)	
F_{w}	D	C	t ₁ Max.	h Max.	6 Min.	J Max.	7 Min.	Max.	7 Min.	N	N	rpm	
25	32	12	2.8							9 440	13 900	15 000	_
25	32	16	2.8							12 800	20 500	15 000	<u> </u>
25	32	20	2.8	25.000	24.987			31.992	31.967	16 900	29 300	15 000	IRT 2020-1
25	32	26	2.8	20.000	2 11007			011002	011007	22 600	42 500	15 000	IRT 2026-1
25	32	38	2.8							28 900	58 500	15 000	IRT 2038-1
25	32	26	_							35 000	75 800	6 000	IRT 2026-1
25	33	10	3.4							7 990	9 900	15 000	IRT 2010-1
25	33	15	3.4							13 400	19 300	15 000	IRT 2015-1
25	33	20	3.4	25.000	24.987	33.014	32.989	_		19 500	31 100	15 000	IRT 2020-1
25	33	25	3.4							24 100	40 800	15 000	IRT 2025-1
25	33	30	3.4							29 100	52 000	15 000	IRT 2030-1
25	33	10	_							15 500	23 600	6 000	IRT 2010-1
25	33	15	_	25.000	24.987	33.014	32.989			22 700	38 300	6 000	IRT 2015-1
25	33	20	_	25.000	24.907	33.014	32.909	_	_	30 200	55 400	6 000	IRT 2020-1
25	33	25	_							37 200	72 500	6 000	IRT 2025-1
26	34	16	3.4							15 200	22 900	15 000	IRT 2216
26	34	20	3.4	00.000	05 007	04.044	00.000			20 100	32 800	15 000	IRT 2220
26	34	16	_	26.000	25.987	34.014	33.989	_		24 700	43 300	6 000	IRT 2216
26	34	20	_							30 800	57 500	6 000	IRT 2220
28	35	16	2.8							13 800	23 500	13 000	_
28	35	20	2.8	28.000	27.987			34.992	34.967	18 300	33 600	13 000	IRT 2220-1
28	37	20	3.4							21 200	32 300	13 000	IRT 2220-1
28	37	30	3.4	28.000	27.987	37.014	36.989	_	_	33 000	56 900	13 000	IRT 2230-1
28	37	20	_							34 700	61 700	5 500	IRT 2220-1

Note(1)
Remarks1. "W" in the identification number indicates that rolling elements are arranged in double rows.

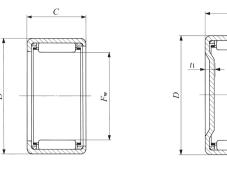
2. Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of

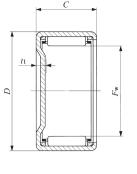
KKI

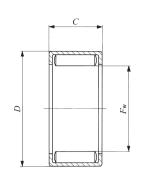
TLA

ВНА

SHELL TYPE NEEDLE ROLLER BEARINGS


Shaft dia. 29 – 35mm


					Identification n	umber				
Shaft dia.	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Grease retained	Mass (Ref.)
mm		g		g		g		g		g
29	TA 2920 Z TA 2930 Z	47 70	TAM 2920 TAM 2930	52 75.5	_	_ _	_	_	_	_
	_	_		_	_				YT 2920	58.5
	<u>—</u>	_		_	TLA 3012 Z		TLAM 3012			_
	—	_		_	TLA 3016 Z		TLAM 3016			_
		_	_	_	TLA 3018 Z		TLAM 3018			_
		_		_	TLA 3020 Z		TLAM 3020 TLAM 3026			_
30	_	_	_		TLA 3026 Z TLAW3038 Z		TLAM 3026 TLAMW3038	54.5 74.5	_	_
30					I LAW 3036 Z	09	I LAWIVY 3030	74.5		
	TA 3013 Z	36.5	TAM 3013	42.5	_	_				_
	TA 3015 Z	42	TAM 3015	47.5	_	_				_
	TA 3020 Z TA 3025 Z	54.5 68	TAM 3020 TAM 3025	60 73.5	_	_				
	TA 3025 Z	80	TAM 3030	85.5	_		_		_	
32	TA 3220 Z	57.5	TAM 3220	63.5	_				_	
32	TA 3230 Z	86	TAM 3230	97.5	_	_		_	VT 2000	74.5
	_				_				YT 3220	71.5
	_	_	_	_	TLA 3512 Z		TLAM 3512		_	_
		_		_	TLA 3516 Z		TLAM 3516			_
		_		_	TLA 3520 Z	43.5	TLAM 3520	51		_
35	TA 3512 Z	38.5	TAM 3512	46	_	_		_	_	_
	TA 3515 Z	48	TAM 3515	56	_	_		_	_	_
	TA 3520 Z	62.5	TAM 3520	70	_	_		_	_	_
	TA 3525 Z	78	TAM 3525	85.5	_		_	_	_	_
	TA 3530 Z	97	TAM 3530	105	_		_	_	_	_


Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. "W" in the identification number indicates that rolling elements are arranged in double rows.

2. Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and

ΥT

TA···Z TLA···Z TAM TLAM

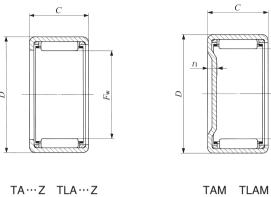
Bou		/ dime	ensions	S	Standard	mounting	g dimens	ions mr	n	Basic dynamic load rating	Basic static	Allowable rotational	Assembled inner ring
	I	ı	l	Shaf	t dia.		Housing	bore dia.		C	C_0	speed(1)	
F_{w}	D	C	t_1 Max.	h Max.	6 Min.		7 Min.	Max.		N	N	rpm	
29 29 29	38 38 38	20 30 20	3.4 3.4 —	29.000	28.987	38.014	37.989		_	22 000 34 200 35 500	34 200 60 300 64 100	13 000 13 000 5 000	IRT 2520 IRT 2530 IRT 2520
30 30 30 30 30 30	37 37 37 37 37 37	12 16 18 20 26 38	2.8 2.8 2.8 2.8 2.8 2.8	30.000	29.987	_	_	36.992	36.967	10 400 14 100 16 400 18 600 24 800 31 900	16 600 24 500 29 800 35 100 50 900 70 200	12 000 12 000 12 000 12 000 12 000 12 000	IRT 2520-1 IRT 2526-1 IRT 2538-1
30 30 30 30 30	40 40 40 40 40	13 15 20 25 30	3.4 3.4 3.4 3.4 3.4	30.000	29.987	40.014	39.989	_	_	13 500 16 800 24 500 31 600 36 700	16 800 22 400 36 300 50 300 60 700	12 000 12 000 12 000 12 000 12 000	IRT 2515-1 IRT 2520-1 IRT 2525-1 IRT 2530-1
32 32 32	42 42 42	20 30 20	3.4 3.4 —	32.000	31.984	42.014	41.989	_	_	25 400 39 500 39 900	38 600 68 400 70 100	11 000 11 000 4 500	IRT 2820 IRT 2830 IRT 2820
35 35 35	42 42 42	12 16 20	2.8 2.8 2.8	35.000	34.984	_	_	41.992	41.967	11 600 15 700 20 700	20 000 29 600 42 300	10 000 10 000 10 000	IRT 3012 — IRT 3020
35 35 35 35 35	45 45 45 45 45	12 15 20 25 30	3.4 3.4 3.4 3.4 3.4	35.000	34.984	45.014	44.989	_	_	14 800 18 500 27 000 34 800 40 600	19 900 26 500 43 100 59 700 72 600	10 000 10 000 10 000 10 000 10 000	IRT 3012 IRT 3015 IRT 3020 IRT 3025 IRT 3030

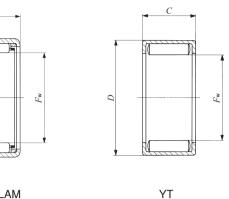
Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

KKI

вна

SHELL TYPE NEEDLE ROLLER BEARINGS


Shaft dia. 37 – 45mm


					Identification n	umber				
Shaft dia. mm	Standard	Mass (Ref.) g	Closed end	Mass (Ref.)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.) g
37	TA 3720 7 TA 3730 7		TAM 3720 TAM 3730	73 110 —		_ _ _		_ _ _	 YT 3720	— — 81
38	TA 3815 7 TA 3820 7 TA 3825 7 TA 3830 7 TAW 3845 7	65.5 82.5 104	TAM 3815 TAM 3820 TAM 3825 TAM 3830 TAMW 3845	60 74.5 96 114 159	— — — —	_ _ _ _		_ _ _ _	— — — — —	_ _ _ _
40	TA 4015 7 TA 4020 7 TA 4020 7 TA 4030 7 TA 4040 7	69.5 86.5 110	TAM 4015 TAM 4020 TAM 4025 TAM 4030 TAM 4040	63.5 79 102 120 154	TLA 4012 Z TLA 4016 Z TLA 4020 Z	30 39 49 — — — —	TLAM 4012 TLAM 4016 TLAM 4020	40 49 58.5 — — — —		
45	TA 4520 7 TA 4525 7 TA 4530 7 TA 4540 7	1 02 1 22	TAM 4520 TAM 4525 TAM 4530 TAM 4540	90 115 135 174	TLA 4516 Z TLA 4520 Z	43.5 54.5 — — — —	TLAM 4516 TLAM 4520	56 67 — — — —	YT 4025	109 — — — — — — 96 122

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. "W" in the identification number indicates that rolling elements are arranged in double rows.

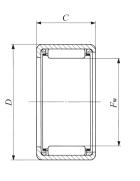
2. Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

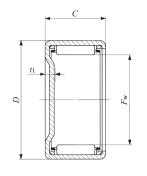
Bou		dime	ensions	S	Standard	mounting	g dimens	ions mr	n	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
	I			Shaf	t dia.		Housing	bore dia.		C	C_0	speed(1)	-
F_{w}	D	С	t_1 Max.	h Max.	6 Min.	J Max.	7 Min.	Max.	7 Min.	N	N	rpm	
37 37 37	47 47 47	20 30 20	3.4	37.000	36.984	47.014	46.989	_	_	27 800 41 800 43 300	45 400 76 700 81 300	9 500 9 500 4 000	IRT 3220 IRT 3230 IRT 3220
38 38 38 38 38	48 48 48 48 48	15 20 25 30 45	3.4 3.4 3.4 3.4 3.4	38.000	37.984	48.014	47.989	_	_	19 000 27 700 35 600 43 100 55 700	28 000 45 600 63 100 80 600 112 000	9 000 9 000 9 000 9 000 9 000	IRT 3215-1 IRT 3220-1 IRT 3225-1 IRT 3230-1 IRT 3245-1
40 40 40	47 47 47	12 16 20	2.8 2.8 2.8	40.000	39.984		_	46.992	46.967	12 400 16 700 22 100	22 800 33 700 48 200	8 500 8 500 8 500	 IRT 3520
40 40 40 40 40 40 40	50 50 50 50 50 50	15 20 25 30 40 15 25	3.4 3.4 3.4 3.4 3.4	40.000	39.984	50.014	49.989	_	_	19 500 28 400 36 600 44 300 56 700 33 400 55 300	29 400 47 800 66 200 84 600 116 000 59 800 114 000	8 500 8 500 8 500 8 500 8 500 4 000 4 000	IRT 3515 IRT 3520 IRT 3525 IRT 3530 IRT 3540 IRT 3515 IRT 3525
45 45	52 52	16 20	2.8 2.8	45.000	44.984	_	_	51.991	51.961	17 800 23 400	37 800 54 000	7 500 7 500	 IRT 4020
45 45 45 45 45 45	55 55 55 55 55 55	20 25 30 40 20 25	3.4 3.4 3.4 3.4	45.000	44.984	55.018	54.988	_	_	30 600 39 400 47 700 61 300 47 800 59 100	54 600 75 600 96 600 133 000 98 200 129 000	7 500 7 500 7 500 7 500 3 500 3 500	IRT 4020 IRT 4025 IRT 4030 IRT 4040 IRT 4020 IRT 4025

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

TLA BA BHA

SHELL TYPE NEEDLE ROLLER BEARINGS


Shaft dia. 50 – 62mm


							Identi	fication n	umber				
Shaft dia. mm	Standard	I	Mass (Ref.)	Closed	l end	Mass (Ref.)	Sta	ındard	Mass (Ref.) g	Closed end	Mass (Ref.)	Grease retained	Mass (Ref.) g
	_ _			_	-	_		5020 Z 5025 Z	69 86	TLAM 5020 TLAM 5025	84.5 107	_	_
50	TA 5012 TA 5020 TA 5020 TA 5030	5 Z 0 Z 5 Z 0 Z	134 161	TAM TAM TAM TAM TAM	5012 5015 5020 5025 5030	78 98.5 123 150 178						— — — —	_ _ _ _
	TA 5040 Z TAW 5045 Z			TAM TAMW		230 245		_ _	<u> </u>	<u> </u>	_ _		<u> </u>
	_		_	_	-	_		5520 Z 5525 Z	75 98.5	TLAM 5520 TLAM 5525	98.5 118		_
55	TA 5520 TA 5520 TA 5530 TA 5540 TAW 5540 TAW 5550	5 Z 0 Z 0 Z 5 Z	145 175 230 250	TAM TAM TAM TAM TAMW TAMW	5545	136 165 195 250 270 300				 	_ _ _ _	 	_ _ _ _
60	TA 6028 TA 6030 TA 6048 TAW 6050 TA 6212) Z) Z 5 Z) Z	191 250 270	TAM TAM TAM TAMW TAMW	6040 6045	182 215 275 295 330			— — — —	— — — —			_ _ _ _
02	IA 0212	. L	78	IAW	0212	107							

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. "W" in the identification number indicates that rolling elements are arranged in double rows.

2. Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and

TA…Z TLA…Z

TAM TLAM

Bou		/ dim	ensions	S	Standard	mounting	g dimens	ions mr	n	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
			,		t dia.		_	bore dia.		C	C_0	speed(1)	
F_{w}	D	C	t_1 Max.	h Max.	6 Min.	J Max.	7 Min.	Max.	7 Min.	N	N	rpm	
50	58	20	2.8	50.000	40.004			E7 001	E7 061	28 800	64 100	6 500	IRT 4520
50	58	25	2.8	50.000	49.984			57.991	57.961	36 900	88 400	6 500	IRT 4525
50	62	12	3.4							17 700	24 000	6 500	IRT 4512
50	62	15	3.4							25 800	39 000	6 500	IRT 4515
50	62	20	3.4							38 000	64 000	6 500	IRT 4520
50	62	25	3.4	50.000	49.984	62.018	61.988	_		49 100	89 000	6 500	IRT 4525
50	62	30	3.4							59 500	114 000	6 500	IRT 4530
50	62	40	3.4							76 500	157 000	6 500	IRT 4540
50	62	45	3.4							76 700	158 000	6 500	IRT 4545
55	63	20	2.8	55.000	54.981			62.991	62.961	29 800	69 400	5 500	IRT 5020-1
55	63	25	2.8	35.000	34.901			02.991	02.901	38 300	95 700	5 500	IRT 5025-1
55	67	20	3.4							39 600	69 700	5 500	IRT 5020-1
55	67	25	3.4							51 200	97 000	5 500	IRT 5025-1
55	67	30	3.4	55.000	54.981	67.018	66.988			62 000	124 000	5 500	IRT 5030-1
55	67	40	3.4	35.000	34.901	07.016	00.900	_		80 000	172 000	5 500	IRT 5040-1
55	67	45	3.4							79 900	172 000	5 500	IRT 5045-1
55	67	50	3.4							91 500	205 000	5 500	IRT 5050-1
60	72	25	3.4							54 700	108 000	5 000	IRT 5025
60	72	30	3.4							66 300	139 000	5 000	IRT 5030
60	72	40	3.4	60.000	59.981	72.018	71.988	_		85 700	193 000	5 000	IRT 5040
60	72	45	3.4							85 400	193 000	5 000	IRT 5045
60	72	50	3.4							97 800	229 000	5 000	IRT 5050
62	74	12	3.4	62.000	61.981	74.018	73.988	_	_	20 100	30 300	4 500	IRT 5212

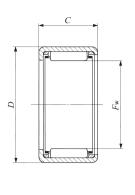
Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

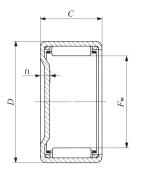
KKI

TLA

ВНА

SHELL TYPE NEEDLE ROLLER BEARINGS





Shaft dia. 65 – 70mm

21.							Identification n	umber				
Shaft dia.		ndard	Mass (Ref.)	Closed	d end	Mass (Ref.)		Mass (Ref.)	Closed end	(Ref.)	Grease retained	(Ref.)
111111			g			g		g		g		g
65		6525 Z 6530 Z 6545 Z	169 205 290	TAM TAM TAMW	6525 6530 6545	230 315	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	
	TAW	6550 Z	330	TAMW	6550	355		_		_		
	TA	7025 Z	181	TAM	7025	215		_		_		
70	TA	7030 Z	220	TAM	7030			_		_		_
	TA	7040 Z	290	TAM	7040			_		_		_
	TAW	7050 Z	350	TAMW	7050	380		_		_		_

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

TA···Z TAM

Во	undar	ry dim mm	ensions		Standard t dia.	mounting	g dimensi Housing			Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed(1)	Assembled inner ring
F	$v \mid D$	C	t ₁ Max.		6 Min.	J Max.		Max.		N	N	rpm	
6! 6! 6!	5 77 5 77	30 45	3.4 3.4 3.4 3.4	65.000	64.981	77.018	76.988	_	_	56 500 68 500 88 300 101 000	116 000 149 000 207 000 246 000	4 000 4 000 4 000 4 000	IRT 5525 IRT 5530 IRT 5545 IRT 5550
7(70,70)	82 82 82 82	25 30 40	3.4 3.4 3.4 3.4	70.000	69.981	82.022	81.987			58 500 70 900 92 000 105 000	124 000 159 000 222 000 262 000	3 500 3 500 3 500 3 500	IRT 6025 IRT 6030 IRT 6040 IRT 6050

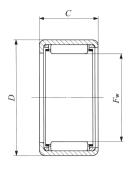
Remarks1. "W" in the identification number indicates that rolling elements are arranged in double rows.

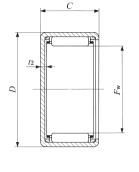
2. Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

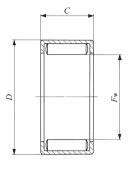
江汉门

SHELL TYPE NEEDLE ROLLER BEARINGS

Inch Series




Shaft dia. 3.969 — 9.525mm


Chathalia					Identification r	umber				
Shaft dia. mm (inch)	Standard Mass Closed end (Ref.) g		Closed end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Grease retained	Mass (Ref.) g
3.969 (⁵ / ₃₂)	_ _		_ _				_ _	_	YB 2.5 2.5 YB 2.5 4	0.64 0.96
4.762 (³ / ₁₆)	_	_	_	_	_	_	_	_	YB 34	1.6
	BA 44	2.1	_	_	_	_	_		_	_
6.350	BA 45 Z	2.5	BAM 45	2.7	_	_	_	—	_	_
$(\frac{1}{4})$	BA 47 Z	3.5	BAM 47	3.7		_	_	—		_
	_	_		-		_	_	-	YB 45	3.2
		_			_	_	_		YB 47	4.6
	BA 55 Z	3	BAM 55	3.3		_	<u> </u>	_	_	_
	BA 56 Z	3.6	BAM 56	3.9	_	_	_	—	_	_
7.938	BA 57 Z	4.3	BAM 57	4.6		_	_	_	_	_
$(\frac{5}{16})$	BA 59 Z	5.4	BAM 59	5.7	_	_			YB 55	3.8
							B		16 55	3.0
		_			BHA 57 Z	6.3	BHAM 57	6.6	_	_
	BA 65 Z	3.5	BAM 65	3.9		_	_	_	_	_
	BA 66 Z	4.2	BAM 66	4.6		_	<u> </u>	—	_	_
	BA 68 Z	5.7	BAM 68	6.1		_	_	—	_	_
	BA 69 Z	6.3	BAM 69	6.7		_	_	-	_	_
9.525	BA 610 Z	7	BAM 610	7.4		_	_		_	
(3/8)	_	_	_	_	_	_	_	_	YB 64	3.4
	_	_	_	_	_	_	_	—	YB 66	5.3
	_	_	_	_	_	_	_	_	YB 68	7.2
	_	_	_		_	_	_	_	YB 610	9.1
	_		_	_	BHA 68 Z	8.2	BHAM 68	8.6	_	_

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

BA···Z BHA···Z

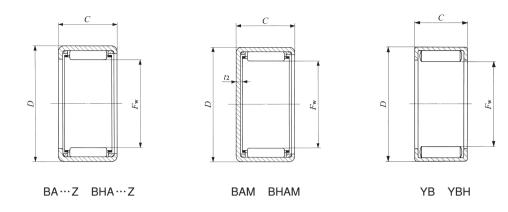
BAM BHAM

YB

Bounda	ary dimensio	ns mm(inch)	Standard	mounting	dimension	ıs mm	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
					t dia.	Housing		C	C_0	speed(1)	
F_{w}	D	C	Max.	Max.	6 Min.	J Max.	/ Min.	N	N	rpm	
3.969 (5/2)	7.144 (32)		_	3.969	3.961	7.152	7.137	1 350	1 220	40 000	_
3.969 (1/32)	7.144(\%)	6.35(.250)	_					2 320	2 440	40 000	_
4.762 (3/16)	8.731(11/32)	6.35(.250)		4.762	4.754	8.739	8.724	2 770	2 700	30 000	
6.350 (½)	11.112 (1/16)	6.35(.250)	1					1 770	1 390	55 000	_
6.350 (1/4)	11.112 (7/16)	7.92(.312)	1					1 510	1 120	55 000	_
6.350(1/4)	11.112 (1/6)	11.13(.438)	1	6.350	6.341	11.122	11.104	2 650	2 310	55 000	_
6.350 (½) 6.350 (½)	11.112 (½) 11.112 (½)	7.92(.312) 11.13(.438)						4 450 6 320	4 870 7 650	25 000 25 000	_ _
-											
7.938 (½) 7.938 (½)	12.700 (1/2)	7.92(.312) 9.52(.375)	1					1 880	1 560 2 390	45 000 45 000	_
7.938 $(\frac{7}{16})$	12.700 ($\frac{1}{2}$) 12.700 ($\frac{1}{2}$)	11.13(.438)	1	7.938	7.929	12.710	12.692	2 620 3 310	3 220	45 000	_
7.938 (½)	12.700 (1/2)	14.27(.562)	1	7.550	7.525	12.710	12.002	4 190	4 360	45 000	_
7.938 (5/16)	12.700 (1/2)	7.92(.312)	_					5 110	6 090	20 000	_
7.938 (5/16)	14.288 (%)	11.13(.438)	1.3	7.938	7.929	14.298	14.280	4 150	3 730	45 000	_
$9.525(\frac{3}{8})$	14.288 (1/2)	7.92(.312)	1					2 220	2 010	40 000	_
9.525 (3/8)	14.288 (%)	9.52(.375)	1					3 090	3 080	40 000	_
9.525 (3/8)	14.288 (%)	12.70(.500)	1	9.525	9.516	14.298	14.280	4 190	4 560	40 000	_
9.525 ($\frac{3}{8}$) 9.525 ($\frac{3}{8}$)	14.288 (1/6)	14.27(.562)	1					4 940	5 630	40 000	_
	14.288 (%)	15.88(.625)	1					5 660	6 700	40 000	
9.525(3/8)	14.288 (1/2)	6.35(.250)	_	0.505	0.540	44.000	44.000	4 470	5 360	16 000	_
9.525 ($\frac{3}{8}$) 9.525 ($\frac{3}{8}$)	14.288(%)	9.52(.375)	_	9.525	9.516	14.298	14.280	6 920	9 410	16 000 16 000	_
9.525 ($\frac{7}{8}$)	14.288 (\%) 14.288 (\%)	12.70(.500) 15.88(.625)						9 210 11 300	13 600 17 800	16 000	_ _
			1.0	0.505	0.540	45.005	45.007				
9.525 (³ / ₈)	15.875 (5/8)	12.70(.500)	1.3	9.525	9.516	15.885	15.867	4 880	4 740	40 000	_

95

Inch Series



Shaft dia. 11.112 — 12.700mm

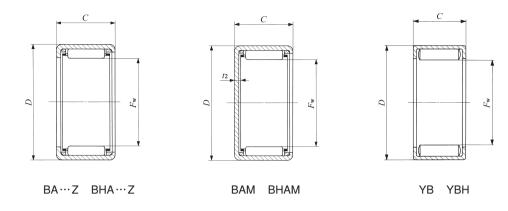
Shaft dia.					Identification n	umber				
mm (inch)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.) g
11.112 (½ ₁₆)	BA 76 Z BA 77 Z BA 78 Z BA 710 Z	4.8 5.6 6.4 7.9 —	BAM 76 BAM 77 BAM 78 BAM 710	5.3 6.2 7 8.5 —	BHA 78 Z	9.3	BHAM 78		YB 78	8.2 - 10.5
	BA 85 Z BA 86 Z BA 87 Z BA 88 Z BA 810 Z BA 812 Z	4.4 5.3 6.3 7.2 8.9 10.6	BAM 85 BAM 86 BAM 87 BAM 88 BAM 810 BAM 812	5.2 6.1 7 7.9 9.6 11.3	— — — — —	— — — — —	— — — — —	— — — — —	— — — — —	_ _ _ _ _
12.700 (½)				_ _ _ _	— — — —	— — — —	 - - -	— — — —	YB 84 YB 86 YB 87 YB 88 YB 810 YB 812	4.3 6.7 7.9 9.1 11.5 13.9
	- - - -	_ _ _ _	 	_ _ _ _	BHA 87 Z BHA 88 Z BHA 810 Z BHA 812 Z	9.1 10.4 12.5 15	BHAM 87 BHAM 88 BHAM 810 BHAM 812	9.9 11.3 13.3 15.8	 YBH 810	

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

Bounda	ry dimensior	ns mm(inch)		Standard	l mounting	dimension	ns mm	Basic dynamic load rating	Basic static	Allowable rotational	Assembled inner ring
$F_{ m w}$	D	C	t ₂		t dia. 6 Min.	Housing J Max.	bore dia. 7 Min.	C N	C_0 N	speed(1)	
$\begin{array}{c} \textbf{11.112}(\%_{\!6})\\ \textbf{11.112}(\%_{\!6})\\ \textbf{11.112}(\%_{\!6})\\ \textbf{11.112}(\%_{\!6})\\ \textbf{11.112}(\%_{\!6})\\ \textbf{11.112}(\%_{\!6})\\ \end{array}$	15.875 ($\frac{5}{8}$) 15.875 ($\frac{5}{8}$) 15.875 ($\frac{5}{8}$) 15.875 ($\frac{5}{8}$) 15.875 ($\frac{5}{8}$)	9.52(.375) 11.13(.438) 12.70(.500) 15.88(.625) 12.70(.500)	1 1 1	11.112	11.101	15.885	15.867	3 290 4 150 4 460 6 020 10 100	3 470 4 680 5 130 7 550 15 900	35 000 35 000 35 000 35 000 14 000	_ _ _ _ _
11.112 (½) 11.112 (½)	17.462 (1½6) 17.462 (1½6)	12.70(.500) 12.70(.500)		11.112	11.101	17.472	17.454	5 680 12 500	5 970 15 800	35 000 14 000	_ _
12.700 ($\frac{1}{2}$)	$\begin{array}{c} 17.462({}^{1}\!\!/_{6}) \\ 17.462({}^{1}\!\!/_{6}) \\ 17.462({}^{1}\!\!/_{6}) \\ 17.462({}^{1}\!\!/_{6}) \\ 17.462({}^{1}\!\!/_{6}) \\ 17.462({}^{1}\!\!/_{6}) \end{array}$	7.92(.312) 9.52(.375) 11.13(.438) 12.70(.500) 15.88(.625) 19.05(.750)	1 1 1	12.700	12.689	17.472	17.454	2 490 3 470 4 380 4 710 6 350 7 840	2 510 3 850 5 190 5 700 8 380 11 000	30 000 30 000 30 000 30 000 30 000 30 000	 IRB 58
12.700 ($\frac{1}{2}$)	$\begin{array}{c} 17.462({}^{1}\!\!/_{\!6}) \\ 17.462({}^{1}\!\!/_{\!6}) \\ 17.462({}^{1}\!\!/_{\!6}) \\ 17.462({}^{1}\!\!/_{\!6}) \\ 17.462({}^{1}\!\!/_{\!6}) \\ 17.462({}^{1}\!\!/_{\!6}) \end{array}$	6.35(.250) 9.52(.375) 11.13(.438) 12.70(.500) 15.88(.625) 19.05(.750)		12.700	12.689	17.472	17.454	5 260 8 150 9 530 10 800 13 400 15 800	7 150 12 600 15 300 18 100 23 700 29 300	12 000 12 000 12 000 12 000 12 000 12 000	IRB 58
12.700 (½) 12.700 (½) 12.700 (½) 12.700 (½) 12.700 (½)	19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾)	11.13(.438) 12.70(.500) 15.88(.625) 19.05(.750) 15.88(.625)	1.3 1.3	12.700	12.689	19.062	19.041	5 670 6 040 8 830 11 100 16 300	6 120 6 650 10 900 14 500 23 500	30 000 30 000 30 000 30 000 12 000	

Inch Series



Shaft dia. 14.288 — 15.875mm

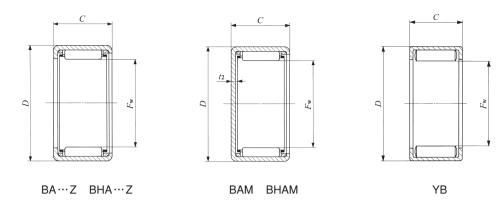
01 (1)		Standard Mass Closed end Mass Standard Mass Closed end Mass Grease retained Mass Closed end Closed e											
Shaft dia. mm (inch)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Grease retained	Mass (Ref.)			
14.288 (%)16)	BA 95 Z BA 96 Z BA 97 Z BA 98 Z BA 910 Z BA 912 Z ————————————————————————————————————	4.9 5.9 6.9 7.9 9.9 11.7 —	BAM 95 BAM 96 BAM 97 BAM 98 BAM 910 BAM 912	5.8 6.8 7.8 8.9 10.8 12.6 —	— — — — — — — — BHA 98 Z		— — — — — — — — BHAM 98						
	_ _	_ _	_ _	_ _	BHA 910 Z BHA 912 Z	13.6	BHAM 910 BHAM 912	14.7 17.4	_ _	_ _			
15.875 (5/8)	BA 105 Z BA 107 Z BA 108 Z BA 1010 Z BA 1012 Z BA 1014 Z BA 1016 Z — — — — — — — — — — — — — — — — — — —	5.3 7.6 8.7 10.8 12.9 15.1 17.3 — —	BAM 105 BAM 107 BAM 108 BAM 1010 BAM 1012 BAM 1014 BAM 1016	6.5 8.7 9.9 12 14 16.2 18.4 —	BHA 108 Z BHA 1010 Z BHA 1012 Z BHA 1016 Z	14.9 18	BHAM 108 BHAM 1010 BHAM 1012 BHAM 1016		YB 105 YB 108 YB 1012				
	_	_	_	_	_		_	_	YBH 108	15.3			

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

Bounda	ry dimensior	ns mm(inch))	Standard	mounting	dimension	ns mm	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
			$ _{t_2}$		t dia.	Housing		C	C_0	speed(1)	
F_{w}	D	C	Max.	Max.	6 Min.	J Max.	7 Min.	N	N	rpm	
14.288 (%)	19.050 (3/4)	7.92(.312)	1.3					2 760	2 970	30 000	_
14.288 (%)	19.050 (3/4)	9.52(.375)	1.3					3 850	4 560	30 000	_
14.288 (%)	19.050 (3/4)	11.13(.438)	1.3					4 860	6 140	30 000	_
$14.288 (\frac{9}{16})$	19.050 (3/4)	12.70(.500)	1.3					5 220	6 740	30 000	IRB 68
14.288 ($\frac{9}{16}$)	19.050 (3/4)	15.88(.625)	1.3	14.288	14.277	19.062	19.041	7 050	9 910	30 000	_
$14.288 (\frac{9}{16})$	19.050 (3/4)	19.05(.750)						8 690	13 000	30 000	IRB 612
14.288 (%)	19.050 (3/4)	12.70(.500)						11 600	20 400	11 000	IRB 68
14.288 (%)	19.050 (3/4)	15.88(.625)						14 300	26 700	11 000	
$14.288 (\frac{9}{16})$	19.050 (3/4)	19.05(.750)	_					16 800	33 000	11 000	IRB 612
14.288 (%)	20.638 (13/16)	12.70(.500)	1.3					6 380	7 330	30 000	IRB 68
14.288 (%)	20.638 (13/16)	15.88(.625)		14.288	14.277	20.650	20.629	9 280	11 900	30 000	_
14.288 (%)	20.638 (13/16)	19.05(.750)						11 600	15 900	30 000	IRB 612
15.875 (5/8)	20.638 (13/16)	7.92(.312)	1.3					2 870	3 220	25 000	_
15.875 (⁵ / ₈)	20.638 (13/16)	11.13(.438)	1.3					5 040	6 660	25 000	_
15.875 (⁵ / ₈)	20.638 (13/16)	12.70(.500)	1.3					5 420	7 310	25 000	IRB 68-1
15.875 (⁵ / ₈)	20.638 (13/16)	15.88(.625)	1.3					7 320	10 700	25 000	_
15.875 (⁵ / ₈)	20.638 (13/16)	19.05(.750)	1.3	15.875	15.864	20.650	20.629	9 020	14 100	25 000	IRB 612-1
15.875 (⁵ / ₈)	20.638 (13/16)	22.22(.875)	1.3					10 700	17 500	25 000	IRB 714
15.875 (⁵ / ₈)	20.638 (13/16)	25.40(1.000)	1.3					12 300	20 800	25 000	IRB 716
15.875 (⁵ / ₈)	20.638 (13/16)	7.92(.312)	<u> </u>					7 580	12 200	9 500	_
15.875 (½)	20.638 (13/16)	12.70(.500)	_					12 300	22 700	9 500	IRB 68-1
15.875 (½)	20.638 (13/16)	19.05(.750)	_					17 800	36 600	9 500	IRB 612-1
15.875 (⁵ / ₈)	22.225(1/8)	12.70(.500)	1.3					6 680	8 020	25 000	IRB 68-1
15.875 (5/8)	22.225 (7/8)	15.88(.625)	1.3					10 200	13 800	25 000	_
15.875 (⁵ / ₈)	22.225 (7/8)	19.05(.750)	1.3	15.875	15.864	22.237	22.216	12 700	18 500	25 000	IRB 612-1
15.875 (⁵ / ₈)	22.225 (7/8)	25.40(1.000)	1.3					17 400	27 600	25 000	IRB 716
15.875 (⁵ / ₈)	22.225(1/8)	12.70(.500)	_					15 000	22 400	9 500	IRB 68-1

Inch Series



Shaft dia. 17.462 — 19.050mm

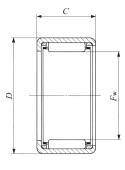
Shaft dia.					Identification n	umber				
mm (inch)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.)
17.462 (11/ ₁₆)	BA 116 Z BA 118 Z BA 1110 Z BA 1112 Z	7 9.5 11.8 14 —	BAM 116 BAM 118 BAM 1110 BAM 1112	8.4 10.8 13.2 15.4	_ _ _ _ _	_ _ _ _ _	_ _ _ _ _	_ _ _ _	— — — — YB 1112	 18.3
(/ 16 /	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	BHA 117 Z BHA 118 Z BHA 1110 Z BHA 1112 Z	11.9 13.7 16 19.3	BHAM 117 BHAM 118 BHAM 1110 BHAM 1112	13.5 15.3 17.6 21	_ _ _ _	_ _ _ _
19.050	BA 126 Z BA 128 Z BA 1210 Z BA 1212 Z BA 1214 Z BA 1216 Z	10 13.5 17 20.5 23.5 27	BAM 126 BAM 128 BAM 1210 BAM 1212 BAM 1214 BAM 1216	11.7 15.2 18.6 22 25 28.5	— — — — —	— — — — —	— — — — —	_ _ _ _	— — — — —	_ _ _ _ _
(3/4)	_ _ _ _		_ _ _ _	_ _ _ _		_ _ _ _	_ _ _ _	_ _ _ _	YB 124 YB 128 YB 1210 YB 1212	8.5 17.8 22.5 27
	_	_	_	_	BHA 1212 Z	26.5	BHAM 1212	28.5	_	_

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

Bounda	ry dimension	s mm(inch)		Standard	l mounting	dimension	ns mm	Basic dynamic	Basic static load rating	Allowable rotational	Assembled inner ring
$F_{ m w}$	D	C	t ₂	h	t dia. 6 Min.	Housing J Max.	bore dia. 7 Min.	C N	C_0	speed(1)	milet mig
17.462 (1½6) 17.462 (1½6) 17.462 (1½6) 17.462 (1½6) 17.462 (1½6)	22.225 (½) 22.225 (½)	9.52(.375) 12.70(.500) 15.88(.625) 19.05(.750) 19.05(.750)	1.3 1.3 1.3	17.462	17.451	22.237	22.216	4 530 6 140 8 280 10 200 18 700	5 980 8 850 13 000 17 000 40 300	25 000 25 000 25 000 25 000 8 500	IRB 86 IRB 88
17.462 (1½) 17.462 (1½) 17.462 (1½) 17.462 (1½)	$\begin{array}{c} \textbf{23.812} (\ ^{15}\!\!/_{6}) \\ \textbf{23.812} (\ ^{15}\!\!/_{6}) \\ \textbf{23.812} (\ ^{15}\!\!/_{6}) \\ \textbf{23.812} (\ ^{15}\!\!/_{6}) \end{array}$	11.13(.438) 12.70(.500) 15.88(.625) 19.05(.750)	1.3 1.3	17.462	17.451	23.824	23.803	6 860 7 320 10 500 13 200	8 530 9 270 14 900 19 900	25 000 25 000 25 000 25 000	IRB 88 IRB 812
$19.050 \left(\frac{3}{4} \right) \\ 19.050 \left(\frac{3}{4} \right)$	25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1)	9.52(.375) 12.70(.500) 15.88(.625) 19.05(.750) 22.22(.875) 25.40(1.000)	1.3 1.3 1.3 1.3	19.050	19.037	25.412	25.391	5 040 6 910 9 500 11 900 14 200 16 300	5 850 8 780 13 200 17 700 22 200 26 500	20 000 20 000 20 000 20 000 20 000 20 000	IRB 88-1 IRB 810-1 IRB 812-1 IRB 814-1 IRB 816-1
19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾)	25.400(1) 25.400(1) 25.400(1) 25.400(1)	6.35(.250) 12.70(.500) 15.88(.625) 19.05(.750)	_ _	19.050	19.037	25.412	25.391	7 820 16 600 20 500 24 100	10 200 26 900 35 300 43 400	8 000 8 000 8 000 8 000	IRB 88-1 IRB 810-1 IRB 812-1
19.050 (¾)	26.988 (1 ½)	19.05(.750)	1.3	19.050	19.037	27.000	26.979	16 600	22 600	20 000	IRB 812-1

Inch Series



Shaft dia. 20.638 — 22.225mm

01 6 11					Identification n	umber				
Shaft dia. mm (inch)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Grease retained	Mass (Ref.)
20.638 (13/16)	BA 136 Z BA 1310 Z BA 1312 Z BA 1314 Z BA 1316 Z BA 1320 Z	10.7 14.5 18.2 22 25 28.5 35.5 —	BAM 136 BAM 1310 BAM 1312 BAM 1314 BAM 1316 BAM 1320	12.6 16.4 20 23.5 27 30.5 37.5 —	 BHA 138 Z BHA 1310 Z	23.5	— — — — — — — BHAM 138 BHAM 1310		- - - - - - YB 136 YB 138	
	_ _ _	_ _ _	_ _ _	_ _ _	BHA 1312 Z — —	28.5 — —	BHAM 1312 —	30.5	YBH 1310 YBH 1312	30.5 37
22.225 (½)	BA 146 Z BA 148 Z BA 1412 Z BA 1416 Z BA 1418 Z BA 1422 Z ———————————————————————————————————	11.5 15.6 23.5 27 31 34.5 42.5 —	BAM 146 BAM 148 BAM 1412 BAM 1414 BAM 1416 BAM 1422	13.8 17.8 26 29.5 33.5 37 44.5 — —	BHA 1410 Z BHA 1412 Z BHA 1416 Z	30	BHAM 1410 BHAM 1412 BHAM 1416		- - - - - - YB 148 YB 1412 YB 1416	

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

Boundary dimensions mm(inch)

26.988 (1 ½) 20.638 (13/6) | 26.988 (13/6) | 19.05(.750) | 1.3

26.988 (1 1/₆ 20.638(13/6) | 26.988(13/6) | 31.75(1.250) | 1.3

 $20.638(\frac{13}{16}) | 26.988(\frac{1}{16}) | 12.70(.500)$

28.575 (1 ½) $20.638 \binom{13}{16} | 28.575 \binom{1}{8} | 15.88 (.625) |$

 $22.225(\frac{7}{8})$ | $28.575(1\frac{1}{8})$ | 12.70(.500)

 $22.225(\frac{7}{8}) | 30.162(\frac{1}{16}) | 19.05(.750) |$

 $20.638 \binom{13}{16} | 28.575 \binom{1}{12} | 12.70 \binom{1}{16} | 1.3$

20.638 (13/6) 26.988 (1 1/6)

20.638 (¹³/₁₆) | **28.575** (1 ½₈

 $F_{\rm w}$

20.638 (13/16)

20.638 (13/16)

20.638 (13/16)

20.638 (13/16)

20.638 (13/16)

20.638 (13/16)

20.638 (13/6)

22.225 (½)

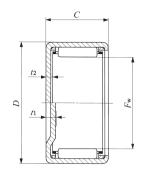
22.225 (7/8)

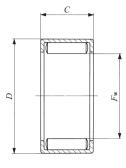
22.225 (1/8)

22.225 (7/8)

22.225 (½)

22.225 (½)


22.225 (1/8)


22.225 (½)

22.225 (1/8) 22.225 (½)

22.225 (7/8)

22.225 (½)

	BA…Z	: BHA…Z				BHAM ≥ 22.225) ≤ 20.638)			YB YE	вН	
da	ry dimension	s mm(inch)		Standard	mounting	dimension	ns mm	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
			$\begin{array}{c} t_1 \\ t_2 \end{array}$		t dia.	Housing		C	C_0	speed(1)	
	D	C	Max.	h Max.	6 Min.	J Max.	7 Min.	N	N	rpm	
(6) (6)		9.52(.375) 12.70(.500)	1.3					5 230 7 170	6 300 9 450	19 000 19 000	 IRB 98
(6) (6) (6)	26.988 (1 ½)			20.638	20.625	27.000	26.979	9 870 12 400 14 700	14 200 19 000 23 800	19 000 19 000 19 000	IRB 910 IRB 912 IRB 914
(6) (6) (6)		25.40(1.000) 31.75(1.250) 9.52(.375) 12.70(.500)						16 900 21 200 13 000 17 400	28 500 38 100 20 100 29 200	19 000 19 000 7 500 7 500	IRB 916 IRB 920 — IRB 98
(6) (6) (6) (6)	28.575 (1 ½) 28.575 (1 ½)	12.70(.500) 15.88(.625) 19.05(.750) 15.88(.625) 19.05(.750)	1.3	20.638	20.625	28.587	28.566	9 500 13 800 17 300 22 900 27 200	11 200 18 200 24 400 36 300 45 300	19 000 19 000 19 000 7 500 7 500	IRB 98 IRB 910 IRB 912 IRB 910 IRB 912
(8) (8) (8) (8) (8) (8) (8) (8) (8) (8)	28.575 (1 ½) 28.575 (1 ½) 28.575 (1 ½) 28.575 (1 ½) 28.575 (1 ½) 28.575 (1 ½) 28.575 (1 ½)	9.52(.375) 12.70(.500) 19.05(.750) 22.22(.875) 25.40(1.000) 28.58(1.125) 34.92(1.375) 12.70(.500) 19.05(.750) 25.40(1.000)	2.8 2.8 2.8 2.8 2.8	22.225	22.212	28.587	28.566	5 430 7 440 12 800 15 300 17 600 19 800 24 100 18 100 26 300 33 800	6 740 10 100 20 400 25 500 30 500 35 600 45 700 31 400 50 700 70 200	18 000 18 000 18 000 18 000 18 000 18 000 7 000 7 000 7 000	IRB 106 IRB 1012 IRB 1014 IRB 1016 IRB 1022 IRB 108 IRB 1012 IRB 1016
(8) (8) (8)	30.162 (1 3/16)	15.88(.625) 19.05(.750) 25.40(1.000)	3.4	22.225	22.212	30.176	30.151	14 300 18 000 23 600	19 500 26 100 36 900	18 000 18 000 18 000	IRB 1012 IRB 1016

7 000 **IRB 1012**

28 200 | 49 000 |

Inch Series



Shaft dia. 23.812 — 26.988mm

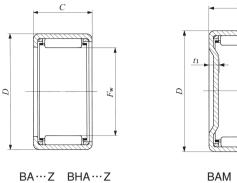
					Identification n	umber				
Shaft dia. mm (inch)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.) g
23.812 (15/16)	BA 158 Z BA 1510 Z BA 1516 Z	16.5 20.5 33	BAM 158 BAM 1510 BAM 1516	19 23 35.5	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _
25.400 (1)	BA 166 Z BA 167 Z BA 1610 Z BA 1610 Z BA 1614 Z BA 1614 Z BA 1616 Z BA 1620 Z	13.1 15.4 17.7 22 26.5 31 35.5 44 — — — — — — —	BAM 166 BAM 167 BAM 168 BAM 1610 BAM 1612 BAM 1614 BAM 1616 BAM 1620	16 18.3 20.5 25 29.5 33.5 38 46.5 — — — — — — — —	BHA 168 Z BHA 1610 Z BHA 1614 Z BHA 1616 Z BHA 1620 Z BHA 1624 Z ————————————————————————————————————	24 28 33.5 39.5 45 56.5 67.5	BHAM 168 BHAM 1610 BHAM 1614 BHAM 1616 BHAM 1620 BHAM 1624	27 31 37 42.5 48 59.5 71		
26.988 (1 ½)	BA 1710 Z BA 1716 Z	23.5 37	BAM 1710 BAM 1716	26.5 40.5		_	_	_	_ _ _	_

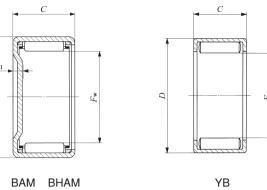
Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

Bounda	ry dimension	s mm(inch)		Standard	mounting	dimension	is mm	Basic dynamic load rating	Basic static	Allowable rotational	Assembled inner ring
F_{w}	D	C	t_1 Max.	h		Housing J Max.			C_0	speed(1)	9
23.812 (${}^{15}\!\!/_{16}$) 23.812 (${}^{15}\!\!/_{16}$) 23.812 (${}^{15}\!\!/_{16}$)	30.162 (1 1/16)	12.70(.500) 15.88(.625) 25.40(1.000)	2.8 2.8		23.799			8 000 11 000 18 900	11 400 17 100 34 300	16 000 16 000 16 000	IRB 1110 IRB 1116
25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1)	$\begin{array}{c} 31.750 (1 \frac{1}{4}) \\ 31.750 (1 \frac{1}{4}) \end{array}$	9.52(.375) 11.13(.438) 12.70(.500) 15.88(.625) 19.05(.750) 22.22(.875) 25.40(1.000) 31.75(1.250) 12.70(.500) 19.05(.750) 25.40(1.000)	2.8 2.8 2.8 2.8 2.8 2.8 	25.400	25.387	31.764	31.739	6 010 7 720 8 240 11 300 14 200 16 900 19 400 24 400 19 400 28 200 36 300	8 020 11 100 12 000 18 100 24 300 30 400 36 300 48 500 36 000 58 000 80 300	15 000 15 000 15 000 15 000 15 000 15 000 15 000 6 000 6 000 6 000	IRB 128 IRB 1212 IRB 1214 IRB 1216 IRB 1220 IRB 128 IRB 1212 IRB 1216
25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1)	$\begin{array}{c} 33.338 (1\%) \\ 33.338 (1\%) \\ 33.338 (1\%) \\ 33.338 (1\%) \\ 33.338 (1\%) \\ 33.338 (1\%) \\ 33.338 (1\%) \\ 33.338 (1\%) \\ 33.338 (1\%) \\ 33.338 (1\%) \\ 33.338 (1\%) \end{array}$	12.70(.500) 15.88(.625) 19.05(.750) 22.22(.875) 25.40(1.000) 31.75(1.250) 38.10(1.500) 12.70(.500) 19.05(.750) 25.40(1.000)	3.4 3.4 3.4 3.4 3.4 —					10 200 15 300 19 300 23 000 26 400 33 200 39 400 20 900 30 700 39 900	13 100 22 100 29 700 37 200 44 500 59 600 74 400 34 100 56 100 78 400	15 000 15 000 15 000 15 000 15 000 15 000 15 000 6 000 6 000	IRB 1212 IRB 1214 IRB 1216 IRB 1220 IRB 128 IRB 1212 IRB 1212 IRB 1216
26.988 (1 ½) 26.988 (1 ½)		15.88(.625) 25.40(1.000)		26.988	26.975	33.352	33.327	11 600 20 000	19 200 38 300	14 000 14 000	

Inch Series




Shaft dia. 28.575 — 30.162mm

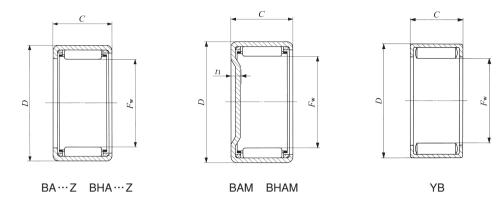
Shaft dia.					Identification n	umber				
mm (inch)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.) g
28.575 (1½)	BA 186 Z BA 188 Z BA 1812 Z BA 1816 Z BA 1820 Z	14.5 19.5 29.5 39 48.5 —	BAM 186 BAM 188 BAM 1812 BAM 1816 BAM 1820	18.1 23 33 42.5 52 —	— — — — — — —		— — — — — — —		 YB 188 YB 1812 YB 1816	
	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	BHA 1812 Z BHA 1816 Z BHA 1818 Z BHA 1820 Z	67.5	BHAM 1812 BHAM 1816 BHAM 1818 BHAM 1820	64	_ _ _ _	— — —
30.162 (1 ³ / ₁₆)	BA 1910 Z BA 1916 Z	32.5 52	BAM 1910 BAM 1916	37.5 57 —	 				— YB 1910	 42.5

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

Bounda	ry dimension	s mm(inch)				dimensior	is mm	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
			+ .			Housing	bore dia.	C	C_0	speed(1)	9
F_{w}	D	C	t_1 Max.	h Max.	6 Min.	J Max.	7 Min.	N	N	rpm	
28.575 (1 ½)	-	9.52(. 375)						6 330	8 910	13 000	
28.575 (1 1/8)		12.70(.500)						8 680	13 400	13 000	IRB 148
28.575 (1 ½)		19.05(.750) 25.40(1.000)						15 000 20 500	26 900 40 300	13 000 13 000	IRB 1412 IRB 1416
-	-	31.75(1.250)	I	28.575	28.562	34.939	34.914	25 700	53 900	13 000	IRB 1410
	-	12.70(.500)						20 700	40 500	5 500	IRB 1420
		19.05(.750)	I					30 000	65 300	5 500	IRB 1412
		25.40(1.000)	_					38 700	90 400	5 500	IRB 1416
28.575 (1 ½)	38.100 (1 ½)	19.05(.750)	3.4					22 500	32 200	13 000	IRB 1412
		25.40(1.000)	3.4	20 575	28.562	20 114	20 000	30 900	48 600	13 000	IRB 1416
28.575 (1 ½)	38.100 (1 ½)	28.58(1.125)	3.4	20.575	20.502	30.114	30.009	34 900	56 600	13 000	_
28.575 (1 ½)	38.100 (1 ½)	31.75(1.250)	3.4					37 100	61 100	13 000	IRB 1420
30.162 (1 3/6)	38.100 (1 ½)	15.88(.625)	2.8					15 000	22 500	12 000	_
30.162 (1 1/16)	38.100 (1 ½)	25.40(1.000)	2.8	30.162	30.146	38.114	38.089	25 800	45 300	12 000	_
30.162 (1 ½)	38.100 (1 ½)	15.88(.625)	_					28 400	53 600	5 000	

Inch Series



Shaft dia. 31.750 — 33.338mm

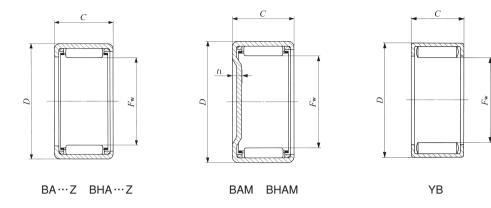
Shaft dia.					Identification n	umber				
mm (inch)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.) g
	BA 208 Z BA 2010 Z BA 2012 Z BA 2016 Z BA 2020 Z	21.5 27 32.5 43 53.5	BAM 208 BAM 2010 BAM 2012 BAM 2016 BAM 2020	26 31.5 37 47.5 58	— — — —	 	— — — —	_ _ _ _ _	_ _ _ _	_ _ _ _
31.750 (1 ¹ / ₄)	— — — —		— — — —	_ _ _ _		_ _ _ _	— — — —		YB 2010 YB 2012 YB 2016 YB 2018 YB 2020	35 42.5 57 64 68
	_ _ _ _	_ _ _	_ _ _ _	_ _ _ _	BHA 208 Z BHA 2012 Z BHA 2016 Z BHA 2020 Z	34.5 49.5 66 81.5	BHAM 208 BHAM 2012 BHAM 2016 BHAM 2020			_ _ _ _
33.338 (1 ⁵ / ₁₆)	BA 218 Z BA 2110 Z BA 2112 Z	28.5 35.5 43	BAM 218 BAM 2110 BAM 2112	35 41.5 49	— —		— — —	_ _ _	 	_ _ _

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

Bounda	ry dimension	s mm(inch)		Standard mounting dimensions mm Bas					Basic static load rating	Allowable	Assembled inner ring
F_{w}	D	C	t_1 Max.	h	t dia. 6 Min.	Housing J Max.	bore dia. 7 Min.	C N	C_0	speed(1)	3
31.750(1½) 31.750(1½) 31.750(1½) 31.750(1½)	38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½)	12.70(.500) 15.88(.625) 19.05(.750) 25.40(1.000) 31.75(1.250)	2.8 2.8 2.8	31.750	31.734	38.114	38.089	9 100 12 500 15 700 21 500 26 900	14 700 22 200 29 600 44 300 59 200	12 000 12 000	IRB 168 IRB 1610 IRB 1612 IRB 1616 IRB 1620
31.750(1½) 31.750(1½) 31.750(1½) 31.750(1½) 31.750(1½)	38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½)	15.88(.625) 19.05(.750) 25.40(1.000) 28.58(1.125) 31.75(1.250)	_ _ _	31.750	31.734	38.114	38.089	27 000 31 800 40 900 45 300 49 400	59 000 72 500 100 000 114 000 128 000	4 500 4 500 4 500 4 500 4 500	IRB 1610 IRB 1612 IRB 1616 — IRB 1620
31.750(1½) 31.750(1½) 31.750(1½) 31.750(1½)	41.275 (1 ½) 41.275 (1 ½)	12.70(.500) 19.05(.750) 25.40(1.000) 31.75(1.250)	3.4 3.4	31.750	31.734	41.289	41.264	13 700 24 100 33 200 40 000	17 600 36 400 55 000 69 600		IRB 168 IRB 1612 IRB 1616 IRB 1620
33.338 (1 ½) 33.338 (1 ½) 33.338 (1 ½)	41.275 (1 ½)	12.70(.500) 15.88(.625) 19.05(.750)	2.8	33.338	33.322	41.289	41.264	11 100 15 400 19 300	15 800 23 900 32 100	11 000	IRB 168-1 IRB 1610-1 IRB 1612-1

Inch Series



Shaft dia. 34.925 — 38.100mm

Shaft dia.					Identification n	umber				
mm (inch)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.) g
34.925 (1 ³ / ₈)	BA 228 Z BA 2212 Z BA 2216 Z BA 2220 Z —	23.5 35.5 47.5 59 —	BAM 228 BAM 2212 BAM 2216 BAM 2220	29 41 53 64 —			- - - - -		YB 228 YB 2212 YB 2220	30.5 46 77.5
	_ _ _ _	— — — —	 	_ _ _ _	BHA 228 Z BHA 2210 Z BHA 2212 Z BHA 2216 Z BHA 2220 Z	37 44 53 71 87	BHAM 228 BHAM 2210 BHAM 2212 BHAM 2216 BHAM 2220	43 50 59 77 98.5	_ _ _ _	_ _ _ _ _
38.100	BA 248 Z BA 2410 Z BA 2412 Z BA 2414 Z BA 2416 Z BA 2420 Z	38.5 48.5 58.5 69 79 97.5	BAM 248 BAM 2410 BAM 2412 BAM 2414 BAM 2416 BAM 2420	47.5 57.5 67.5 78 88 106	— — — —		— — — — —		— — — — —	_ _ _ _
(1½)	 	_ _ _ _	 	_ _ _ _	 	_ _ _ _	_ _ _ _ _		YB 246 YB 248 YB 2414 YB 2416 YB 2420	38 51.5 91 105 131

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

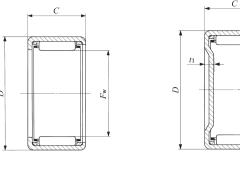
Bounda	ry dimension	s mm(inch)		Standard	mounting	dimension	ıs mm	Basic dynamic	Basic static	Allowable rotational	Assembled inner ring
${F}_{ m w}$	D	C	t_1		t dia. 6	Housing J		C	C_0	speed(1)	
"			Max.	Max.	Min.	Max.	Min.	N	N	rpm	
34.925 (1 ³ / ₈)	41.275 (1 ⁵ / ₈)	12.70(.500)	2.8					9 770	16 600	10 000	IRB 188
34.925 (1 ³ / ₈)	41.275 (1 ⁵ / ₈)	19.05(.750)	2.8					16 900	33 500	10 000	IRB 1812
34.925 (1 ³ / ₈)		25.40(1.000)						23 100	50 200	10 000	IRB 1816
34.925 (1 ³ / ₈)		31.75(1.250)		34.925	34.909	41.289	41.264	28 900	67 100	10 000	IRB 1820
34.925 (1 ³ / ₈)		12.70(.500)						23 000	49 500	4 500	IRB 188
34.925 (1 ³ / ₈)		19.05(.750)						33 400	79 800	4 500	IRB 1812
34.925 (1 ³ / ₈)	41.275 (1 ⁵ / ₈)	31.75(1.250)						52 000	141 000	4 500	IRB 1820
34.925 (1 ³ / ₈)	44.450 (1 ³ ⁄ ₄)	12.70(.500)	3.4					14 100	18 800	10 000	IRB 188
34.925 (1 ³ / ₈)	44.450 (1 ³ / ₄)	15.88(.625)	3.4					19 700	28 800	10 000	_
34.925 (1 ³ / ₈)	44.450 (1 ³ ⁄ ₄)	19.05(.750)	3.4	34.925	34.909	44.464	44.439	24 800	38 800	10 000	IRB 1812
34.925 (1 ³ / ₈)	44.450 (1 ³ ⁄ ₄)	25.40(1.000)	3.4					34 100	58 400	10 000	IRB 1816
34.925 (1 ³ / ₈)	44.450 (1 ³ / ₄)	31.75(1.250)	3.4					41 200	74 200	10 000	IRB 1820
38.100 (1 ½)	47.625 (1 ½)	12.70(.500)	2.8					12 900	17 900	9 000	_
38.100 (1 ½)		15.88(.625)						17 800	27 100	9 000	IRB 2010
38.100 (1 ½)	47.625 (1 ½)	19.05(.750)	2.8	20.100	20.004	47.000	47.014	22 500	36 600	9 000	
38.100 (1 ½)	47.625 (1 ½)	22.22(.875)	2.8	38.100	38.084	47.639	47.614	26 700	45 600	9 000	IRB 2014
38.100 (1 ½)	47.625 (1 ½)	25.40(1.000)	2.8					31 100	55 400	9 000	IRB 2016
38.100 (1 ½)	47.625 (1 7/8)	31.75(1.250)	2.8					39 000	74 200	9 000	IRB 2020
38.100 (1 ½)	47.625 (1 ½)	9.52(.375)						21 000	34 100	4 000	_
38.100 (1 ½)	47.625 (1 ½)	12.70(.500)						28 700	50 900	4 000	_
38.100 (1 ½)		22.22(.875)		38.100	38.084	47.639	47.614	48 900	101 000	4 000	IRB 2014
38.100 (1 ½)		25.40(1.000)						55 100	118 000	4 000	IRB 2016
38.100 (1 ½)		31.75(1.250)						66 800	151 000	4 000	IRB 2020
(, 2)	- (, 0/	,									

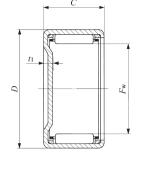
TLA

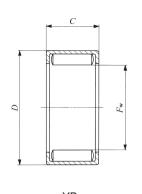
вна

SHELL TYPE NEEDLE ROLLER BEARINGS

Inch Series


Shaft dia. 41.275 — 52.388mm


Shaft dia.					Identification n	umber				
mm (inch)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.)
41.275 (1 ⁵ / ₈)	BA 268 Z BA 2610 Z BA 2616 Z BA 2620 Z	41 52 85 105	BAM 2610 BAM 2616 BAM 2620	51.5 62.5 95.5 115	_			 - - -		
44.450 (1 ³ / ₄)	BA 2812 Z BA 2816 Z BA 2820 Z BA 2824 Z	67.5 91 112 136 —	BAM 2812 BAM 2816 BAM 2820 BAM 2824	79.5 103 125 148 —	BHA 2824 Z	 195	BHAM 2824	 210		 119
47.625 (1 ⁷ / ₈)	BA 308 Z BA 3010 Z BA 3012 Z BA 3016 Z	60 72.5	BAM 308 BAM 3010 BAM 3012 BAM 3016	61 74 86.5 112	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _		 95
50.800 (2)	BA 328 Z BA 3216 Z BA 3220 Z BA 3224 Z BAW3228Z	50 104 128 155 180	BAM 328 BAM 3216 BAM 3220 BAM 3224 BAMW3228	66 119 144 170 196	_ _ _ _		_ _ _ _ _			
52.388 (2½)	_ _ _	_ _ _	_ _ _		BHA 3312 Z BHA 3316 Z BHA 3324 Z	104 139 205	BHAM 3312 BHAM 3316 BHAM 3324	122 157 225	_ _ _	


Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. "W" in the identification number indicates that rolling elements are arranged in double rows.

2. Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of

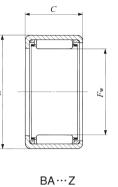
BA···Z BHA···Z

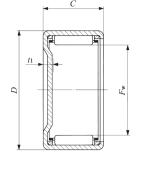
BAM BHAM

YΒ

Bounda	ry dimension	s mm(inch)		Standard	mounting	dimension	is mm	Basic dynamic load rating	Basic static load rating	Allowable	Assembled inner ring
$F_{ m w}$	D	C	t_1	Shaf h	t dia. 6	Housing		C	C_0	speed(1)	
T W	D	C	Max.	Max.	Min.	Max.	Min.	N	N	rpm	
$\begin{array}{c} \textbf{41.275} \ (1\ \frac{5}{8}) \\ \textbf{41.275} \ (1\ \frac{5}{8}) \end{array}$, , ,	12.70(.500) 15.88(.625) 25.40(1.000) 31.75(1.250) 15.88(.625)	2.8	41.275	41.259	50.818	50.788	13 700 18 900 33 000 41 400 37 000	19 800 30 000 61 400 82 100 71 700	8 000 8 000 8 000 8 000 3 500	IRB 2210
44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾)	53.975 (2 ½) 53.975 (2 ½)	19.05(.750) 25.40(1.000) 31.75(1.250) 38.10(1.500) 25.40(1.000)	2.8 2.8 2.8 2.8	44.450	44.434	53.993	53.963	25 200 34 800 43 600 52 000 59 500	44 500 67 400 90 200 113 000 136 000	7 500 7 500 7 500 7 500 3 500	IRB 2412 IRB 2416 — IRB 2424 IRB 2416
44.450 (1 ³ ⁄ ₄)	57.150 (2 ½)	38.10(1.500)	3.4	44.450	44.434	57.168	57.138	72 200	135 000	7 500	IRB 2424
47.625 (1 ½) 47.625 (1 ½) 47.625 (1 ½) 47.625 (1 ½) 47.625 (1 ½)	57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½)	12.70(.500) 15.88(.625) 19.05(.750) 25.40(1.000) 19.05(.750)	2.8 2.8	47.625	47.609	57.168	57.138	14 700 20 300 25 700 35 400 47 800	22 800 34 500 46 700 70 600 105 000	7 000 7 000 7 000 7 000 3 000	IRB 248-1 IRB 2410-1
50.800(2) 50.800(2) 50.800(2) 50.800(2) 50.800(2)	60.325 (2 ³ / ₈) 60.325 (2 ³ / ₈) 60.325 (2 ³ / ₈)	12.70(.500) 25.40(1.000) 31.75(1.250) 38.10(1.500) 44.45(1.750) 25.40(1.000)	2.8 2.8 2.8 2.8 2.8	50.800	50.781	60.343	60.313	15 400 37 100 46 600 55 500 57 900 64 100	24 700 76 500 102 000 128 000 136 000 156 000	6 000 6 000 6 000 6 000 6 000 2 500	IRB 2616 IRB 2720 — IRB 2628 IRB 2616
52.388 (2 ½) 52.388 (2 ½) 52.388 (2 ½)	7.00	19.05(.750) 25.40(1.000) 38.10(1.500)	3.4 3.4 3.4	52.388	52.369	64.312	64.282	36 400 50 600 73 900	62 100 94 700 154 000	6 000 6 000 6 000	_ _ _

Inch Series




Shaft dia. 53.975 — 69.850mm

					Identification n	umber				
Shaft dia. mm (inch)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Grease retained	Mass (Ref.)
53.975 (2½)	BA 348 Z BA 3416 Z BA 3424 Z	53 109 162	BAM 348 BAM 3416 BAM 3424	70.5 127 180	_ _ _	_	_ _ _	_ _ _	_ _ _	_ _ _
57.150 (2½)	BA 3612 Z BA 3616 Z BA 3620 Z BA 3624 Z	85.5 115 143 172	BAM 3612 BAM 3616 BAM 3620 BAM 3624	105 135 163 192	_ _ _	_	_ _ _ _	_ _ _	_ _ _ _	_ _ _
66.675 (2 ⁵ / ₈)	BA 4216 Z	133	BAM 4216	161	_	_	_	_	_	_
69.850 (2 ³ / ₄)	BA 4410 Z BA 4412 Z BA 4416 Z BA 4420 Z	85.5 103 139 173	BAM 4410 BAM 4412 BAM 4416 BAM 4420	115 133 169 205			— — — —		 	

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

7			
-			

BAM

Bounda		Standard mounting dimensions mm				Basic dynamic load rating	Basic static load rating	Allowable	Assembled inner ring		
E			t_1		t dia. 6	Housing	bore dia. 7	C	C_0	speed(1)	
F_{w}	D	C	Max.	Max.	Min.	Max.	Min.	N	N	rpm	
53.975 (2 ½)	63.500 (2 ½)							16 100	26 600		_
53.975 (2 ½) 53.975 (2 ½)	63.500 (2 ½) 63.500 (2 ½)	25.40(1.000) 38.10(1.500)		53.975	53.956	63.518	63.488	38 700 57 900	82 500 138 000		IRB 3016 IRB 3024
57.150 (2 ½)	66.675 (2 5/8)	19.05(.750)						28 500	56 700		_
57.150 (2 ½)	66.675 (2 ⁵ / ₈)	25.40(1.000)	2.8	57.150	57.131	66.693	66.663	39 300	85 700	5 000	_
57.150 (2 ½) 57.150 (2 ½)	66.675 (2 ⁵ / ₈) 66.675 (2 ⁵ / ₈)	31.75(1.250) 38.10(1.500)						49 400 58 800	115 000 144 000		_ _
-											
66.675 (2 ½)	76.200 (3)	25.40(1.000)	2.8	66.675	66.656	76.218	76.188	42 000	97 900	4 000	IRB 3616
69.850 (2 ³ ⁄ ₄)	79.375 (3 1/8)	15.88(.625)						25 000	50 800		_
69.850 (2 ³ / ₄) 69.850 (2 ³ / ₄)	79.375 (3½) 79.375 (3½)	19.05(.750) 25.40(1.000)		69.850	69.831	79.393	79.363	31 500 43 500	68 700 104 000		IRB 4016
69.850 (2 ³ / ₄)	79.375 (31/8)	31.75(1.250)						54 600	139 000		IRB 4020

TA TLA BA BHA

SHELL TYPE NEEDLE ROLLER BEARINGS

With seals

Shaft dia. 12 – 50mm

		Mass (Ref.)	Boundary	dimensio dimensio	ns mm	Stand	lard mounting	g dimensions	mm	
Shaft dia.	Identification number	(1101.)	_				t dia.	_	Housing bore dia. N7	
mm		g	$F_{\rm w}$	D	C	Max.	6 Min.	Max.	Min.	
12	TLA 1216 UU	11.7	12	18	16	12.000	11.989	17.995	17.977	
14	TLA 1416 UU	13.3	14	20	16	14.000	13.989	19.993	19.972	
15	TLA 1516 UU	14	15	21	16	15.000	14.989	20.993	20.972	
16	TLA 1616 UU	14.8	16	22	16	16.000	15.989	21.993	21.972	
18	TLA 1816 UU	16.3	18	24	16	18.000	17.989	23.993	23.972	
20	TLA 2016 UU TLA 2020 UU	17.8 22.5	20 20	26 26	16 20	20.000	19.987	25.993	25.972	
22	TLA 2216 UU TLA 2220 UU	19.4 25	22 22	28 28	16 20	22.000	21.987	27.993	27.972	
25	TLA 2516 UU TLA 2520 UU	26 33	25 25	32 32	16 20	25.000	24.987	31.992	31.967	
28	TLA 2820 UU	36.5	28	35	20	28.000	27.987	34.992	34.967	
30	TLA 3016 UU TLA 3020 UU	30.5 39	30 30	37 37	16 20	30.000	29.987	36.992	36.967	
35	TLA 3516 UU TLA 3520 UU	35 45	35 35	42 42	16 20	35.000	34.984	41.992	41.967	
40	TLA 4016 UU TLA 4020 UU	39.5 50.5	40 40	47 47	16 20	40.000	39.984	46.992	46.967	
45	TLA 4520 UU	56	45	52	20	45.000	44.984	51.991	51.961	
50	TLA 5026 UU	89	50	58	26	50.000	49.984	57.991	57.961	

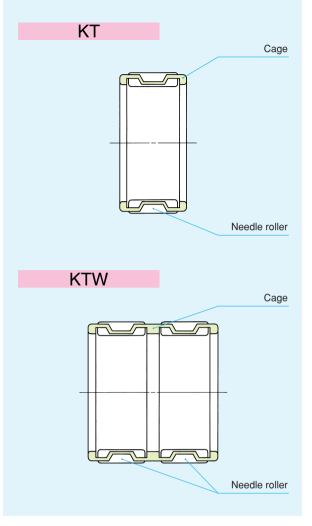
Note(1) Allowable rotational speed applies to grease lubrication. Remark The type with seals is provided with prepacked grease.

	1
D	Fw
•	

 $\mathsf{TLA}\cdots\mathsf{UU}$

Basic dynamic load rating	Basic static load rating	Allowable rotational	
C	C_0	speed(1)	
N	N	rpm	
6 420	7 490	14 000	
7 080	8 840	12 000	
7 380	9 520	11 000	
7 670	10 200	11 000	
8 230	11 500	9 000	
8 740	12 900	9 000	
11 100	17 500	9 000	
9 230	14 300	8 000	
11 700	19 300	8 000	
9 440 12 800	13 900 20 500	7 000 7 000	
13 800	23 500	6 000	
10 400	16 600	5 500	
14 100	24 500	5 500	
11 600	20 000	5 000	
15 700	29 600	5 000	
12 400 16 700	22 800 33 700	4 500 4 500	
17 800	37 800	4 000	
28 800	64 100	3 500	
	23		

NEEDLE ROLLER CAGES FOR GENERAL USAGE

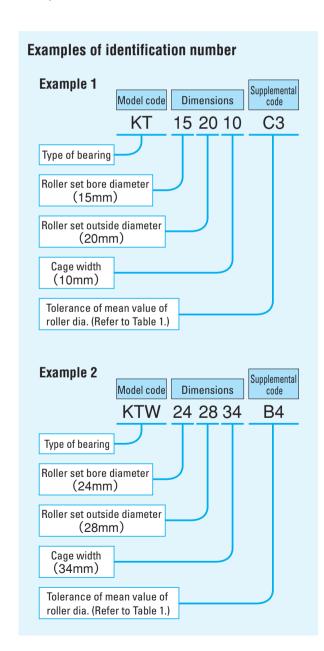

Structure and Features

Needle Roller Cages for General Usage are bearings which display excellent rotational performance. Needle rollers with extremely small dimensional variations in diameter are incorporated and retained in their specially shaped cages with high rigidity and accuracy, which precisely guide the needle rollers.

When combined with shafts and housing bores that are heat treated and accurately ground as raceway surfaces, Needle Roller Cages for General Usage are particularly useful in small spaces.

In addition, since they are lightweight and have high rigidity as well as a large lubricant holding capacity, they can withstand severe operating conditions such as high speed rotation and shock loads, and they are used in a wide range of applications.

118


Needle Roller Cages for General Usage are available in two types, with single row needle rollers and double row needle rollers.

For applications such as crank shafts where these bearings are difficult to install, it is also possible to make split type bearings.

If such bearings are required, please contact IIKI. For Needle Roller Cages for Engine Connecting Rods (KT ··· EG and KTV ··· EG), see page 134.

Identification Number

The identification number of Needle Roller Cages for General Usage consists of a model code, dimensions and any supplemental codes. The arrangement examples are shown below.

Accuracy

The diameter tolerances of needle rollers of Needle Roller Cages for General Usage are classified by classification symbols shown in Table 1. If a classification symbol is not indicated in an identification number, the classification symbol "C3" is applied.

When two or more bearings are used in tandem arrangement on the same shaft, it is necessary to select bearings of the same classification symbol to obtain an even load distribution.

The tolerance of the cage width B_c is -0.20 \sim -0.55

Table 1 Diameter tolerances of needle rollers unit: // m

Classification symbol	Tolerance of mean value of needle roller diameter
C 3	0~- 3
B 2	0~- 2
B 4	-2~-4
B 6	-4~-6
B 8	-6~-8
B10	-8~-10

Radial clearances of Needle Roller Cages for General Usage are determined by the dimensional accuracy of the raceways and needle rollers. Table 2 shows the recommended fits for the operating conditions.

Table 2 Recommended fits of shaft to the housing bore diameter G6

boro diamotor do					
Shaft	Tolerance class of shaft				
Operating conditions	$F_{\rm w} \leq$ 68mm	$F_{\rm w}$ $>$ 68mm			
When high operating accuracy is required. When shock loads and oscillating motions are applied.	j5	h5			
For general use	h5	g5			
When the temperature is high, or mounting errors are large.	g6	f6			

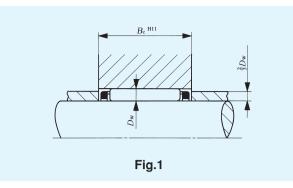
Remark When setting the required radial clearance according to the operating conditions, the clearance can easily be obtained by selecting and matching the tolerances of needle rollers, shaft and housing bore. When variation of the clearance does not create any problems, h6 and G7 are used for shaft and housing bore, respectively.

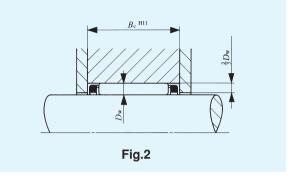
Specifications of shaft and housing

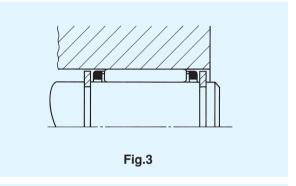
For the raceways, a surface hardness of 58 ~ 64HRC and a surface roughness 0.2 μ m R_{o} or less are desirable. However, when the operating conditions are not severe, a surface roughness $0.8 \mu mR_a$ or less can be

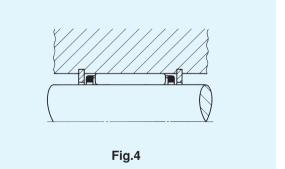
When the surface hardness is low, it is necessary to correct the load rating by the hardness factor specified on page 23.

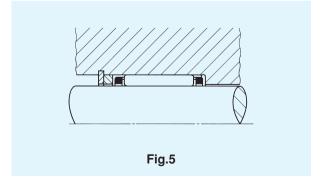
Operating temperature range


For synthetic resin cages, "N" is added at the end of the identification number. The operating temperature range for Needle Roller Cages for General Usage is -20 $^{\circ}$ C \sim +120 $^{\circ}$ C. However, the maximum allowable temperature for synthetic resin cages is +110 °C, and when they are continuously operated, it is +100°C.


Mounting

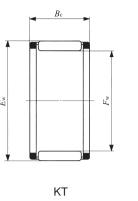

The dimensions related to mounting of Needle Roller Cages for General Usage are shown in Figs. 1 and 2. When mounting Needle Roller Cages for General Usage, they are axially positioned by using, for example, Cir-clips for shaft and housing bore (WR and AR on page 506) as shown in Figs. 3, 4 and 5.


For high rotational speed applications, a heat treated and ground spacer is positioned between the cage and the cir-clip as shown in Fig. 5 so that the cage does not make direct contact with the cir-clip. In this case, the cir-clip is normally mounted on the nonrotating side.


Fig. 3 shows a mounting example in the case of outer ring rotation, and Figs. 4 and 5 show examples in the case of inner ring rotation.

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

КТ

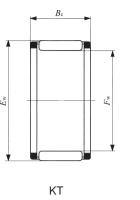

NEEDLE ROLLER CAGES FOR GENERAL USAGE

Shaft dia. 3 — 14mm

Shaft dia.	Identifica	ation number	Mass (Ref.)	Bounda	ary dime	ensions	Basic dynamic load rating	Basic static load rating	Allowable rotational speed(1)
mm	identinica	identification number		F_{w}	$E_{ m w}$	$B_{\rm c}$	N	C ₀	rpm
3	KT	367N	0.39	3	6	7	1 480	990	140 000
4	KT	477N	0.47	4	7	7	1 800	1 300	100 000
5	KT KT	587N 588N	0.53 0.66	5 5	8	7 8	2 070 2 420	1 600 1 950	85 000 85 000
6	KT KT KT KT	697N 698N 6910 61013	0.63 0.75 1.45 2.7	6 6 6	9 9 9 10	7 8 10 13	2 310 2 700 3 010 4 410	1 900 2 320 2 660 3 720	75 000 75 000 75 000 75 000
7	KT KT	7108N 71010	0.86 1.69	7 7	10 10	8 10	2 960 3 340	2 690 3 130	65 000 65 000
8	KT KT KT KT	8118N 81110 81113 8128 81211	0.96 1.9 2.5 2.1 3	8 8 8 8	11 11 11 12 12	8 10 13 8 11	3 190 3 630 4 500 3 630 4 630	3 060 3 600 4 750 3 040 4 170	60 000 60 000 60 000 60 000 60 000
9	KT KT	91210 91213	2.1 2.8	9 9	12 12	10 13	3 900 4 840	4 070 5 370	55 000 55 000
10	KT 1 KT 1 KT 1 KT 1 KT 1	10138 101310 101313 101410 101412 101413	1.9 2.3 3 3.2 3.8 4.2 4.8	10 10 10 10 10 10 10	13 13 13 14 14 14 14	8 10 13 10 12 13 15	3 370 4 160 5 160 4 900 5 940 6 100 7 080	3 470 4 550 6 000 4 680 6 000 6 200 7 520	50 000 50 000 50 000 50 000 50 000 50 000 50 000
11	KT 1	111410	2.5	11	14	10	4 400	5 020	45 000

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable. Remark For synthetic resin cages, "N" is added at the end of the identification number.

Shaft dia.	Identification number	Mass (Ref.)	Bounda	ary dime mm	ensions	Basic dynamic load rating C	Basic static load rating C_0	Allowable rotational speed(1)
mm		g	F_{w}	E_{w}	$B_{\rm c}$	N	N	rpm
	KT 12158	2.2	12	15	8	3 750	4 200	40 000
	KT 121510	2.7	12	15	10	4 620	5 490	40 000
	KT 121512	3.2	12	15	12	5 590	7 020	40 000
	KT 121513	3.6	12	15	13	5 730	7 250	40 000
	KT 121514	3.8	12	15	14	6 200	8 010	40 000
12	KT 121610	4	12	16	10	5 650	5 890	40 000
	KT 121613	5.2	12	16	13	7 020	7 800	40 000
	KT 121618	7	12	16	18	9 790	11 900	40 000
	KT 121710	5.1	12	17	10	6 170	5 740	40 000
	KT 121812	7.8	12	18	12	9 030	8 460	40 000
	KT 121820	13.2	12	18	20	13 700	14 400	40 000
	KT 131710	4.3	13	17	10	5 990	6 500	40 000
13	KT 131815	8.2	13	18	15	9 660	10 400	40 000
	KT 131816	8.7	13	18	16	10 300	11 400	40 000
	KT 14188	3.7	14	18	8	5 110	5 410	35 000
	KT 141810	4.6	14	18	10	6 320	7 110	35 000
	KT 141811	5.2	14	18	11	6 520	7 410	35 000
	KT 141813	6	14	18	13	7 860	9 410	35 000
4.4	KT 141816	7.3	14	18	16	9 750	12 400	35 000
14	KT 141910	5.9	14	19	10	7 130	7 180	35 000
	KT 141916	9.4	14	19	16	11 100	12 600	35 000
	KT 141918	10.5	14	19	18	12 400	14 700	35 000
	KT 142012	8.7	14	20	12	9 790	9 680	35 000
	KT 142017	12.4	14	20	17	13 300	14 400	35 000


КТ

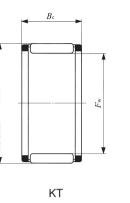
NEEDLE ROLLER CAGES FOR GENERAL USAGE

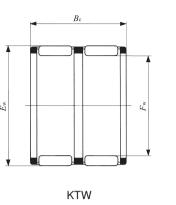
Shaft dia. 15 – 18mm

		Mass	Pound	on, dim	naiana	Basic dynamic	D	Allowable
Shaft		(Ref.)	Dound	mm	11310113	load rating	Basic static load rating	rotational
dia.	Identification number					C	C_0	speed(1)
mm		~	$F_{\rm w}$	E_{w}	$B_{\rm c}$			
mm		g				N	N	rpm
	KT 15199	4.4	15	19	9	6 120	6 950	35 000
	KT 151910	4.9	15	19	10	6 630	7 720	35 000
	KT 151911	5.5	15	19	11	6 850	8 040	35 000
15	KT 151913	6.4	15	19	13	8 250	10 200	35 000
	KT 151917	8.2	15	19	17	10 900	14 600	35 000
	KT 151918	8.7	15	19	18	11 500	15 600	35 000
	KT 152010	6.3	15	20	10	7 580	7 920	35 000
	KT 152115	11.9	15	21	15	12 600	13 500	35 000
	KT 162010	5.2	16	20	10	6 930	8 330	30 000
	KT 162013	6.8	16	20	13	8 620	11 000	30 000
	KT 162016	8.3	16	20	16	10 700	14 600	30 000
	KT 162017	8.7	16	20	17	11 400	15 700	30 000
	KT 162118	12	16	21	18	14 000	17 700	30 000
16	KT 162120	13.6	16	21	20	14 700	18 900	30 000
10	KT 162125	16.6	16	21	25	18 300	25 100	30 000
	KT 162212	9.7	16	22	12	10 500	10 900	30 000
	KT 162214	11.5	16	22	14	11 600	12 500	30 000
	KT 162217	13.8	16	22	17	14 200	16 100	30 000
	KT 162220	16.5	16	22	20	15 900	18 600	30 000
	KT 162420	23.5	16	24	20	18 500	19 000	30 000
	KT 172110	5.5	17	21	10	7 220	8 950	30 000
	KT 172113	7.2	17	21	13	8 980	11 800	30 000
	KT 172115	8.2	17	21	15	10 400	14 400	30 000
47	KT 172117	9.3	17	21	17	11 800	16 900	30 000
17	KT 172220	14	17	22	20	15 500	20 500	30 000
	KT 172311	9.6	17	23	11	10 100	10 500	30 000
	KT 172315	13.1	17	23	15	13 300	15 100	30 000
	KT 172418	18.6	17	24	18	16 500	18 000	30 000

Shaft dia.	Identification number	Mass (Ref.)			Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed(1)	
mm		g	F_{w}	E_{w}	$B_{\rm c}$	N	N	rpm
	KT 18228	4.7	18	22	8	6 060	7 270	30 000
	KT 182210	5.8	18	22	10	7 500	9 560	30 000
	KT 182213	7.6	18	22	13	9 330	12 700	30 000
	KT 182216	9.2	18	22	16	11 600	16 700	30 000
	KT 182412	11	18	24	12	11 800	13 100	30 000
	KT 182416	14.8	18	24	16	15 100	17 900	30 000
18	KT 182417	15.7	18	24	17	16 000	19 400	30 000
	KT 182420	18.7	18	24	20	17 900	22 400	30 000
	KT 182517	18.8	18	25	17	16 700	18 600	30 000
	KT 182519	21	18	25	19	18 700	21 400	30 000
	KT 182522	24.5	18	25	22	20 600	24 200	30 000
	KT 182614	18.1	18	26	14	14 600	14 400	30 000
	KT 182620	26	18	26	20	20 000	21 600	30 000

KT

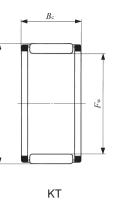

NEEDLE ROLLER CAGES FOR GENERAL USAGE

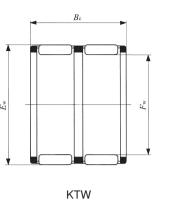


Shaft dia. 20 – 24mm

Shaft dia.	Identification number	Mass (Ref.)	Bounda	ary dime	ensions	Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed(1)
mm	i dontino di ciri i di ciri	g	F_{w}	E_{w}	$B_{\rm c}$	N	N	rpm
20	KT 202410 KT 202413 KT 202417 KTW 202422 KT 202525 KTW 202531.6 KTW 202540 KT 202611 KT 202612 KT 202617 KT 202620 KT 202624 KT 202627 KT 202820 KT 202820 KT 203225	6.3 8.3 10.6 14.6 19.7 26.5 32.5 11.1 12 14.2 17 20.5 24 26.5 20 29 49.5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	24 24 24 25 25 25 26 26 26 26 26 26 28 28 32	10 13 17 22 25 31.6 40 11 12 14 17 20 24 27 14 20 25	7 710 9 590 12 600 13 700 19 900 21 700 27 500 11 200 12 400 13 700 16 800 18 700 22 500 26 000 15 700 21 500 30 800	10 200 13 500 19 300 21 300 29 800 33 200 44 900 12 500 14 300 16 400 21 200 24 400 30 900 37 300 16 100 24 200 30 500	25 000 25 000
21	KT 212610 KT 212611	8.5 9.6	21 21	26 26	10 11	9 090 9 390	11 000 11 500	25 000 25 000

Shaft dia.	ldentification number	Mass (Ref.)	Boundary dimensions mm			Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed(1)
mm		g	F_{w}	E_{w}	$B_{\rm c}$	N	N	rpm
22	KT 222610 KT 222613 KT 222617 KTW 222625 KT 222720 KT 222726 KT 222817 KT 222912 KT 222916 KT 222917	6.9 9.1 11.6 17.7 17.9 22.5 18.4 16.1 21	22 22 22 22 22 22 22 22 22 22 22	26 26 26 27 27 28 29 29	10 13 17 25 20 26 17 12 16	8 220 10 200 13 500 17 100 17 400 22 500 17 500 12 900 17 600 18 700	11 500 15 200 21 600 29 400 25 700 35 800 23 000 14 000 20 900 22 600	25 000 25 000 25 000 25 000 25 000 25 000 25 000 25 000 25 000 25 000
	KT 222918 KT 222920 KT 223015 KT 223230 KT 223232	23.5 26.5 23.5 52.5 56	22 22 22 22 22 22	29 29 30 32 32	18 20 15 30 32	19 800 20 900 17 900 36 400 38 800	24 400 26 100 19 700 42 700 46 300	25 000 25 000 25 000 25 000 25 000
23	KT 232824 KT 232913 KT 233015 KT 233016	22 15.1 21 22	23 23 23 23	28 29 30 30	24 13 15 16	21 600 13 800 17 300 18 600	34 500 17 200 20 800 22 600	20 000 20 000 20 000 20 000
24	KT 242813 KT 242816 KTW 242834 KT 242913 KT 243020	9.9 12 27 12.8 23.5	24 24 24 24 24	28 28 28 29 30	13 16 34 13 20	10 800 13 400 21 600 12 700 20 300	16 800 22 200 40 700 17 600 28 500	20 000 20 000 20 000 20 000 20 000

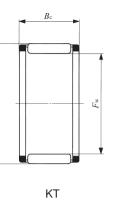

NEEDLE ROLLER CAGES FOR GENERAL USAGE

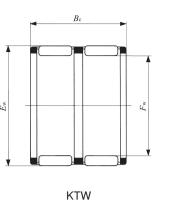


Shaft dia. 25 – 32mm

a . 6		Mass (Pof.)	Bounda	Boundary dimensions			Basic static	Allowable
Shaft dia.	Identification number	(Ref.)		mm		load rating \overline{C}	load rating ${C}_{0}$	rotational speed(1)
a.a.	Taomination named		$F_{\rm w}$	$E_{\rm w}$	$B_{\rm c}$		C 0	
mm		g	1 W	LW	D _c	N	N	rpm
	KT 252910	7.9	25	29	10	8 940	13 300	20 000
	KT 252913	10.3	25	29	13	11 100	17 600	20 000
	KT 253013	13.3	25	30	13	13 100	18 600	20 000
	KT 253016	16.2	25	30	16	16 300	24 600	20 000
	KT 253017	17.1	25	30	17	17 300	26 600	20 000
	KT 253020	20	25	30	20	18 600	29 100	20 000
	KT 253113	16.2	25	31	13	14 300	18 400	20 000
25	KT 253116	19.6	25	31	16	17 800	24 400	20 000
	KT 253117	20.5	25	31	17	19 000	26 500	20 000
	KT 253120	25	25	31	20	21 200	30 500	20 000
	KT 253216	23.5	25	32	16	19 400	24 500	20 000
	KT 253224	35	25	32	24	27 700	38 700	20 000
	KT 253515	33	25	35	15	22 600	23 800	20 000
	KT 253525	48	25	35	25 30	32 500	37 900	20 000
	KT 253530	58	25	35		39 100	48 000	20 000
26	KT 263013	10.7	26	30	13	11 400	18 400	19 000
	KT 263832	79.5	26	38	32	47 200	55 300	19 000
	KT 283313	14.8	28	33	13	13 800	20 700	18 000
	KT 283317	18.9	28	33	17	18 300	29 500	18 000
	KT 283327	29	28	33	27	26 300	47 300	18 000
28	KT 283417	23	28	34	17	20 300	29 900	18 000
20	KT 283516	26	28	35	16	20 100	26 500	18 000
	KT 283528	44.5	28	35	28	33 200	50 600	18 000
	KT 283620	38.5	28	36	20	26 500	34 700	18 000
	KT 284138	110	28	41	38	58 700	71 100	18 000

Shaft dia.	Identification number	Mass (Ref.)	Boundary dimensions mm			Basic dynamic load rating C	Basic static load rating C_0	Allowable rotational speed(1)
mm		g	F_{w}	E_{w}	$B_{\rm c}$	N	N	rpm
	KT 303513	15.6	30	35	13	14 100	21 700	17 000
	KT 303516	18.9	30	35	16	17 500	28 700	17 000
	KT 303517	20	30	35	17	18 700	31 100	17 000
	KT 303524	28.5	30	35	24	24 900	45 100	
	KT 303527	31.5	30	35	27	27 900	52 100	
	KT 303613	19.1	30	36	13	15 800	22 100	
	KT 303620	29.5	30	36	20	23 300	36 500	
	KT 303630	41.5	30	36	30	33 200	57 500	
30	KT 303715	26	30	37	15	19 500	26 000	17 000
	KT 303716	27.5	30	37	16	20 800	28 400	17 000
	KT 303720	35	30	37	20	24 700	35 400	
	KT 303723	39.5	30	37	23	28 500	42 500	
	KT 303818	36.5	30	38	18	26 200	34 800	
	KT 303824	48.5	30	38	24	33 200	47 200	
	KT 304232	93	30	42	32	54 000	68 100	17 000
	KTW 304237	117	30	42	37	55 900	71 300	17 000
	KT 323713	16.7	32	37	13	14 900	23 700	16 000
	KT 323717	21.5	32	37	17	19 600	33 900	16 000
	KT 323723	28.5	32	37	23	24 400	44 800	16 000
	KT 323813	20.5	32	38	13	16 800	24 400	
	KT 323820	31.5	32	38	20	24 800	40 300	16 000
32	KT 323916	29	32	39	16	21 600	30 200	16 000
	KT 323920	37	32	39	20	25 600	37 700	16 000
	KT 324519	63.5	32	45	19	33 700	35 900	
	KT 324525	84.5	32	45	25	45 600	53 000	
	KT 324532	109	32	45	32	58 500	73 000	
	KT 324550	162	32	45	50	81 500	111 000	16 000

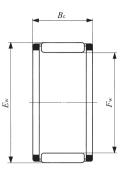

NEEDLE ROLLER CAGES FOR GENERAL USAGE



Shaft dia. 35 — 52mm

		Mass	lass Boundary dimensions			Basic dynamic	Basic static	Allowable
Shaft		(Ref.)		mm		load rating	load rating	rotational
dia.	Identification number				l	C	C_0	speed(1)
mm		g	F_{w}	$E_{\rm w}$	$B_{\rm c}$	N	N	rpm
	KT 354013	18.1	35	40	13	15 500	25 800	14 000
	KT 354017	23	35	40	17	20 500	36 900	14 000
	KT 354026	34.5	35	40	26	28 700	56 800	14 000
	KT 354113	22.5	35	41	13	17 700	26 800	14 000
35	KT 354216	32	35	42	16	23 100	33 900	14 000
	KT 354218	35.5	35	42	18	26 000	39 500	14 000
	KT 354220	40.5	35	42	20	27 400	42 300	14 000
	KT 354230	59	35	42	30	40 600	70 300	14 000
	KT 354525	68.5	35	45	25	42 100	57 900	14 000
36	KT 364216	27.5	36	42	16	21 900	35 700	14 000
	KT 384417	30.5	38	44	17	23 800	40 400	13 000
38	KT 384620	50	38	46	20	30 500	45 400	13 000
	KT 384632	80	38	46	32	45 400	75 700	13 000
	KT 404513	20.5	40	45	13	16 800	29 800	12 000
	KT 404517	26.5	40	45	17	22 200	42 700	12 000
	KT 404527	41	40	45	27	32 400	69 200	12 000
	KT 404817	44	40	48	17	28 100	41 600	12 000
	KT 404820	52.5	40	48	20	31 400	48 000	12 000
	KT 404825	64.5	40	48	25	39 300	64 000	12 000
40	KT 404834	87.5	40	48	34	51 100	89 600	12 000
	KT 405015	48.5	40	50	15	28 200	35 900	12 000
	KT 405017	56.5	40	50	17	30 200	39 200	12 000
	KT 405020	61	40	50	20	35 700	48 600	12 000
	KTW 405238	158	40	52	38	65 000	93 000	12 000
	KT 405432	144	40	54	32	66 800	87 200	12 000
	KT 405450	215	40	54	50		134 000	12 000
	KT 405463	270	40	54	63	115 000	175 000	12 000

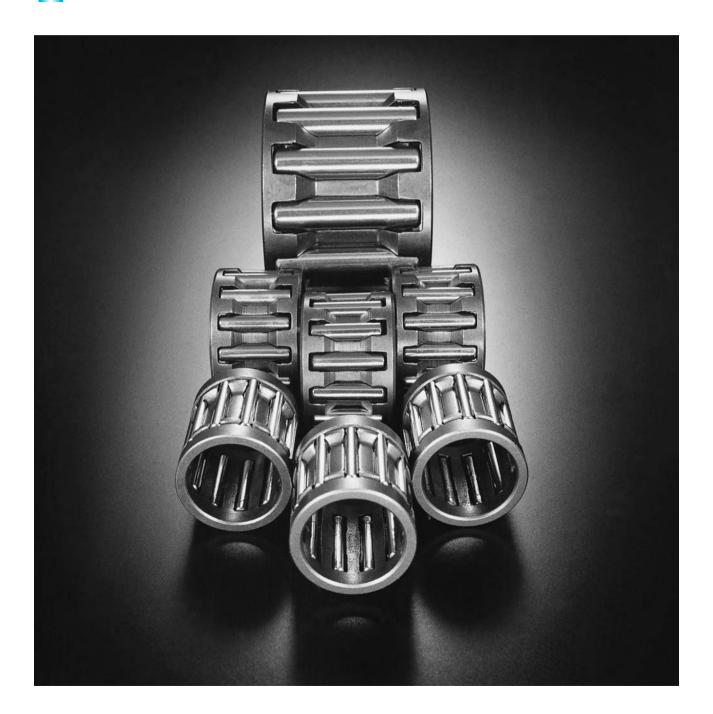
Identification number	Mass (Ref.)	Boundary dimensions mm			Basic dynamic load rating $\cal C$	Basic static load rating C_0	Allowable rotational speed(1)
	g	$F_{\rm w}$	$E_{\rm w}$	$B_{\rm c}$	N	N	rpm
KT 414835	78.5	41	48	35	47 800	90 800	12 000
KT 424717	27.5	42	47	17	22 500	44 200	12 000
KT 424815	30	42	48	15	22 400	38 600	12 000
							12 000
K1 425030	80.5	42	50	30	48 200	84 400	12 000
KT 455017	29.5	45	50	17	23 300	47 100	
	_	45	50				
							11 000
							11 000
							11 000
							10 000
		48	54	20			10 000
		50	55	20			
							10 000
							10 000
							10 000 10 000
							9 500
K1 320024	80	52	00	24	44 000	80 800	9 500
	KT 414835 KT 424717 KT 424815 KT 424816 KT 425020 KT 425030	Ref. Ref. Ref.	Ref. Fw RT 414835 78.5 41	Ref. Ref.	Ref. Ref.	Ref. Ref.	Ref. Ref.


NEEDLE ROLLER CAGES FOR GENERAL USAGE

Shaft dia. 55 — 100mm

Shaft		Mass (Ref.)	Boundary dimensions mm			load rating	load rating	Allowable rotational speed(1)
dia. mm	Identification number	g	F_{w}	$E_{ m w}$	$B_{\rm c}$	C N	C ₀	rpm
55	KT 556020 KT 556027 KT 556120 KT 556315 KT 556320 KT 556325	42.5 55.5 52 52.5 71 87	55 55 55 55 55 55	60 60 61 63 63	20 27 20 15 20 25	28 600 37 600 32 600 29 400 37 400 46 800	66 000 93 900 68 500 48 700 66 400 88 600	9 000 9 000 9 000 9 000 9 000 9 000
58	KT 586320 KT 586420	44.5 54.5	58 58	63 64	20 20	29 300 33 600	69 400 72 500	8 500 8 500
60	KT 606520 KT 606820 KT 606825 KT 606827 KT 607236	45.5 76.5 94 101 205	60 60 60 60	65 68 68 68 72	20 20 25 27 36	29 700 38 900 48 600 52 400 86 700	71 100 71 700 95 600 105 000 152 000	8 500 8 500 8 500 8 500 8 500
63	KT 637120	79.5	63	71	20	39 500	74 400	8 000
65	KT 657320 KT 657330	83.5 124	65 65	73 73	20 30	41 200 59 300	79 600 127 000	7 500 7 500
68	KT 687620	86.5	68	76	20	41 800	82 200	7 500
70	KT 707820 KT 707830	89 132	70 70	78 78	20 30	42 500 61 200	84 900 136 000	7 000 7 000
72	KT 728020	91.5	72	80	20	43 200	87 500	7 000
75	KT 758320 KT 758325 KT 758330 KT 758335	94.5 116 141 164	75 75 75 75	83 83 83 83	20 25 30 35	43 800 54 800 63 100 71 200	90 200 120 000 144 000 168 000	6 500 6 500 6 500 6 500

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable.


KT

Shaft	Identification number		Mass (Ref.)	Bounda	ary dime mm	ensions	Basic dynamic load rating	load rating	Allowable rotational speed(1)
dia. mm	identificati	on number	g	F_{w}	$E_{ m w}$	$B_{\rm c}$	C N	C ₀	rpm
80	KT	808822 808825 808830	110 123 149	80 80 80	88 88 88	22 25 30	49 700 56 400 65 000	108 000 127 000 153 000	6 000 6 000 6 000
85	KT	859112 859325 859330	44.5 130 157	85 85 85	91 93 93	12 25 30	25 200 57 800 66 600	56 700 134 000 161 000	6 000 6 000 6 000
90		909825 909830	138 167	90 90	98 98	25 30	60 400 69 600	145 000 174 000	5 500 5 500
95	KT 9	510330	175	95	103	30	70 900	182 000	5 500
100	KT 10	010830	184	100	108	30	72 500	191 000	4 500

KTV···EG

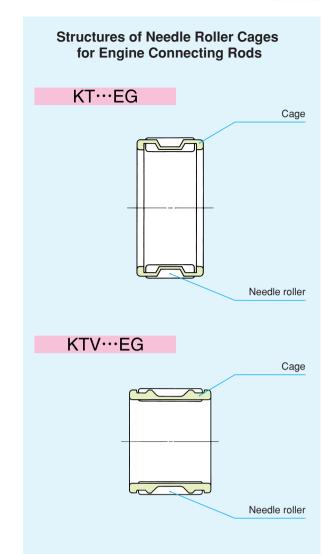
NEEDLE ROLLER CAGES FOR ENGINE CONNECTING RODS

- Needle Roller Cages for Big End
- Needle Roller Cages for Small End

Structure and Features

Rods are bearings for use in engine connecting rods. These bearings have superior performance proven in high performance engines of racing motor cycles, and are widely used in small motor vehicles, motor cycles, outboard marines, snow mobiles, high-speed compressors, etc. and also in general-purpose engines.

Bearings for engine connecting rods are used under extremely severe and complex operating conditions such as heavy shock loads, high speeds, high temperatures and stringent lubrication.


Needle Roller Cages for Engine Connecting Rods are lightweight, and have high load ratings and high rigidity as well as superior wear resistance to withstand these severe conditions.

Types

In Needle Roller Cages for Engine Connecting Rods, the types shown in Table 1 are available.

Table 1 Types

Туре	For big end	For small end
Model code	KT ··· EG	KTV ··· EG

134

KT···EG

KTV···EG

Needle Roller Cages for Big End KT…EG

These roller cages are subjected to acceleration and deceleration during their rotating and epicyclic motion due to crank shaft rotation. To withstand such conditions, they are made of a special alloy and are lightweight with high rigidity.

They are guided on their outer periphery surface with superior lubricating properties.

For the purpose of using them under severe conditions such as high rotational speed and stringent lubrication, bearings plated with non-ferrous metals are also available on request.

High-load capacity and high-rigidity cages to be used for racing motor cycles (See the photo bellow.), split needle cages for solid (one-piece) type crank-shafts and other special specification cages of various types are also available. Please consult IIKI when required.

High-load capacity and high-rigidity cage KTZ···EG

Needle Roller Cages for Small End KTV…EG

These roller cages oscillates at high speeds within a limited loading zone under heavy shock loads. Thus, these cages are designed to be lightweight and have high rigidity with a well-balanced structure. In these cages, a number of needle rollers having a small diameter are incorporated to reduce the rolling contact stress in the loading zone.

Needle Roller Cages for Small End are classified into two types, the outer surface guide type and the inner surface guide type. This classification is shown in the table of dimensions.

In the outer surface guide type, the cage is guided by the sliding contact between the inner surface of the connecting rod and the outer surface of the cage.

In the inner surface guide type, the cage is guided by the sliding contact between the outer surface of the pin and the inner surface of the cage.

Identification Number

The identification number of Needle Roller Cages for Engine Connecting Rods consists of a model code, dimensions and any supplemental codes as shown below.

Examples of identification number Supplemental code Dimensions Model code 22 28 16 EG B2 KT Type of bearing Roller set bore diameter (22mm) Roller set outside diameter (28mm) Width of cage (16mm) Tolerance of mean value of roller dia. (See Table 2.)

Accuracy

The diameter tolerances of needle rollers of Needle Roller Cages for Engine Connecting Rods are classified as shown in Table 2. When the classification symbol is not indicated in the identification number. the classification symbol "B2" is applied.

The tolerance of the cage width B_c is $-0.2 \sim -0.4$ mm. But cages with marks in the B_c column in the dimension tables are manufactured with the following width tolerances.

• : $0 \sim -0.2 \text{ mm}$

 \blacksquare : $-0.1 \sim -0.3 \text{ mm}$

Table 2 Tolerances of needle roller diameter

Class	Classification symbol(1)	Tolerance of mean value of roller dia. (²)					
Standard	B 2 B 4	0~- 2 -2~- 4					
Semi-standard	B 6 B 8 B10	$-4 \sim -6$ $-6 \sim -8$ $-8 \sim -10$					

The classification symbol is indicated at the end of the identification number

(2) Tolerances for circularity are based on JIS B 1506-1991 (Rollers for rolling bearings).

Clearance

Radial internal clearances are selected according to the type of engine and the operating conditions (rotational speed, load, lubricating conditions, etc.). If a bearing is used with an inadequate clearance, bearing troubles such as seizure, early flaking and noise increase may occur, leading to an engine failure. Therefore, it is necessary to select the clearance carefully according to test results and experience.

Recommended radial internal clearances are shown in Table 3. When operating at high speeds, it is recommended to select the upper limit of the clearance.

To obtain the recommended clearance shown in Table 3, it is general practice to match a connecting rod, crank pin or piston pin and needle roller cage of suitable tolerances for assembly.

Precautions for Use

When designing a connecting rod, crank pin and piston pin, the following precautions should be taken, because the raceways are subjected to loads under extremely severe conditions.

1 Material

It is recommended to use carburizing steel because the raceways are subjected to fluctuating loads with frequent and heavy shock loads. Generally, chromium molybdenum steel is used. Nickel chromium molybdenum steel is also used.

A Hardness

The recommended surface hardness of the raceway is $697 \sim 800 \text{HV}$ ($60 \sim 64 \text{HRC}$). While the effective hardening depth differs depending on the applications, the general value is $0.6 \sim 1.2$ mm.

Surface roughness

To minimize initial wear and to extend life, it is recommended that the surface roughness of the crank pin and piston pin be 0.1 μ m R_{\circ} or less, and the surface roughness of the connecting rod large end and small end bores be $0.2 \mu mR_a$ or less.

Accuracy

Circularity and cylindricity of connecting rod, piston pin and crank pin are as shown in Table 4.

6 Parallelism and torsional accuracy of connecting rod bores

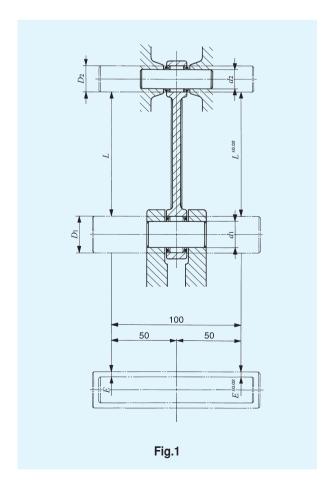
 $L\pm0.02$ mm and $E\pm0.02$ mm shown in Fig. 1 indicate the parallelism and torsional accuracy between the big end and small end bores of the connecting rod, respectively. The tolerance range is 0.04 mm or less per 100 mm in case of a general-purpose engine and 0.02 mm or less for a high-speed engine such as a racing motorcycle engine. When these accuracy conditions are not satisfied, the axial forces on the needle roller cage and connecting rod will increase, directly leading to a failure such as seizure. Careful consideration is required.

Table 3 Recommended radial internal clearance

			anne pe m	
Shaf m		Big end	Small end	
Over	Incl.			
_	18	$(d_{\mathfrak{p}} - 6) \sim d_{\mathfrak{p}}$		
18	30	$(d_{\rm p}-8)\sim d_{\rm p}$	3~15	
30	40	$(d_{\rm p} - 12) \sim d_{\rm p}$		

Remark $d_{\rm p}$ is obtained using the following formula for roller pitch circle diameter in millimeters, and changing the unit from millimeters to micrometers.

Roller pitch circle dia. = $\underline{F_{\rm w}} + \underline{E_{\rm w}}$


Example KT 222814 EG for big end

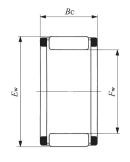
Recommended clearance is: 17~25 μ m

Table 4 Accuracy of connecting rod, piston pin and crank pin

	•••••			uiiit. paiii			
Range m	of dia. m	Crank pin o Piston pin o	liameter d_1 diameter d_2	Big end bore D_1 Small end bore D_2			
Over	Incl.	Circularity MAX.	Cylindricity MAX.	Circularity MAX.	Cylindricity MAX.		
- 18 30	18 30 40	1 2 3	2 3 4	2 3 4	3 4 5		

Remark Refer to Fig.1 for the dimension symbols.

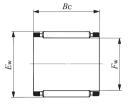
1N=0.102kgf=0.2248lbs. 1mm=0.03937inch



KT···EG KTV···EG

NEEDLE ROLLER CAGES FOR ENGINE CONNECTING RODS

Needle Roller Cages for Big End


KT…EG

Shaft dia. 8 — 32mm

		Mass	Bounda	arv dime	ensions	Basic dynamic	Basic static
Shaft		(Ref.)	200	mm		load rating	load rating
dia.	Identification number					C	C_0
mm		g	F_{w}	E_{w}	$B_{\rm c}$	N	N
8	KT 8128 EG	2.1	8	12	8	3 280	2 660
10	KT 101410 EG	3.2	10	14	10	4 900	4 680
12	KT 121610 EG	3.8	12	16	10	5 650	5 890
12	KT 121710 EG	5.3	12	17	10	6 670	6 380
14	KT 14199.7 EG	5.7	14	19	9.7	6 120	5 880
1-7	KT 141910 EG	5.7	14	19	10	6 640	6 530
15	KT 15199 EG	4.2	15	19	9	5 790	6 460
13	KT 152010 EG	6.1	15	20	10	7 100	7 260
16	KT 162211.5 EG	9.5	16	22	■11.5	9 550	9 660
10	KT 162212 EG	9.7	16	22	12	10 500	10 900
	KT 182210 EG	5.7	18	22	10	7 500	9 560
18	KT 182411.6 EG	11	18	24	■11.6	10 600	11 500
	KT 182412 EG	11	18	24	12	11 800	13 100
	KT 202612 EG	12	20	26	12	12 400	14 300
20	KT 202614 EG	13.8	20	26	14	13 000	15 200
	KT 202814 EG	20	20	28	•14	15 700	16 100
	KT 222814 EG	14.9	22	28	14	13 600	16 600
22	KT 222816 EG	17.5	22	28	16	15 700	19 800
	KT 222912 EG	15.2	22	29	12	12 900	14 000
	KT 223215 EG	30	22	32	15	21 300	21 500
23	KT 232913 EG	14.9	23	29	13	12 800	15 600
	KT 243015 EG	17.9	24	30	15	14 200	18 000
24	KT 243016 EG	18.2	24	30	16	16 300	21 500
	KT 243120 EG	28	24	31	20	20 800	26 400
30	KT 303818 EG	35.5	30	38	18	24 900	32 600
32	KT 324220 EG	54	32	42	20	31 900	39 400

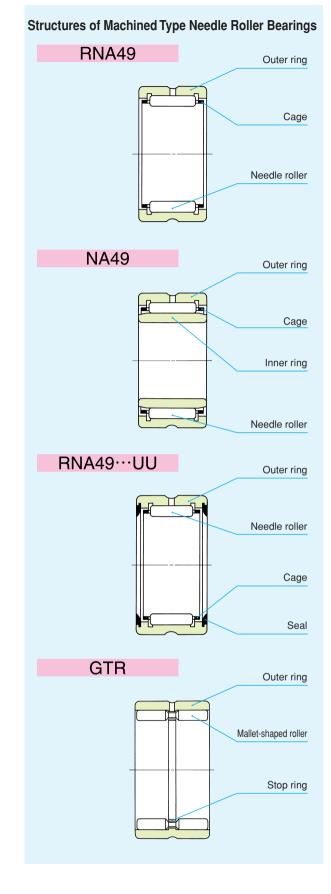
Needle Roller Cages for Small End

KTV...EG

Shaft dia. 9 — 18mm

Shaft dia.	Identification number	Mass (Ref.)	Bounda	ary dime	ensions	Basic dynamic load rating	Basic static load rating C_0	Cage guide type
mm		g	F_{w}	E_{w}	$B_{\rm c}$	N	N	
9	KTV 91211.5 EG KTV 91214 EG	2.8 3.5	9	12 12	•11.5 14	3 900 4 440	4 070 4 810	Outer surface guide Inner surface guide
10	KTV 101316 EG KTV 101410 EG KTV 101411 EG KTV 101412.5 EG	4.5 3.8 4.1 4.8	10 10 10 10	13 14 14 14	16 10 11 •12.5	4 400 4 520 5 060 5 590	4 880 4 220 4 880 5 540	Inner surface guide Inner surface guide Outer surface guide Inner surface guide
10.5	KTV 10.51415 EG	5.1	10.5	14	15	5 710	6 270	Outer surface guide
12	KTV 121514.3 EG KTV 121613 EG KTV 121615.5 EG	4.3 5.6 6.8	12 12 12	15 16 16	●14.3 13 ●15.5	5 840 7 020 7 600	7 390 7 800 8 600	Outer surface guide Outer surface guide Outer surface guide
14	KTV 141812 EG KTV 141816.5 EG KTV 141822 EG	6 8.2 10.8	14 14 14	18 18 18	12 16.5 •22	6 780 9 180 9 950	7 760 11 500 12 600	Inner surface guide Outer surface guide Inner surface guide
16	KTV 162019 EG KTV 162022 EG	10.6 12.7	16 16	20 20	19 22	10 800 11 400	14 600 15 700	Outer surface guide Inner surface guide
18	KTV 182223.5 EG KTV 182321 EG	14.9 16.4	18 18	22 23	■23.5 21	13 000 14 400	19 300 18 900	Inner surface guide Inner surface guide

NA TAFI TRI BRI


MACHINED TYPE NEEDLE ROLLER BEARINGS

- Machined Type Caged Needle Roller Bearings
- Machined Type Guide Needle Roller Bearings

Structure and Features

Dearings with a low sectional height and large load ratings. The outer ring has high rigidity and can easily be used even for light alloy housings. These bearings are available in metric series and inch series, both of which have the caged type and the full complement type. It is therefore possible to select a suitable bearing for use under various conditions such as heavy loads and high-speed or low-speed rotations. In addition, there are bearings with and without an inner ring. As the type without inner ring uses a shaft as the raceway surface, a compact design is possible.

140

Machined Type Needle Roller Bearings are available in various types shown in Table 1.

Table 1.1 Type of bearing (Standard type)

Туре		Caged Nee Bear		Guide Needle Roller Bearings		
Series		Without inner ring	With inner ring	Without inner ring	With inner ring	
Metric series	Dimension series 49	RNA 49	NA 49			
	Dimension series 69	RNA 69	NA 69		GTRI	
	Dimension series 48	RNA 48	NA 48	GTR		
	For heavy duty	TR	TRI			
	For light duty	TAF	TAFI			
Inch series		BR	BRI	GBR	GBRI	

Table 1.2 Type of bearing (With seal)

Туре			Caged Nee Bear	edle Roller ings	Guide Needle Roller Bearings		
Series		Without inner ring	With inner ring	Without inner ring	With inner ring		
Metric series	Dimension series 49	Two side seals	RNA 49 ··· UU	NA 49 ··· UU		_	
		One side seal	RNA 49 ··· U	NA 49 ··· U			
	Dimension series 69	Two side seals	RNA 69 ··· UU	NA 69 ··· UU	_		
		One side seal	RNA 69 ··· U	NA 69 ··· U			
Inch series		Two side seals	BR ···UU	BRI …UU	GBR ··· UU	GBRI ··· UU	
		One side seal	BR ···U	BRI ···U	GBR ··· U	GBRI ··· U	

Caged Needle Roller Bearings

This type of bearing combines a collared outer ring with the IKD's unique lightweight rigid cage and needle rollers. During operation, needle rollers are guided precisely by the cage, and an ideal load distribution is obtained.

The metric series consists of the NA48 and NA49 series of ISO Standard, NA69 and TAFI series which are based on the international dimension series, and the heavy duty TRI series which is widely used in Japan. The TAFI series has a sectional height as low as that of the shell type and is used for light loads.

The inch series or BRI series is based on the specifications of ANSI Standard of USA.

Caged Needle Roller Bearings without Inner Ring

As shown in the section "Design of shaft and housing" on page 47, any desired radial clearance can be selected by assembling this type of bearing with a shaft which is heat-treated and finished by grinding. These bearings are free from the effects on dimensional accuracy caused by assembling an inner ring,

142

so that the rotational accuracy is improved. Also, the shaft rigidity can be improved as the shaft diameter can be increased by an amount corresponding to the inner ring thickness.

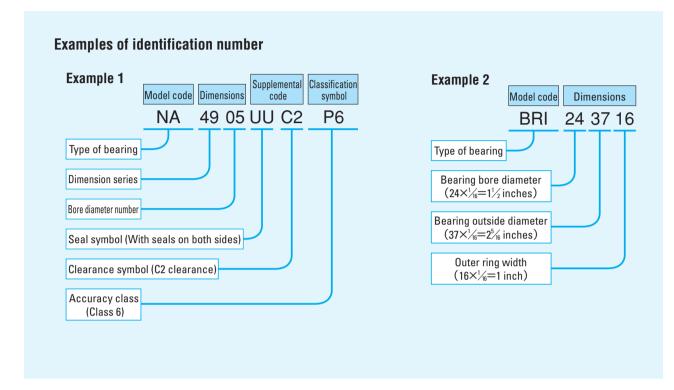
Caged Needle Roller Bearings with Inner Ring

This type of bearing is used when the shaft cannot be heat-treated and finished by grinding. The outer and inner rings are separable and a small relief clearance is provided on both sides of the inner ring raceway to facilitate bearing mounting. In the TRI and BRI series, the width of the inner ring is larger than that of the outer ring.

Due to heat expansion during operation or mounting errors, the inner or outer ring may be shifted axially and the whole length of the rollers may not be in contact with the raceway. Therefore, attention should be paid to the allowable axial shift S as shown in the table of dimensions.

Needle Roller Bearings with Seal

These bearings are sealed types of the NA49, NA69 and BRI series bearings, in which a seal is installed on one side (type with one seal) or both sides (type with two seals) of the bearing. The seal is made of special synthetic rubber and effectively prevents dust penetration and grease leakage.


Guide Needle Roller Bearings

These bearings are full complement type bearings and use mallet-shaped rollers which are guided accurately by the guide rail located at the center of the outer ring raceway and the guide groove of the malletshaped roller. This minimizes skewing (tilting of the roller from its rotating axis), which is normally a weak point of full complement bearings, and improves the rotational accuracy. This type of bearing is especially suitable for heavy loads, shock loads and oscillating motions.

The bearings are available in metric and inch series. Bearings with and without inner rings are available in both series. In bearings with an inner ring, the width of the inner ring is larger than that of the outer ring. The GBRI series of the inch series includes types with a seal or seals which are incorporated on one or both sides.

Identification Number

The identification number of Machined Type Needle Roller Bearings consists of a model code, dimensions, any supplemental codes and a classification symbol. Examples are shown below.

Accuracy

Machined Type Needle Roller Bearings are manufactured based on JIS (See page 34.). The tolerances for the smallest single roller set bore diameter of bearings without inner ring are based on Table 14 on page 36. For BR and BRI series, the accuracy is based on Table 2 and the tolerances for the smallest single roller set bore diameter are based on Table 3.

Table 2 Accuracy of inner and outer rings of inch series BR and BRI

u									unit: μ m
Nominal bea or outs	d or D Nominal bearing bore dia. or outside dia. mm		$\Delta_{d{ m mp}}$ Single plane mean bore diameter deviation		$\Delta_{D\mathrm{mp}}$ Single plane mean outside diameter deviation		$\Delta_{B\mathrm{S}}\left(\Delta_{C\mathrm{S}} ight)$ Deviation of a single inner (or outer) ring width		$K_{ m ea}$ Radial runout of assembled bearing outer ring
Over	Incl.	High	Low	High	Low	High	Low	Max.	Max.
_	19.050	0	- 10	_	_	0	- 130	10	_
19.050	30.162	0	- 13	0	- 13	0	— 130	13	15
30.162	50.800	0	- 13	0	- 13	0	- 130	15	20
50.800	82.550	0	— 15	0	- 15	0	- 130	20	25
82.550	120.650	0	-20	0	- 20	0	— 130	25	35
120.650	184.150	_		0	- 25	0	- 130	30	45

Remark d for Δ_{dmp} , Δ_{Bs} , Δ_{Cs} and K_{ia} , and D for Δ_{Dmp} and K_{ea}

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

TAFI TRI BRI

	ws iiiii		unit. μ in
	, w et bore diameter m	Deviation of sma	s min llest single roller diameter
Over	Incl.	High	Low
_	18.034	+ 43	+20
18.034	30.226	+ 46	+ 23
30.226	41.910	+ 48	+ 25
41.910	50.038	+51	+ 25
50.038	70.104	+ 53	+ 28
70.104	80.010	+ 58	+ 28
80.010	102.108	+61	+31

Radial internal clearances of Machined Type Needle Roller Bearings are made to the CN clearance shown in Table 19 on page 40. Radial internal clearances of BRI series are based on Table 4.

Table 4 Radial internal clearance of

incl	n series BRI	unit: μ m						
	w et bore diameter m	Radial intern	al clearance					
Over	Incl.	Min.	Max.					
_	18.034	33	66					
18.034	25.908	41	76					
25.908	30.226	46	82					
30.226	35.052	48	86					
35.052	41.910	50	89					
41.910	50.038	50	92					
50.038	70.104	56	99					
70.104	80.010	56	104					
80.010	100.076	63	117					
100.076	102.108	68	127					

Table 5 Bearings with prepacked grease

The recommended fits for Machined Type Needle Roller Bearings are shown in Tables 22 to 24 on pages 44 and 45.

Lubrication

Bearings with prepacked grease are shown in Table 5. ALVANIA GREASE 2 (SHELL) is prepacked as the lubricating grease.

In the case of bearings without prepacked grease, perform proper lubrication. Operating them without lubrication will increase the wear of the rolling contact surfaces and shorten their lives.

O: With prepacked grease X: Without prepacked grease

	Bearing type	Standard type	With seals on both sides	With a seal on one side	
		RNA, NA	×	0	×
Caged Needle Roller Bearings	Metric series	TR, TRI	×	_	_
Caged Needle Holler Dearlings		TAF, TAFI	×	_	_
	Inch series	BR, BRI	×	0	×
Guide Needle Roller Bearings	Metric series	GTR, GTRI	×	_	_
	Inch series	GBR, GBRI	×	0	×

Oil Hole

Table 6.1 shows the number of oil holes of the outer ring and Table 6.2 shows the number of oil holes of the inner ring.

When an outer ring with an oil hole is especially required for the type without an oil hole, add "-OH" before the clearance symbol in the identification number. When an outer ring with an oil hole and an oil groove is required for the type without an oil hole, attach "- OG" before the clearance symbol.

Example: TAFI 203216 - OH C2 P6

When an outer ring with multiple oil holes or an inner ring with an oil hole(s) is required, please consult IKO.

Table 6.1 Number of oil holes of the outer ring

	Bearing	Number of oil holes of the outer ring				
	·	Standard type	With seals on both sides	With a seal on one side		
		RNA, NA		1	1	1
	Metric series	TR, TRI		1	_	_
Caged Needle Roller		TAF, TAFI	$F_{\rm w} \leq 26$	0	_	_
Bearings			26 < F _w	1	_	_
	Inch series	BR, BRI	$F_{\rm w} \le 69.850$	1	1	1
	ilicii series		69.850 < F _w	2	1	1
Guide Needle Roller Bearings	Metric series	GTR, GTI	RI	1	_	_
Guide Needle Koller Bearings	Inch series GBR, GB		RI	1	1	1

Remark The type with an oil hole(s) is provided with an oil groove.

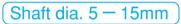
Table 6.2 Number of oil holes of the inner ring

	Bearing	Number of oil holes of the inner ring				
		Nominal bearing bore diameter d mm	Standard type	With seals on both sides	With a seal on one side	
		NA		0	0	0
Canad Naadla Dallar		TRI		0	0	0
Caged Needle Roller Bearings		TAFI		0	_	_
Dearings	Inch series	BRI	$d \le 76.200$	1	1	1
		DNI	76.200 < <i>d</i>	2	1	1
Guide Needle Roller Bearings	Metric series	GTRI		0	_	_
- Outde Needle Holler Dearlings	Inch series	GBRI		0	0	0

Remark The type with an oil hole(s) is provided with an oil groove.

Matched Set Bearings

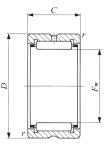
When using two or more Machined Type Needle Roller Bearings adjacent to each other on the same shaft, it is necessary to obtain an even load distribution. On request, a set of bearings is available, in which bearings are matched to obtain an even load distribution.


Mounting dimensions for Machined Type Needle Roller Bearings are shown in the table of dimensions.

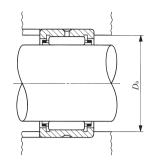
TAFI TRI BRI

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring



Shaft			lde	entification number			Mass (Ref.)
dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR	
mm							g
5	_		_	TAF 51010 TAF 51012	_	_	3.4 4.2
J	RNA 493			IAF 51012 	_		4.2
6	RNA 494	_ _	_				5.3 6.4
	RNA 495	_			_	_	5.9
7	_	_ _	_	TAF 71410 TAF 71412		_ _	6.9 8.3
	RNA 496	_	_	_	_	_	7.4
8	_ _	_ _	_ _	TAF 81512 TAF 81516		<u> </u>	9.1 12.9
0	_	_	_	TAF 91612	_		9.8
9	RNA 497	_ _	_	TAF 91616 —		<u> </u>	13.2 9.3
	_	_	_	TAF 101712	_		10.7
10		_ _	_	TAF 101716	_	_ _	14.3 12.6
	—	_		TAF 121912			12.2
12				TAF 121916			16.3
	RNA 499	-	_				13.6
14	RNA 4900	_	_	TAF 142216	_	_	16.5 21
	_	_		TAF 142220	_		26.5
15		_ _		TAF 152316 TAF 152320	_	<u> </u>	22.5 28


Minimum allowable value of chamfer dimension \boldsymbol{r}

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

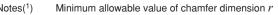
Remarks 1. TAF series with a roller set bore diameter $F_{\rm w}$ of 26 mm or less have no oil hole. In others, the outer ring has an oil groove and an

 $\begin{array}{c} {\rm RNA49\ TAF} \\ {\rm RNA69}\left(F_{\rm w}\!\leqq\!35\right) \end{array}$

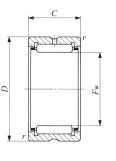
		-
		-

Bound	dary dim	ensions	mm	Standard mounting dimension	Basic dynamic load rating	Basic static load rating	Allowable rotational speed(2)	
F_{w}	D	C	$r_{\rm s min}^{(1)}$	$D_{ m a}$ Max. mm	N N	<i>C</i> ₀	rpm	
5	10	10	0.2	8.4	2 420	1 950	80 000	
5	10	12	0.2	8.4	3 080	2 660	80 000	
5	11	10	0.15	9.8	2 420	1 950	80 000	
6	12	10	0.15	10.8	2 700	2 320	70 000	
6	12	12	0.2	10.4	3 440	3 170	70 000	
7	13	10	0.15	11.8	2 960	2 690	60 000	
7	14	10	0.2	12.4	3 600	2 960	60 000	
7	14	12	0.2	12.4	4 610	4 050	60 000	
8	15	10	0.15	13.8	3 960	3 420	50 000	
8	15	12	0.2	13.4	5 060	4 690	50 000	
8	15	16	0.2	13.4	7 080	7 220	50 000	
9	16	12	0.2	14.4	5 490	5 330	45 000	
9	16	16	0.2	14.4	7 680	8 210	45 000	
9	17	10	0.15	15.8	4 530	3 650	45 000	
10	17	12	0.2	15.4	5 880	5 970	40 000	
10	17	16	0.2	15.4	8 230	9 190	40 000	
10	19	11	0.2	17.4	6 180	5 030	40 000	
12	19	12	0.3	17	6 610	7 260	35 000	
12	19	16	0.3	17	9 250	11 200	35 000	
12	20	11	0.3	18	6 600	6 310	35 000	
14 14 14	22 22 22	13 16 20	0.3 0.3 0.3	20 20 20	9 230 11 700 14 800	10 100 13 700 18 600	30 000 30 000	
15	23	16	0.3	21	12 300	14 900	30 000	
15	23	20	0.3	21	15 600	20 200	30 000	

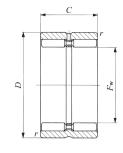
Without Inner Ring



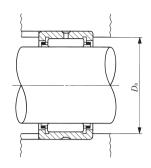
MACHINED TYPE NEEDLE ROLLER BEARINGS



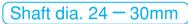
01 6			lden	tification number			Mass (Ref.)
Shaft dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR	(nei.)
100 100	NIVA 49	DINA 09	NINA 40	IAF	In	GIN	
mm							g
	RNA 4901	_	_			_	18.1
16		_	_	TAF 162416 TAF 162420			23 29
	_	RNA 6901	_	IAF 102420	_	_	30
		111171 0001		TAF 172516			24.5
17	_	_	_	TAF 172510	_	_	30.5
	DNIA 40/44						
18	RNA 49/14	_	_	TAF 182616	_	_	19.9 25.5
10	_		_	TAF 182620			32
	_	_	_	TAF 192716			27
19	_		_	TAF 192720	_		34
	RNA 4902	_	_	_	_		21.5
			_	TAF 202816			27.5
20	_		_	TAF 202820			35.5
20	_	RNA 6902		_	_	_	37
	_	_	_	_	TR 203320		59.5
	_		<u> </u>	_		GTR 203320	69
21	_		_	TAF 212916			29
	_		_	TAF 212920	_	_	36
	RNA 4903	_	_	_	_	_	23.5
	_	_	_	TAF 223016	_	_	30
22		RNA 6903	_	TAF 223020	_	_	37.5
		HIVA 0903	_				40.5
	_	_	_	_	TR 223425	——————————————————————————————————————	73.5
	_	_	_	_	_	GTR 223425	87
							<u> </u>



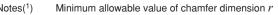
(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks 1. TAF series with a roller set bore diameter $F_{\rm w}$ of 26 mm or less have no oil hole. In others, the outer ring has an oil groove and an

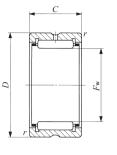

2. No grease is prepacked. Perform proper lubrication.

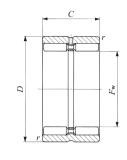
TAFI TRI BRI

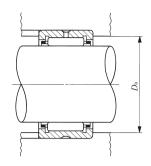

Bound	dary dim	ensions	mm	Standard mounting dimension	Basic dynamic load rating	Basic static load rating	Allowable rotational	
F_{w}	D	С	$r_{\rm s min}^{(1)}$	$D_{ m a}$ Max. mm	<i>C</i> N	C_0 N	speed(²) rpm	
16	24	13	0.3	22	9 660	11 100	25 000	
16	24	16	0.3	22	12 300	15 100	25 000	
16	24	20	0.3	22	15 500	20 400	25 000	
16	24	22	0.3	22	17 100	23 000	25 000	
17	25	16	0.3	23	12 900	16 300	25 000	
17	25	20	0.3	23	16 300	22 000	25 000	
18	26	13	0.3	24	10 600	12 800	20 000	
18	26	16	0.3	24	13 400	17 500	20 000	
18	26	20	0.3	24	17 000	23 600	20 000	
19	27	16	0.3	25	14 000	18 700	20 000	
19	27	20	0.3	25	17 700	25 300	20 000	
20	28	13	0.3	26	10 900	13 800	20 000	
20	28	16	0.3	26	13 900	18 800	20 000	
20	28	20	0.3	26	17 600	25 400	20 000	
20	28	23	0.3	26	19 300	28 800	20 000	
20	33	20	0.3	31	24 300	26 500	20 000	
20	33	20	0.3	31	29 200	37 200	7 500	
21	29	16	0.3	27	14 400	20 000	19 000	
21	29	20	0.3	27	18 200	27 100	19 000	
22	30	13	0.3	28	11 700	15 600	18 000	
22	30	16	0.3	28	14 900	21 200	18 000	
22	30	20	0.3	28	18 900	28 700	18 000	
22	30	23	0.3	28	20 800	32 500	18 000	
22	34	25	0.3	32	29 100	36 800	18 000	
22	34	25	0.3	32	37 900	57 800	7 000	

MACHINED TYPE NEEDLE ROLLER BEARINGS


Without Inner Ring




Shaft			ldent	ification number			Mass (Ref.)
dia.	RNA 49	RNA 69	RNA 48	TAF	l TR	GTR	(11011)
mm	1111/43	TIIVA 03	THINA 40	IAI	111	am	, a
111111							g
24	_			TAF 243216		_	32
	_	_		TAF 243220	_	<u> </u>	40.5
	_		_	TAF 253316		_	33.5
			_	TAF 253320			42
	RNA 4904	RNA 6904	_	_		_	55.5
25	_	KNA 6904	<u> </u>			-	95.5
	_		_		TR 253820		71
	_		_	_	TR 253825	— OTD 05000	89
	_		_		_	GTR 253820	81.5
	_					GTR 253825	104
26	_		_	TAF 263416			34.5
	_			TAF 263420			43.5
	_		_	TAF 283720		_	51.5
28	_		_	TAF 283730			83.5
	RNA 49/22	<u> </u>	<u> </u>	_		_	56.5
	_	RNA 69/22		_			97.5
29	_		—	TAF 293820			57
23	_		_	TAF 293830		_	85
	_		_	TAF 304020	_	_	64.5
	_		—	TAF 304030			97.5
30	RNA 4905		_	_		<u> </u>	64
30	_	RNA 6905	_	_	_	_	111
	_		_	_	TR 304425	_	115
	_	_	_	_	_	GTR 304425	133

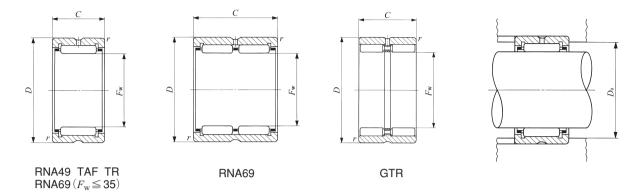

(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks 1. TAF series with a roller set bore diameter $F_{\rm w}$ of 26 mm or less have no oil hole. In others, the outer ring has an oil groove and an

IVA.
TAFI
TRI
BRI

Bound	oundary dimensions mm		Standard mounting dimension	Basic dynamic load rating	Basic static load rating	Allowable rotational speed(2)		
F_{w}	D	C	$r_{\rm s min}^{(1)}$	$D_{ m a}$ Max. mm	N N	C ₀	rpm	
24	32	16	0.3	30	15 300	22 500	17 000	
24	32	20	0.3	30	19 400	30 500	17 000	
25	33	16	0.3	31	15 800	23 700	16 000	
25	33	20	0.3	31	20 000	32 100	16 000	
25	37	17	0.3	35	21 000	25 000	16 000	
25	37	30	0.3	35	35 400	48 900	16 000	
25	38	20	0.3	36	28 900	35 000	16 000	
25	38	25	0.3	36	34 800	44 400	16 000	
25	38	20	0.3	36	33 300	46 500	6 000	
25	38	25	0.3	36	42 400	63 700	6 000	
26	34	16	0.3	32	16 300	24 900	15 000	
26	34	20	0.3	32	20 600	33 800	15 000	
28	37	20	0.3	35	21 700	37 100	14 000	
28	37	30	0.3	35	31 100	58 900	14 000	
28	39	17	0.3	37	21 400	28 900	14 000	
28	39	30	0.3	37	36 300	56 900	14 000	
29	38	20	0.3	36	21 600	37 200	14 000	
29	38	30	0.3	36	30 900	59 100	14 000	
30	40	20	0.3	38	25 100	40 100	13 000	
30	40	30	0.3	38	36 000	63 900	13 000	
30	42	17	0.3	40	23 700	30 700	13 000	
30	42	30	0.3	40	42 100	64 300	13 000	
30	44	25	0.3	42	37 900	52 100	13 000	
30	44	25	0.3	42	47 000	76 500	5 000	

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring



Shaft dia. 32 – 40mm

			ldent	ification number			Mass
Shaft							(Ref.)
dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR	
mm							g
	_			TAF 324220	_	_	68
		_		TAF 324230		_	102
32	RNA 49/28	RNA 69/28		_			76.5 133
		NIVA 03/20					
	_					GTR 324530	152
	_		_	TAF 354520		_	73.5
		_		TAF 354530	_	_	112 72.5
35	RNA 4906	RNA 6906		_	_	_	125
		11101 0000			TR 354830		139
			_	_	- In 354630 	GTR 354830	163
				TAF 374720		G111 554050	77.5
37		_	<u> </u>	TAF 374720	_	_	117
				TAF 384820			79
	_			TAF 384830			119
38					TR 385230		168
					— — —	GTR 385230	195
	_		_	TAF 405020	_	_	83
	_			TAF 405030		_	125
40	RNA 49/32			_		_	96
40	_	RNA 69/32		-	_	_	172
	_	_	_	_	TR 405520	_	129
	_		_	_	_	GTR 405520	144

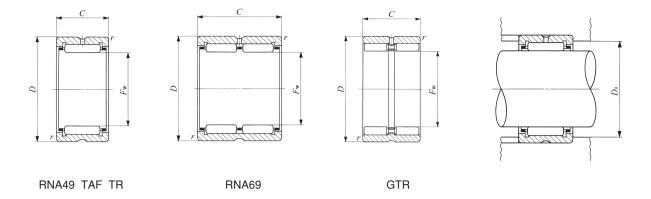
Minimum allowable value of chamfer dimension \boldsymbol{r}

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Boun	dary dim	ensions	mm	Standard mounting	Basic dynamic	Basic static	Allowable	
				dimension	load rating	load rating	rotational speed(²)	
E			(1)	$D_{\rm a}$	C	C_0	speed()	
F_{w}	D	C	$r_{\rm s min}$	Max. mm	N	N	rpm	
32	42	20	0.3	40	25 700	42 200	12 000	
32	42	30	0.3	40	36 800	67 200	12 000	
32	45	17	0.3	43	24 500	32 700	12 000	
32	45	30	0.3	43	41 800	64 800	12 000	
32	45	30	0.3	43	58 000	101 000	4 500	
35	45	20	0.3	43	26 900	46 200	11 000	
35	45	30	0.3	43	38 600	73 600	11 000	
35	47	17	0.3	45	25 200	34 700	11 000	
35	47	30	0.3	45	43 000	69 000	11 000	
35	48	30	0.3	46	47 400	72 300	11 000	
35	48	30	0.3	46	61 100	110 000	4 500	
37	47	20	0.3	45	28 200	50 100	11 000	
37	47	30	0.3	45	40 500	79 800	11 000	
38	48	20	0.3	46	28 100	50 200	11 000	
38	48	30	0.3	46	40 300	80 000	11 000	
38	52	30	0.6	48	50 800	81 100	11 000	
38	52	30	0.6	48	64 200	121 000	4 000	
40	50	20	0.3	48	29 400	54 100	10 000	
40	50	30	0.3	48	42 300	86 200	10 000	
40	52	20	0.6	48	31 200	47 800	10 000	
40	52	36	0.6	48	53 500	95 700	10 000	
40	55	20	0.6	51	37 400	55 700	10 000	
40	55	20	0.6	51	44 300	73 600	3 500	

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring



Shaft dia. 42 – 50mm

Shaft			ldent	ification number			Mass (Ref.)
dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR	g
42			— — —	TAF 425220 TAF 425230	_ _ _	_ _ _	86.5 130 113
42		RNA 6907 — —	<u> </u>	<u> </u>	TR 425630	——————————————————————————————————————	200 183 210
43	_	_ _		TAF 435320 TAF 435330	_		88.5 133
45	 RNA 49/38	_ _ _	_ _ _	TAF 455520 TAF 455530	_ _ _	_ _ _	92 138 120
	_	_ _	_	_ _	TR 455930	 GTR 455930	193 225
47	_ _		_ _	TAF 475720 TAF 475730	_ _		95 144
48	RNA 4908 — — —	RNA 6908	_ _ _ _	_ _ _ _	TR 486230		152 205 275 240
	_	_ _	_ _	TAF 506225 TAF 506235	_ _	_	159 225
50	RNA 49/42	_ _ _	<u> </u>		TR 506430	GTR 506430	210 174 245

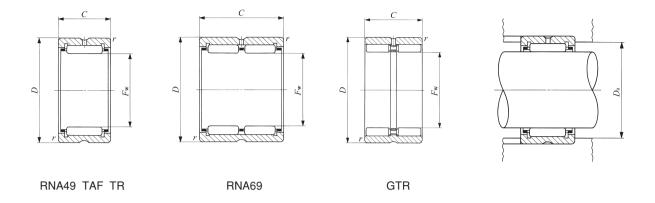
Minimum allowable value of chamfer dimension \boldsymbol{r}

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Bound	dary dim	ensions	mm	Standard mounting dimension	Basic dynamic load rating	Basic static load rating	Allowable rotational
F_{w}	D	С	$r_{\rm s min}^{(1)}$	$D_{ m a}$ Max. mm	C N	<i>C</i> ₀	speed(2) rpm
42	52	20	0.3	50	29 900	56 200	9 500
42	52	30	0.3	50	43 000	89 400	9 500
42	55	20	0.6	51	32 000	50 100	9 500
42	55	36	0.6	51	54 900	100 000	9 500
42	56	30	0.6	52	53 800	90 100	9 500
42	56	30	0.6	52	67 500	133 000	3 500
43	53	20	0.3	51	30 500	58 200	9 500
43	53	30	0.3	51	43 800	92 600	9 500
45	55	20	0.3	53	31 000	60 200	9 000
45	55	30	0.3	53	44 600	95 800	9 000
45	58	20	0.6	54	33 600	54 600	9 000
45	59	30	0.6	55	55 100	94 800	9 000
45	59	30	0.6	55	70 300	142 000	3 500
47	57	20	0.3	55	31 500	62 200	8 500
47	57	30	0.3	55	45 200	99 100	8 500
48	62	22	0.6	58	41 600	67 400	8 500
48	62	30	0.6	58	56 300	99 500	8 500
48	62	40	0.6	58	71 300	135 000	8 500
48	62	30	0.6	58	72 700	154 000	3 000
50	62	25	0.3	60	43 000	85 300	8 000
50	62	35	0.3	60	58 000	125 000	8 000
50	64	30	0.6	60	57 700	104 000	8 000
50	65	22	0.6	61	42 500	70 300	8 000
50	64	30	0.6	60	74 600	158 000	3 000

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring



Shaft dia. 52 – 68mm

Shaft			ldent	ification number			Mass (Ref.)
dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR	
mm							g
52	RNA 4909	RNA 6909	_ _	_ _	_		197 355
55	 RNA 49/48		_ _ _	TAF 556825 TAF 556835	_ _ _	_ _ _	193 255 188
58	RNA 4910	 RNA 6910	_ _			_	179 320
30	_ _	_ _	_ _	<u> </u>	TR 587745	— GTR 587745	515 590
60	 RNA 49/52	_ _ _	_ _ _	TAF 607225 TAF 607235	_ _ _	_ _ _	187 260 205
62	_ _	_ _	_ _	_	TR 628138	 GTR 628138	460 520
63	RNA 4911	RNA 6911				<u> </u>	265 475
65	 RNA 49/58	— — —	_ _ _	TAF 657825 TAF 657835	_ _ _	_ _ _	225 315 275
68	RNA 4912	 RNA 6912		TAF 688225 TAF 688235 —			250 350 285 510

Minimum allowable value of chamfer dimension \boldsymbol{r}

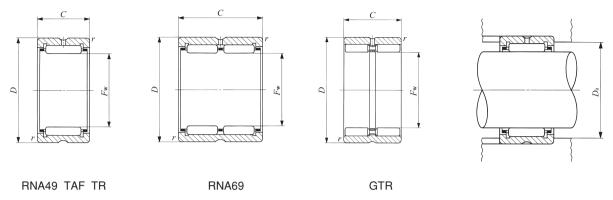
Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Bound	dary dim	ensions	mm	Standard mounting dimension	Basic dynamic load rating	Basic static load rating	Allowable rotational
F_{w}	D	С	$r_{\rm s min}^{(1)}$	$D_{ m a}$ Max. mm	<i>C</i> N	C_0 N	speed(²) rpm
52	68	22	0.6	64	43 500	73 300	7 500
52	68	40	0.6	64	74 600	147 000	7 500
55	68	25	0.3	66	45 400	94 000	7 500
55	68	35	0.3	66	61 200	138 000	7 500
55	70	22	0.6	66	44 300	76 300	7 500
58	72	22	0.6	68	46 200	82 100	7 000
58	72	40	0.6	68	79 200	164 000	7 000
58	77	45	1	72	104 000	191 000	7 000
58	77	45	1	72	135 000	280 000	2 500
60	72	25	0.3	70	47 500	103 000	6 500
60	72	35	0.3	70	64 100	151 000	6 500
60	75	22	0.6	71	47 100	85 100	6 500
62	81	38	1	76	92 000	166 000	6 500
62	81	38	1	76	118 000	241 000	2 500
63	80	25	1	75	57 600	97 200	6 500
63	80	45	1	75	98 700	194 000	6 500
65	78	25	0.6	74	49 600	112 000	6 000
65	78	35	0.6	74	67 000	164 000	6 000
65	82	25	1	77	58 900	101 000	6 000
68 68 68 68	82 82 85 85	25 35 25 45	0.6 0.6 1	78 78 80 80	54 800 72 000 60 200 103 000	117 000 166 000 105 000 211 000	6 000 6 000 6 000 6 000

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring

Shaft dia. 70 — 85mm


Shaft	Identification number (
dia.	RNA 49 RNA 69		RNA 48 TAF		TR	GTR		
mm							g	
	_	_	_	TAF 708525	_	_	280	
70	RNA 49/62	_	<u> </u>	TAF 708535	_	_	395 320	
	_	_	_	_	TR 708945		605	
	_			_	_	GTR 708945	690	
72	RNA 4913	— DNA 6010	_	_	_	_	325	
	_	RNA 6913	_	<u> </u>	_	-	585	
73	_	_	<u> </u>	TAF 739025 TAF 739035	_ _	_ _	335 475	
	_		_	TAF 759225			345	
75			_	TAF 759235		_	485	
	RNA 49/68	_	_	_	_	_	470	
	_		_	TAF 809525	_	_	315	
80	RNA 4914			TAF 809535	_	_	445 495	
	—	RNA 6914	_		_	_	910	
83	_			_	TR 8310845	_	995	
03	_		<u> </u>	_	_	GTR 8310845	1 090	
	_		_	TAF 8510525		_	435	
85	RNA 4915	_	_		_		525	
		RNA 6915	<u> </u>	TAF 8510535	_	_	610 960	
		1114 0313					300	

Notes(1)	Minimum allowable value of chamfer dimension r
----------	--

(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. The outer ring has an oil groove and an oil hole.

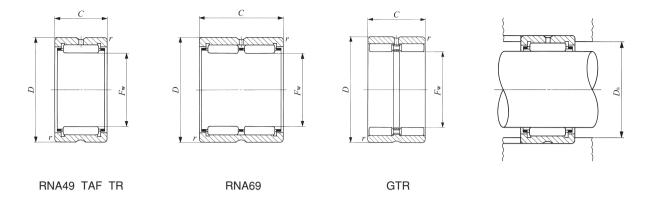
2. No grease is prepacked. Perform proper lubrication.

Boun	dary dim	ensions	mm	Standard mounting dimension	Basic dynamic load rating	Basic static load rating	Allowable rotational
F_{w}	D	С	$r_{\rm s min}^{(1)}$	$D_{ m a}$ Max. mm	C N	<i>C</i> ₀	speed(²) rpm
70	85	25	0.6	81	55 500	120 000	5 500
70	85	35	0.6	81	73 000	171 000	5 500
70	88	25	1	83	61 500	109 000	5 500
70	89	45	1	84	114 000	228 000	5 500
70	89	45	1	84	147 000	336 000	2 000
72	90	25	1	85	62 700	113 000	5 500
72	90	45	1	85	108 000	227 000	5 500
73	90	25	1	85	61 100	127 000	5 500
73	90	35	1	85	80 400	181 000	5 500
75	92	25	1	87	62 100	131 000	5 500
75	92	35	1	87	81 700	186 000	5 500
75	95	30	1	90	79 900	147 000	5 500
80 80 80	95 95 100 100	25 35 30 54	1 1 1 1	90 90 95 95	59 400 78 100 83 200 134 000	137 000 195 000 158 000 311 000	5 000 5 000 5 000 5 000
83	108	45	1	103	146 000	270 000	5 000
83	108	45	1	103	190 000	396 000	1 800
85	105	25	1	100	76 300	145 000	4 500
85	105	30	1	100	86 200	169 000	4 500
85	105	35	1	100	102 000	210 000	4 500
85	105	54	1	100	138 000	331 000	4 500

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring

Shaft dia. 90 — 105mm


Shaft			ldent	ification number			Mass (Ref.)
dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR	
mm							g
				TAF 9011025	_	_	455
90	RNA 4916	_	<u> </u>	TAF 9011035	_	_	550 640
	_	RNA 6916		_	_	_	1 010
93	_		_		TR 9311850		1 210
	_				_	GTR 9311850	1 340
	— DNA 40/00			TAF 9511526	_	_	495
95	RNA 49/82	_	_	TAF 9511536	_	_	575 690
	_	_	_	_	TR 9512045	_	1 120
	_		_	_		GTR 9512045	1 230
	_	_	_	TAF 10012026	_	_	525
	RNA 4917		_	TAF 10012036			705
100		RNA 6917	_	— —	_	_	725 1 300
	_	_		_	TR 10012550	_	1 290
	_			<u>—</u>	_	GTR 10012550	1 440
	_		_	TAF 10512526	_		545
105	RNA 4918	_	_	TAF 10512536	_	_	740 760
	_	RNA 6918	_	——————————————————————————————————————	_	_	1 360

Notes(1)	Minimum allowable value of chamfer dimension r
----------	--

(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. The outer ring has an oil groove and an oil hole.

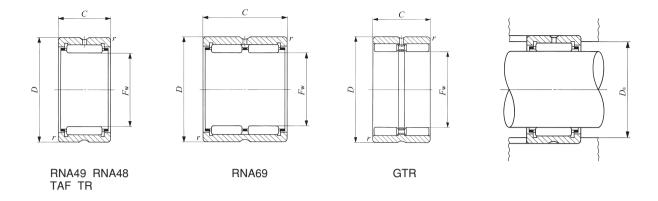
2. No grease is prepacked. Perform proper lubrication.

Boun	dary dim	ensions	mm	Standard mounting dimension $D_{ m a}$	Basic dynamic load rating C	Basic static load rating	Allowable rotational speed(2)		
F_{w}	D	C	$r_{\rm s min}^{(1)}$	D_a Max. mm	N	C_0 N	rpm		
90 90 90 90	110 110 110 110	25 30 35 54	1 1 1 1	105 105 105 105	77 300 87 300 103 000 143 000	150 000 175 000 217 000 351 000	4 500 4 500 4 500 4 500		
93 93	118 118	50 50	1 1	113 113	165 000 224 000	329 000 509 000	4 500 1 600		
95 95 95	115 115 115	26 30 36	1 1 1	110 110 110	79 700 90 000 106 000	159 000 186 000 231 000	4 000 4 000 4 000		
95 95	120 120	45 45	1.5 1.5	112 112	155 000 204 000	305 000 455 000	4 000 1 600		
100 100 100 100	120 120 120 120	26 35 36 63	1 1.1 1 1.1	115 113.5 115 113.5	82 400 110 000 110 000 173 000	168 000 244 000 244 000 467 000	4 000 4 000 4 000 4 000		
100 100	125 125	50 50	1.5 1.5	117 117	172 000 234 000	355 000 549 000	4 000 1 500		
105 105 105 105	125 125 125 125	26 35 36 63	1 1.1 1 1.1	120 118.5 120 118.5	84 700 113 000 113 000 178 000	178 000 258 000 258 000 490 000	4 000 4 000 4 000 4 000		

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring

Shaft dia. 110 — 170mm


Shaft			lde	entification number			Mass (Ref.)
dia.	RNA 49	RNA 69	RNA 48 TAF		TR	GTR	
mm							g
		_	_	TAF 11013030	_	_	660
	RNA 4919	_	_	TAF 11013040	<u> </u>	_	770 880
110	_	RNA 6919		—	_	_	1 420
	_	_	_	_	TR 11013550	_	1 400
	_	_	_	_	_	GTR 11013550	1 560
445	RNA 4920	_		<u> </u>		_	1 190
115	_	_	_	<u> </u>	TR 11515350	GTR 11515350	2 350 2 600
120			RNA 4822			_	790
125	RNA 4922						1 280
	NIVA 4522		RNA 4824				
130		_	RIVA 4624	<u> </u>	_	_	850
135	RNA 4924	_	_	_	_	_	1 930
140	_	<u> </u>	_	_ _	TR 14017860	GTR 14017860	3 320 3 730
145			RNA 4826			G111 14017000	1 100
143			NNA 4020	_			
150	RNA 4926	_	_	_ _	TR 15018860	_	2 360 3 540
	_	_	_	_	_	GTR 15018860	3 970
155	_	_	RNA 4828	_	_	_	1 170
160	RNA 4928	_	_	_	_	_	2 500
165	_	_	RNA 4830	_	_	_	1 750
170	RNA 4930	_	_	_	_	_	4 090

Notes(1)	Minimum allowable value of chamfer dimension r
----------	--

⁽²⁾ Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. The outer ring has an oil groove and an oil hole.

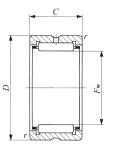
2. No grease is prepacked. Perform proper lubrication.

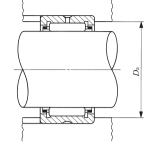
Round	dary dim	ensions	mm	Standard mounting	Basic dynamic	Basic static	Allowable
Dount	aary airii	CHSIOHS	111111	dimension	load rating	load rating	rotational
			(¹)	D_{a}	C	C_0	speed(2)
$F_{\rm w}$	D	C	$r_{\rm smin}$	Max. mm	N	N	rpm
110	130	30	1	125	106 000		
110 110	130	35	1.1	123.5	116 000	240 000 271 000	3 500 3 500
110	130	40	1 1	125.5	134 000	324 000	3 500
110	130	63	1.1	123.5	182 000	514 000	3 500
110	135	50	1.5	127	183 000	395 000	3 500
110	135	50	1.5	127	245 000	603 000	1 400
115	140	40	1.1	133.5	145 000	329 000	3 500
115	153	50	1.5	145	233 000	414 000	3 500
115	153	50	1.5	145	315 000	614 000	1 300
120	140	30	1	135	93 200	239 000	3 500
125	150	40	1.1	143.5	152 000	357 000	3 000
130	150	30	1	145	96 900	259 000	3 000
135	165	45	1.1	158.5	187 000	435 000	3 000
140	178	60	1.5	170	307 000	625 000	3 000
140	178	60	1.5	170	409 000	923 000	1 100
145	165	35	1.1	158.5	116 000	340 000	3 000
150	180	50	1.5	172	215 000	540 000	2 500
150	188	60	1.5	180	320 000	675 000	2 500
150	188	60	1.5	180	423 000	989 000	1 000
155	175	35	1.1	168.5	120 000	363 000	2 500
160	190	50	1.5	182	224 000	580 000	2 500
165	190	40	1.1	183.5	168 000	446 000	2 500
170	210	60	2	201	324 000	712 000	2 500

TAFI TRI

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring




Shaft dia. 175 — 350mm

Shaft			lde	entification number			Mass (Ref.)
dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR	
mm							g
175	_	_	RNA 4832	_	_		1 850
180	RNA 4932	_	_	_			4 310
185	_		RNA 4834	_			2 700
190	RNA 4934	_	_	_			4 530
195	_	_	RNA 4836	_			2 840
205	RNA 4936	_	_	_			6 250
210	_	_	RNA 4838	_			3 380
215	RNA 4938	_	_	_			6 500
220	_		RNA 4840	_			3 520
225	RNA 4940	_	_	_	_		10 400
240	_	_	RNA 4844	_	_		3 820
245	RNA 4944	_	_	_	_		11 200
265	_	_	RNA 4848	_	_		5 670
	RNA 4948	-	_	<u> </u>			12 000
285	_		RNA 4852			_	6 070
290	RNA 4952	_	_	<u> </u>			21 200
305	_	—	RNA 4856	_			9 750
310	RNA 4956	_	_	_	_	_	22 500
330	_	_	RNA 4860	_	_		13 200
340	RNA 4960		_	_	_		33 400
350	_	_	RNA 4864	_		_	14 100

Minimum allowable value of chamfer dimension \boldsymbol{r}

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

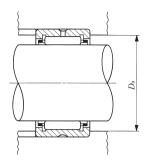
RNA49 RNA48

Boun	Boundary dimensions		mm	Standard mounting dimension $D_{ m a}$	Basic dynamic load rating	Basic static load rating C_{0}	Allowable rotational speed(2)
F_{w}	D	С	$r_{\rm s min}^{(1)}$	D_a Max. mm	N	N N	rpm
175	200	40	1.1	193.5	173 000	474 000	2 500
180	220	60	2	211	337 000	761 000	1 900
185	215	45	1.1	208.5	211 000	567 000	1 900
190	230	60	2	221	347 000	810 000	1 900
195	225	45	1.1	218.5	218 000	602 000	1 900
205	250	69	2	241	434 000	989 000	1 900
210	240	50	1.5	232	249 000	726 000	1 800
215	260	69	2	251	440 000	1 020 000	1 700
220	250	50	1.5	242	255 000	766 000	1 600
225	280	80	2.1	269	518 000	1 120 000	1 600
240	270	50	1.5	262	266 000	833 000	1 500
245	300	80	2.1	289	536 000	1 200 000	1 400
265	300	60	2	291	345 000	1 150 000	1 300
265	320	80	2.1	309	565 000	1 320 000	1 300
285	320	60	2	311	354 000	1 220 000	1 100
290	360	100	2.1	349	847 000	1 900 000	1 100
305	350	69	2	341	486 000	1 550 000	950
310	380	100	2.1	369	877 000	2 040 000	950
330	380	80	2.1	369	610 000	1 900 000	900
340	420	118	3	407	1 130 000	2 650 000	850
350	400	80	2.1	389	635 000	2 040 000	750

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring

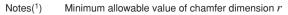
Shaft dia. 360 — 490mm


Shaft			lde	entification number			Mass (Ref.)
dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR	
mm							g
360	RNA 4964		_	_		_	35 200
370			RNA 4868	_	_	_	14 800
380	RNA 4968	<u> </u>	_	<u> </u>	_	_	37 000
390		<u>—</u>	RNA 4872	<u> </u>	_	_	15 600
400	RNA 4972	_	_	<u> </u>		_	38 700
415	_	<u>—</u>	RNA 4876	<u> </u>		_	27 900
430	RNA 4976	<u>—</u>	_	<u> </u>		_	56 400
450	RNA 4980		_	<u> </u>	_	_	58 800
470	RNA 4984		_	<u> </u>	_	_	61 200
490	RNA 4988	—	_	_	_	_	86 900

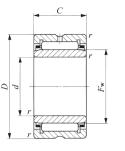
Notes(1)	Minimum allowable value of chamfer dimension r
----------	--

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

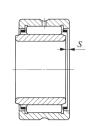
Boun	dary dim	ensions	mm	Standard mounting dimension	Basic dynamic load rating	Basic static load rating	Allowable rotational
			(1)	D_{a}	C	C_0	speed(2)
F_{w}	D	C	$r_{\rm s min}^{(1)}$	Max. mm	N	N	rpm
360	440	118	3	427	1 170 000	2 830 000	750
370	420	80	2.1	409	651 000	2 140 000	700
380	460	118	3	447	1 220 000	3 020 000	700
390	440	80	2.1	429	680 000	2 320 000	650
400	480	118	3	467	1 260 000	3 200 000	600
415	480	100	2.1	469	951 000	2 860 000	600
430	520	140	4	504	1 540 000	4 030 000	500
450	540	140	4	524	1 590 000	4 270 000	500
470	560	140	4	544	1 640 000	4 510 000	500
490	600	160	4	584	1 910 000	5 140 000	400

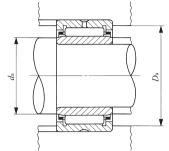

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Inner Ring


Shaft dia. 5 — 12mm

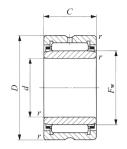
Shaft			Id	entification number			Mass (Ref.)	
dia.	NA 49	NA 69	NA 48	TAFI	TRI	GTRI	g	d
5	NA 495 —	_ _ _	_ _ _	TAFI 51512 TAFI 51516		_ _ _	7.3 11.9 16.7	5 5 5
6	NA 496 —	_ _ _	_ _ _	TAFI 61612 TAFI 61616	_ _ _	_ _ _	9.1 13 17.5	6 6 6
7	NA 497 —		_ _ _	TAFI 71712 TAFI 71716	_ _ _	_ _ _	11.2 14.3 19.2	7 7 7
8	NA 498	_		_	_	_	15	8
9	 NA 499	_ _ _	_ _ _	TAFI 91912 TAFI 91916	_ _ _	_ _ _	16.7 22.5 16.7	9 9 9
10	NA 4900 —	_ _ _	_ _ _	TAFI 102216 TAFI 102220	_ _ _	_ _ _	24 30 38	10 10 10
12	NA 4901 — — —	— — NA 6901	_ _ _ _	TAFI 122416 TAFI 122420	_ _ _ _	_ _ _ _	26.5 33.5 42.5 44.5	12 12 12 12




(2) Allowable axial shift amount of inner ring to outer ring
(3) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

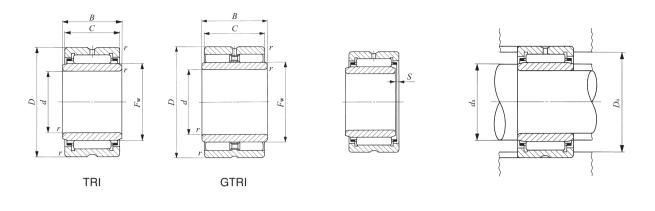
Remarks1. TAFI series with a bore diameter *d* of 22 mm or less have no oil hole. In others, the outer ring has an oil groove and an oil hole.

-	
}	N
	N T T B
	T
	В


В	ounda	ry din	nension	is m	m		lard mou		Basic dynamic load rating	Basic static	Allowable rotational	Assembled inner ring
			45	l	(2)			D_a	C	C_0	speed(3)	
D	C	В	$r_{\rm s min}^{(1)}$	$F_{\rm w}$	S	Min.	a Max.	Max.	N	N	rpm	
13 15 15	10 12 16	— — —	0.15 0.2 0.2	7 8 8	0.5 0.5 0.5	6.2 6.6 6.6	6.7 7.7 7.7	11.8 13.4 13.4	2 960 5 060 7 080	2 690 4 690 7 220	60 000 50 000 50 000	LRT 5710 LRT 5812 LRT 5816
15 16 16	10 12 16	— — —	0.15 0.2 0.2	8 9 9	0.5 0.5 0.5	7.2 7.6 7.6	7.7 8.7 8.7	13.8 14.4 14.4	3 960 5 490 7 680	3 420 5 330 8 210	50 000 45 000 45 000	LRT 6810 LRT 6912 LRT 6916
17 17 17	10 12 16	— — —	0.15 0.2 0.2	9 10 10	0.5 0.5 0.5	8.2 8.6 8.6	8.7 9.7 9.7	15.8 15.4 15.4	4 530 5 880 8 230	3 650 5 970 9 190	45 000 40 000 40 000	LRT 7910 LRT 71012 LRT 71016
19	11	_	0.2	10	0.5	9.6	9.9	17.4	6 180	5 030	40 000	LRT 81011
19 19 20	12 16 11	_ _ _	0.3 0.3 0.3	12 12 12	0.5 0.5 0.5	11 11 11	11.5 11.5 11.5	17 17 18	6 610 9 250 6 600	7 260 11 200 6 310	35 000 35 000 35 000	LRT 91212 LRT 91216 LRT 91211
22 22 22	13 16 20	_ _ _	0.3 0.3 0.3	14 14 14	0.5 0.5 0.5	12 12 12	13 13 13	20 20 20	9 230 11 700 14 800	10 100 13 700 18 600	30 000 30 000	LRT 101413 LRT 101416 LRT 101420
24 24 24 24	13 16 20 22		0.3 0.3 0.3	16 16 16 16	0.5 0.5 0.5 0.5	14 14 14 14	15 15 15 15	22 22 22 22 22	9 660 12 300 15 500 17 100	11 100 15 100 20 400 23 000	25 000 25 000 25 000 25 000	LRT 121613 LRT 121616 LRT 121620 LRT 121622

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Inner Ring



 $\begin{array}{c} \mathsf{NA49} \ \mathsf{TAFI} \\ \mathsf{NA69} \, (d \! \leq \! 30) \end{array}$

Shaft dia. 15 – 22mm

Shaft			ld	lentification numbe	r		Mass (Ref.)	
dia.	NA 49	NA 69	NA 48	TAFI	TRI	GTRI	g	d
15	NA 4902	— — NA 6902	— — —	TAFI 152716 TAFI 152720		_ _ _ _	39.5 50 35 61	15 15 15 15
		_	_ _	_	TRI 153320	 GTRI 153320	81 90.5	15 15
17	NA 4903	 NA 6903		TAFI 172916 TAFI 172920		_ _ _ _	43.5 54 39 67	17 17 17 17
	_	_	_	_	TRI 173425	 GTRI 173425	104 117	17 17
20	 NA 4904 	 NA 6904	— — —	TAFI 203216 TAFI 203220		_ _ _ _	48.5 61 78.5 136	20 20 20 20
20		_ _ _ _		_ _ _ _	TRI 203820 TRI 203825	GTRI 203820 GTRI 203825	99 124 110 138	20 20 20 20
22	NA 49/22	— — NA 69/22	_ _ _ _	TAFI 223416 TAFI 223420 —	— — — —	 	52 67.5 87 152	22 22 22 22 22

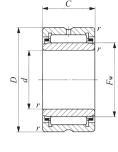
Notes(1)	Minimum allowable value of chamfer dimension r
----------	--

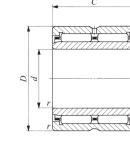
В	ounda	ary dim	ension	ıs m	m	dime	lard mou ensions	inting mm	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
D	C	В	$r_{\rm s min}^{(1)}$	F_{w}	S	Min.	a Max.	$D_{ m a}$ Max.	<i>C</i> N	C_0 N	speed(3) rpm	
27 27 28 28	16 20 13 23	_ _ _ _	0.3 0.3 0.3 0.3	19 19 20 20	0.5 0.5 0.3 0.3	17 17 17 17	18 18 19 19	25 25 26 26	14 000 17 700 10 900 19 300	18 700 25 300 13 800 28 800	20 000 20 000 20 000 20 000	LRT 151916 LRT 151920 LRT 152013 LRT 152023
33 33	20 20	20.5 20.5	0.3	20 20	0.3	17 17	19 19	31 31	24 300 29 200	26 500 37 200	20 000 7 500	LRT 152020 LRTZ 152020
29 29 30 30	16 20 13 23	_ _ _	0.3 0.3 0.3 0.3	21 21 22 22	0.5 0.5 0.3 0.3	19 19 19 19	20 20 21 21	27 27 28 28	14 400 18 200 11 700 20 800	20 000 27 100 15 600 32 500	19 000 19 000 18 000 18 000	LRT 172116 LRT 172120 LRT 172213 LRT 172223
34 34	25 25	25.5 25.5	0.3 0.3	22 22	0.5	19 19	21 21	32 32	29 100 37 900	36 800 57 800	18 000 7 000	LRT 172225 LRTZ 172225
32 32 37 37	16 20 17 30	_ _ _ _	0.3 0.3 0.3	24 24 25 25	0.5 0.5 0.5 0.5	22 22 22 22	23 23 24 24	30 30 35 35	15 300 19 400 21 000 35 400	22 500 30 500 25 000 48 900	17 000 17 000 16 000 16 000	LRT 202416 LRT 202420 LRT 202517 LRT 202530
38 38 38 38	20 25 20 25	20.5 25.5 20.5 25.5	0.3 0.3 0.3 0.3	25 25 25 25	0.3 0.5 —	22 22 22 22	24 24 24 24	36 36 36 36	28 900 34 800 33 300 42 400	35 000 44 400 46 500 63 700	16 000 16 000 6 000 6 000	LRT 202520 LRT 202525 LRTZ 202520 LRTZ 202525
34 34 39 39	16 20 17 30	_ _ _	0.3 0.3 0.3 0.3	26 26 28 28	0.5 0.5 1 0.5	24 24 24 24	25 25 27 27	32 32 37 37	16 300 20 600 21 400 36 300	24 900 33 800 28 900 56 900	15 000 15 000 14 000 14 000	LRT 222616 LRT 222620 LRT 222817 LRT 222830

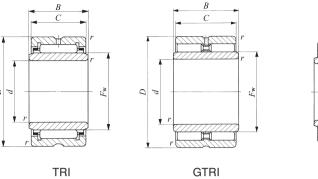
⁽²⁾ Allowable axial shift amount of inner ring to outer ring
(3) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

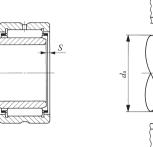
Remarks1. TAFI series with a bore diameter *d* of 22 mm or less have no oil hole. In others, the outer ring has an oil groove and an oil hole.

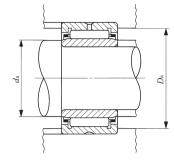
2. No grease is prepacked. Perform proper lubrication.


MACHINED TYPE NEEDLE ROLLER BEARINGS


With Inner Ring


NA49 TAFI NA69 $(d \le 30)$


NA69

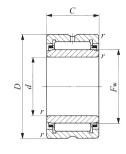

Shaft dia. 25 – 32mm

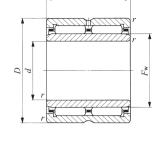
Shaft	Identification number												
dia.	NA 49	NA 69	NA 48	TAFI	TRI	GTRI	g	d					
25	NA 4905	 NA 6905	_ _ _ _	TAFI 253820 TAFI 253830	— — — —	_ _ _ _	82 123 92.5 160	25 25 25 25					
	_	_	_	_	TRI 254425	GTRI 254425	157 175	25 25					
28	NA 49/28	 NA 69/28		TAFI 284220 TAFI 284230		_ _ _ _	96.5 145 101 176	28 28 28 28					
	_	_		_	_	GTRI 284530	196	28					
30	NA 4906	 NA 6906	_ _ _ _	TAFI 304520 TAFI 304530	_ _ _ _	_ _ _ _	112 171 106 184	30 30 30					
	_	_ _	_	_	TRI 304830	 GTRI 304830	199 225	30 30					
32	 NA 49/32	_ _ _		TAFI 324720 TAFI 324730	_ _ _	_ _ _	121 180 165	32 32 32					
32	_ _ _	NA 69/32 —	_ _ _	<u>-</u> -	TRI 325230 — —	GTRI 325230	245 295 270	32 32 32					

Notes(1)	Minimum allowable value of chamfer dimension r
----------	--

В	ounda	ıry dim	ension	s m	m		lard mou		Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
D	C	В	$r_{\rm s min}^{(1)}$	F_{w}	S	d Min.	^a Max.	$D_{ m a}$ Max.	<i>C</i> N	<i>C</i> ₀	speed(3)	
38 38 42 42 42	20 30 17 30 25 25	25.5 25.5	0.3 0.3 0.3 0.3 0.3	29 29 30 30 30	0.5 1 0.5 0.5	27 27 27 27 27 27	28 28 29 29 29 29	36 36 40 40 42 42	21 600 30 900 23 700 42 100 37 900 47 000	37 200 59 100 30 700 64 300 52 100 76 500	14 000 14 000 13 000 13 000 13 000 5 000	LRT 252920 LRT 252930 LRT 253017 LRT 253030 LRT 253025 LRTZ 253025
42 42 45 45	20 30 17 30		0.3 0.3 0.3 0.3	32 32 32 32	0.5 1 1	30 30 30 30	31 31 31 31	40 40 43 43	25 700 36 800 24 500 41 800	42 200 67 200 32 700 64 800 101 000	12 000 12 000 12 000 12 000 4 500	LRT 283220 LRT 283230 LRT 283217 LRT 283230 LRTZ 283230
45 45 47 47	20 30 17 30		0.3 0.3 0.3 0.3	35 35 35 35 35	0.3 0.5 0.5 0.5	32 32 32 32 32	34 34 34 34	43 43 43 45 45	58 000 26 900 38 600 25 200 43 000	46 200 73 600 34 700 69 000	11 000 11 000 11 000 11 000	LRT 303520 LRT 303530 LRT 303517 LRT 303530
48 48	30 30	30.5 30.5	0.3 0.3	35 35	1 —	32 32	34 34	46 46	47 400 61 100	72 300 110 000	11 000 4 500	LRT 303530-1 LRTZ 303530
47 47 52	20 30 20	_ _ _	0.3 0.3 0.6	37 37 40	0.3 0.5 0.5	34 34 36	36 36 39	45 45 48	28 200 40 500 31 200	50 100 79 800 47 800	11 000 11 000 10 000	LRT 323720 LRT 323730 LRT 324020
52 52 52	30 36 30	30.5 — 30.5	0.6 0.6 0.6	38 40 38	0.5 0.3 —	36 36 36	37 39 37	48 48 48	50 800 53 500 64 200	81 100 95 700 121 000	11 000 10 000 4 000	LRT 323830 LRT 324036 LRTZ 323830

⁽²⁾ Allowable axial shift amount of inner ring to outer ring
(3) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.
Remarks1. The outer ring has an oil groove and an oil hole.
2. No grease is prepacked. Perform proper lubrication.


MACHINED TYPE NEEDLE ROLLER BEARINGS


With Inner Ring

NA69

NA49 TAFI

Shaft dia. 35 — 45mm

			Id	lentification numbe	r		Mass	
Shaft dia.	NA 49	NA 69	NA 48	TAFI	TRI	GTRI	(Ref.)	
mm	INA 49	NA 69	INA 40	IAFI	INI	GINI	g	d
	_	_	_	TAFI 355020 TAFI 355030	_	_ _	129 192	35 35
35	NA 4907 —	— NA 6907	_ _	— —	_ _	_ _	178 320	35 35
		_	_	_	TRI 355630	 GTRI 355520	280 191	35 35
	_			_	_	GTRI 355630	310	35
38	_ _	_ _	_ _	TAFI 385320 TAFI 385330	_	_ _	136 205	38 38
	_ _	_	_ _	TAFI 405520 TAFI 405530	_	_ _	143 215	40 40
40	NA 4908 —	NA 6908	_ _ _ _	_ _ _ _	TRI 405930		270 245 440 300	40 40 40 40
42	_ _	_		TAFI 425720 TAFI 425730	_ _		149 225	42 42
42		_	_	_	TRI 426230	 GTRI 426230	305 340	42 42
	_	_	_	TAFI 456225 TAFI 456235			230 320	45 45
45	NA 4909 —	NA 6909	_ _ _ _	_ _ _ _	TRI 456430 — — —	GTRI 456430	300 285 520 335	45 45 45 45

Notes(1) Minimum allowable value of chamfer dimension r

Allowable axial shift amount of inner ring to outer ring

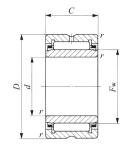
Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

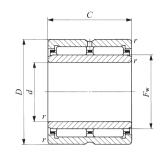
Remarks1. The outer ring has an oil groove and an oil hole.

В	ounda	ary dim	ension	ıs m	m		dard mou	ınting mm	Basic dynamic load rating	Basic static	Allowable rotational	Assembled inner ring
D	C	В	$r_{\rm s min}^{(1)}$	F_{w}	(2) S	d Min.	a Max.	$D_{ m a}$ Max.	<i>C</i> N	C_0	speed(3)	
50	20	_	0.3	40	0.3	37	39	48	29 400	54 100	10 000	LRT 354020
50	30	_	0.3	40	0.5	37	39	48	42 300	86 200	10 000	LRT 354030
55	20	_	0.6	42	0.5	39	41	51	32 000	50 100	9 500	LRT 354220
55	36	_	0.6	42	0.3	39	41	51	54 900	100 000	9 500	LRT 354236
56	30	30.5	0.6	42	0.5	39	41	52	53 800	90 100	9 500	LRT 354230
55	20	20.5	0.6	40	_	39	39.5	51	44 300	73 600	3 500	LRTZ 354020
56	30	30.5	0.6	42	_	39	41	52	67 500	133 000	3 500	LRTZ 354230
53	20	_	0.3	43	0.3	40	42	51	30 500	58 200	9 500	LRT 384320
53	30	_	0.3	43	0.5	40	42	51	43 800	92 600	9 500	LRT 384330
55	20	_	0.3	45	0.3	42	44	53	31 000	60 200	9 000	LRT 404520
55	30	_	0.3	45	0.5	42	44	53	44 600	95 800	9 000	LRT 404530
59	30	30.5	0.6	45	1	44	44.5	55	55 100	94 800	9 000	LRT 404530-1
62	22		0.6	48	0.5	44	47	58	41 600	67 400	8 500	LRT 404822
62	40	_	0.6	48	0.3	44	47	58	71 300	135 000	8 500	LRT 404840
59	30	30.5	0.6	45	_	44	44.5	55	70 300	142 000	3 500	LRTZ 404530
57	20		0.3	47	0.3	44	46	55	31 500	62 200	8 500	LRT 424720
57	30	_	0.3	47	0.5	44	46	55	45 200	99 100	8 500	LRT 424730
62	30	30.5	0.6	48	0.5	46	47	58	56 300	99 500	8 500	LRT 424830
62	30	30.5	0.6	48	0.5	46	47	58	72 700	154 000	3 000	LRTZ 424830
62	25	_	0.3	50	0.5	47	49	60	43 000	85 300	8 000	LRT 455025
62	35		0.3	50	1	47	49	60	58 000	125 000	8 000	LRT 455035
64	30	30.5	0.6	50	1	49	49.5	60	57 700	104 000	8 000	LRT 455030
68	22	_	0.6	52	0.5	49	51	64	43 500	73 300	7 500	LRT 455222
68	40		0.6	52	0.3	49	51	64	74 600	147 000	7 500	LRT 455240
64	30	30.5	0.6	50	_	49	49.5	60	74 600	158 000	3 000	LRTZ 455030

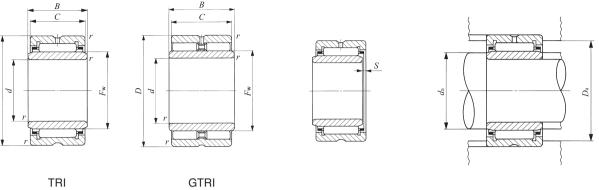
TAFI

TRI BRI


MACHINED TYPE NEEDLE ROLLER BEARINGS


With Inner Ring

NA49 TAFI NA69


Shaft dia. 50 – 70mm

Shaft	Identification number											
dia.	NA 49	NA 69	NA 48	TAFI	TRI	GTRI	g	d				
	— — NA 4910	_ _ _	— — —	TAFI 506825 TAFI 506835		 	270 365 295	50 50 50				
50	_	NA 6910		_	_	_	530	50				
	_ _	_ _		_ _	TRI 507745	— GTRI 507745	755 825	50 50				
55	— — NA 4911 —	— — — NA 6911	— — —	TAFI 557225 TAFI 557235			275 380 410 730	55 55 55 55				
		_		_	TRI 558138	GTRI 558138	650 710	55 55				
60	NA 4912	 NA 6912	_ _ _ _	TAFI 608225 TAFI 608235	_ _ _ _	_ _ _ _	395 560 440 785	60 60 60				
	_ _	_	_ _	_	TRI 608945	 GTRI 608945	960 1 050	60 60				
65	NA 4913 —	 NA 6913	_ _ _	TAFI 659035	_ _ _	_ _ _	470 710 840	65 65 65				
70	— NA 4914 —	 NA 6914	_ _ _ _	TAFI 709525 TAFI 709535	— — — —	_ _ _ _	540 755 765 1 400	70 70 70 70				

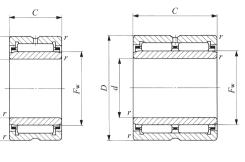
Minimum allowable value of chamfer dimension \boldsymbol{r} Notes(1)

Allowable axial shift amount of inner ring to outer ring Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

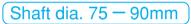
Remarks1. The outer ring has an oil groove and an oil hole.

	+
3	Da

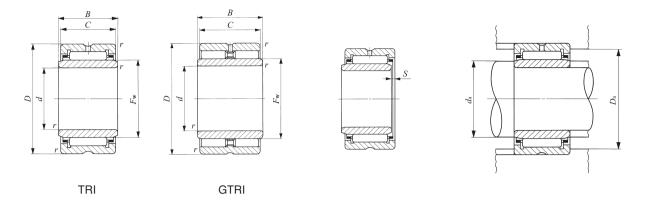
В	ounda	ary dim	ension	s m	m		lard mou	inting mm	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
D	C	В	$r_{\rm s min}^{(1)}$	F_{w}	(2) S	d Min.	^a Max.	$D_{ m a}$ Max.	<i>C</i> N	<i>C</i> ₀	speed(3)	
68 68 72 72 77	25 35 22 40 45	 45.5	0.3 0.3 0.6 0.6	55 55 58 58	0.5 1 0.5 0.3	52 52 54 54 55	54 54 57 57	66 66 68 68 72	45 400 61 200 46 200 79 200 104 000	94 000 138 000 82 100 164 000 191 000	7 500 7 500 7 000 7 000 7 000	LRT 505525 LRT 505535 LRT 505822 LRT 505840 LRT 505845
77 72 72 80 80	45 25 35 25 45	45.5 — — — —	1 0.3 0.3 1 1	58 60 60 63 63	0.5 1 1 0.5	55 57 57 60 60	57 59 59 61 61	72 70 70 75 75	135 000 47 500 64 100 57 600 98 700	280 000 103 000 151 000 97 200 194 000	2 500 6 500 6 500 6 500 6 500	LRTZ 505845 LRT 556025 LRT 556035 LRT 556325 LRT 556345
81 81	38 38	38.5 38.5	1 1	62 62	1.5 —	60 60	60.5 60.5	76 76	92 000 118 000	166 000 241 000	6 500 2 500	LRT 556238 LRTZ 556238
82 82 85 85	25 35 25 45	_ _ _ _	0.6 0.6 1 1	68 68 68	0.3 1 1 0.5	64 64 65 65	66 66 66	78 78 80 80	54 800 72 000 60 200 103 000	117 000 166 000 105 000 211 000	6 000 6 000 6 000 6 000	LRT 606825 LRT 606835 LRT 606825-1 LRT 606845
89 89	45 45	45.5 45.5	1 1	70 70	2	65 65	68 68	84 84	114 000 147 000	228 000 336 000	5 500 2 000	LRT 607045 LRTZ 607045
90 90 90	25 35 45	_ _ _	1 1 1	72 73 72	1 1 0.5	70 70 70	70.5 71 70.5	85 85 85	62 700 80 400 108 000	113 000 181 000 227 000	5 500 5 500 5 500	LRT 657225 LRT 657335 LRT 657245
95 95 100 100	25 35 30 54		1 1 1	80 80 80 80	0.3 1 1.5 1	75 75 75 75	78 78 78 78	90 90 95 95	59 400 78 100 83 200 134 000	137 000 195 000 158 000 311 000	5 000 5 000 5 000 5 000	LRT 708025 LRT 708035 LRT 708030 LRT 708054


MACHINED TYPE NEEDLE ROLLER BEARINGS

With Inner Ring



NA49 TAFI NA69


				Identification numb	per		Mass (Ref.)	
Shaft dia. mm	NA 49	NA 69	NA 48	TAFI	TRI	GTRI	g (Ref.)	d
75	NA 4915 — — — —	 NA 6915 		TAFI 7510525 — TAFI 7510535 —	TRI 7510845	— — — — GTRI 7510845	675 810 945 1 480 1 340 1 440	75 75 75 75 75 75
80	NA 4916	 NA 6916	— — — —	TAFI 8011025 TAFI 8011035	— — — —	— — — —	710 855 995 1 560	80 80 80
85	NA 4917	 NA 6917	— — —	TAFI 8511526 TAFI 8511536	_ _ _ _	_ _ _ _	775 1 080 1 280 2 340	85 85 85 85
00	_ _ _ _	— — —	— — —	_ _ _ _	TRI 8511850 TRI 8512045	GTRI 8511850 GTRI 8512045	1 640 1 610 1 780 1 720	85 85 85 85
90	— NA 4918		_ _ _	TAFI 9012026 TAFI 9012036	_ _ _		820 1 140 1 350	90 90 90
	_ _ _	NA 6918	_ _ _	_ _ _	TRI 9012550 — —	GTRI 9012550	1 870 2 460 2 020	90 90 90

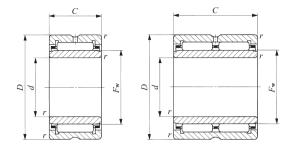
 $\mathsf{Notes}(^1)$ Minimum allowable value of chamfer dimension r

Allowable axial shift amount of inner ring to outer ring

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. The outer ring has an oil groove and an oil hole.

Вс	ounda	ary dim	ensior	ns m	m		lard mou ensions	inting mm	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
					0				C	C_0	speed(3)	
D	C	В	r (1)	F	$\begin{pmatrix} 2 \\ S \end{pmatrix}$	d Min.	a Max.	D_{a}	C	C 0	,	
D	C	D	$r_{\rm s min}$	l W	٥	IVIIII.	iviax.	Max.	N	N	rpm	
105	25	_	1	85	0.5	80	83	100	76 300	145 000	4 500	LRT 758525
105	30	_	1	85	1.5	80	83	100	86 200	169 000	4 500	LRT 758530
105	35	_	1	85	1.5	80	83	100	102 000	210 000	4 500	LRT 758535
105	54	_	1	85	1	80	83	100	138 000	331 000	4 500	LRT 758554
108	45	45.5	1	83	2.5	80	81	103	146 000	270 000	5 000	LRT 758345
108	45	45.5	1	83	_	80	81	103	190 000	396 000	1 800	LRTZ 758345
110	25	_	1	90	0.5	85	88	105	77 300	150 000	4 500	LRT 809025
110	30	_	1	90	1.5	85	88	105	87 300	175 000	4 500	LRT 809030
110	35	_	1	90	1.5	85	88	105	103 000	217 000	4 500	LRT 809035
110	54	_	1	90	1	85	88	105	143 000	351 000	4 500	LRT 809054
115	26	_	1	95	1	90	93	110	79 700	159 000	4 000	LRT 859526
115	36	_	1	95	2	90	93	110	106 000	231 000	4 000	LRT 859536
120	35	_	1.1	100	1	91.5	98	113.5	110 000	244 000	4 000	LRT 8510035
120	63	_	1.1	100	0.5	91.5	98	113.5	173 000	467 000	4 000	LRT 8510063
118	50	50.5	1	93	3	90	91	113	165 000	329 000	4 500	LRT 859350
120	45	45.5	1.5	95	2.5	93	93.5	112	155 000	305 000	4 000	LRT 859545
118	50	50.5	1	93	—	90	91	113	224 000	509 000	1 600	LRTZ 859350
120	45	45.5	1.5	95	_	93	93.5	112	204 000	455 000	1 600	LRTZ 859545
120	26	_	1	100	1	95	98	115	82 400	168 000	4 000	LRT 9010026
120	36	_	1	100	2	95	98	115	110 000	244 000	4 000	LRT 9010036
125	35	_	1.1	105	1	96.5	103	118.5	113 000	258 000	4 000	LRT 9010535
125	50	50.5	1.5	100	3	98	98.5	117	172 000	355 000	4 000	LRT 9010050
125	63	_	1.1	105	0.5	96.5	103	118.5	178 000	490 000	4 000	LRT 9010563
125	50	50.5	1.5	100	_	98	98.5	117	234 000	549 000	1 500	LRTZ 9010050

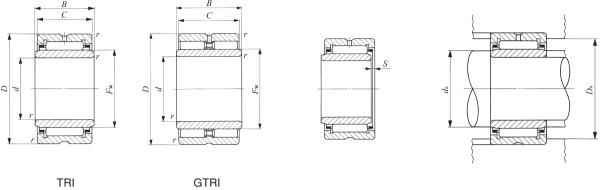

MACHINED TYPE NEEDLE ROLLER BEARINGS

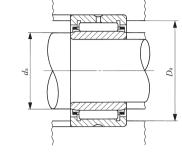
With Inner Ring

NA49 TAFI NA48

NA69

Shaft dia. 95 — 150mm


Shaft				Identification numb	per		Mass (Ref.)	
dia.	NA 49	NA 69	NA 48	TAFI	TAFI TRI GTRI			
95	NA 4919	 NA 6919	_ _ _	TAFI 9512526 TAFI 9512536	_ _ _ _	 	860 1 190 1 420 2 580	95 95 95 95
	_	_		TAFI 10013030 TAFI 10013040	_	_	1 040 1 380	100 100
100	NA 4920	_		_ _ _	TRI 10013550	GTRI 10013550	2 040 1 960 2 200	100 100 100
105	_	_		_	TRI 10515350	 GTRI 10515350	3 020 3 270	105 105
110	 NA 4922	_	NA 4822	_		_	1 200 2 120	110 110
120	— NA 4924		NA 4824 —	<u> </u>	_ _		1 300 2 960	120 120
125	_			_	TRI 12517860	 GTRI 12517860	4 780 5 180	125 125
130	 NA 4926	_	NA 4826	_		_	1 960 4 030	130 130
135	_	_	_	_	TRI 13518860	 GTRI 13518860	5 100 5 530	135 135
140	— NA 4928	_	NA 4828		_	_	2 100 4 290	140 140
150	 NA 4930	_	NA 4830	_			2 880 6 380	150 150


Minimum allowable value of chamfer dimension \boldsymbol{r} Notes(1)

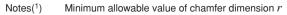
Allowable axial shift amount of inner ring to outer ring

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. The outer ring has an oil groove and an oil hole.

Во	ounda	ary dim	ension	is m	m		lard mou	nting mm	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
D	С	В	$r_{\rm s min}^{(1)}$	F_{w}	(2) S	d Min.	^a Max.	D_{a} Max.	C N	<i>C</i> ₀	speed(³)	
125	26	_	1	105	1	100	103	120	84 700	178 000	4 000	LRT 9510526
125	36	_	1	105	2	100	103	120	113 000	258 000	4 000	LRT 9510536
130	35	_	1.1	110	1	101.5	108	123.5	116 000	271 000	3 500	LRT 9511035
130	63	_	1.1	110	0.5	101.5	108	123.5	182 000	514 000	3 500	LRT 9511063
130	30	_	1	110	0.5	105	108	125	106 000	240 000	3 500	LRT 10011030
130	40		1	110	1.5	105	108	125	134 000	324 000	3 500	LRT 10011040
135	50	50.5	1.5	110	3	108	108.5	127	183 000	395 000	3 500	LRT 10011050
140	40	—	1.1	115	1	106.5	113	133.5	145 000	329 000	3 500	LRT 10011540
135	50	50.5	1.5	110	—	108	108.5	127	245 000	603 000	1 400	LRTZ 10011050
153	50	50.5	1.5	115	3	113	113.5	145	233 000	414 000	3 500	LRT 10511550
153	50	50.5	1.5	115		113	113.5	145	315 000	614 000	1 300	LRTZ 10511550
140 150	30 40	_	1 1.1	120 125	1	115 116.5	118 123	135 143.5	93 200 152 000	239 000 357 000	3 500 3 000	LRT 11012030 LRT 11012540
150 165	30 45	_	1 1.1	130 135	1 2	125 126.5	128 133	145 158.5	96 900 187 000	259 000 435 000	3 000 3 000	LRT 12013030 LRT 12013545
178	60	60.5	1.5	140	2.5	133	138	170	307 000	625 000	3 000	LRT 12514060
178	60	60.5	1.5	140		133	138	170	409 000	923 000	1 100	LRTZ 12514060
165	35	_	1.1	145	1	136.5	143	158.5	116 000	340 000	3 000	LRT 13014535
180	50		1.5	150	2.5	138	148	172	215 000	540 000	2 500	LRT 13015050
188	60	60.5	1.5	150	2.5	143	148	180	320 000	675 000	2 500	LRT 13515060
188	60	60.5	1.5	150		143	148	180	423 000	989 000	1 000	LRTZ 13515060
175	35	_	1.1	155	1	146.5	153	168.5	120 000	363 000	2 500	LRT 14015535
190	50		1.5	160	2.5	148	158	182	224 000	580 000	2 500	LRT 14016050
190	40	_	1.1	165	1.5	156.5	163	183.5	168 000	446 000	2 500	LRT 15016540
210	60		2	170	3	159	168	201	324 000	712 000	2 500	LRT 15017060

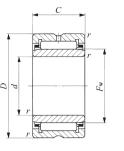
TAFI TRI

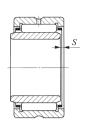

MACHINED TYPE NEEDLE ROLLER BEARINGS

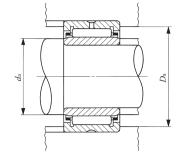
With Inner Ring

Shaft dia. 160 — 340mm

Shaft			I	dentification numbe	r		Mass (Ref.)	
dia.	NA 49	NA 69	NA 48	TAFI	TRI	GTRI	g	d
160	 NA 4932		NA 4832		<u> </u>		3 050 6 750	
170	 NA 4934	_	NA 4834	_		_	4 120 7 110	
180	 NA 4936	_ _	NA 4836 —	<u> </u>	<u> </u>	<u> </u>	4 340 10 200	
190	— NA 4938		NA 4838 —	<u> </u>	<u> </u>	<u> </u>	5 760 10 700	
200	— NA 4940	_	NA 4840 —		<u> </u>	<u> </u>	6 040 15 400	
220	— NA 4944	_	NA 4844 —	_ _	_ _	<u> </u>	6 570 16 700	
240	— NA 4948	_	NA 4848 —		<u> </u>	<u> </u>	10 200 18 000	
260	— NA 4952	_ _	NA 4852 —	_ _	_ _	_ _	11 000 31 100	
280	— NA 4956	_ _	NA 4856 —	<u> </u>	<u> </u>	<u> </u>	15 800 33 100	
300	 NA 4960	_ _	NA 4860 —	<u> </u>	<u> </u>	<u> </u>	22 300 51 400	
320	 NA 4964	_	NA 4864 —	_	_	_	23 700 54 400	
340	 NA 4968	_	NA 4868	_			25 000 57 300	




Allowable axial shift amount of inner ring to outer ring


Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. The outer ring has an oil groove and an oil hole.

2. No grease is prepacked. Perform proper lubrication.

NA49 NA48

3

380 4

353

377

447

1 220 000 | 3 020 000

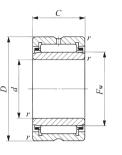
460 118

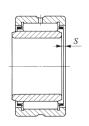
Boundary dimensions mm Standard mo												
В	ounda	ry dim	nensior	ns m	m		lard mou ensions	ınting mm	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
			(1)	I	(2)	d		D_{a}	C	C_0	speed(3)	
D	C	В	$r_{\rm s min}$	$F_{\rm w}$	Š	Min.	^a Max.	Max.	N	N	rpm	
200	40	_	1.1	175	1.5	166.5	173	193.5	173 000	474 000	2 500	LRT 16017540
220	60	_	2	180	3	169	178	211	337 000	761 000	1 900	LRT 16018060
215	45	_	1.1	185	1.5	176.5	183	208.5	211 000	567 000	1 900	LRT 17018545
230	60	_	2	190	3	179	188	221	347 000	810 000	1 900	LRT 17019060
225	45	_	1.1	195	1.5	186.5	193	218.5	218 000	602 000	1 900	LRT 18019545
250	69	_	2	205	3	189	203	241	434 000	989 000	1 900	LRT 18020569
240	50	_	1.5	210	1.5	198	208	232	249 000	726 000	1 800	LRT 19021050
260	69	_	2	215	3	199	213	251	440 000	1 020 000	1 700	LRT 19021569
250	50	_	1.5	220	1.5	208	218	242	255 000	766 000	1 600	LRT 20022050
280	80	_	2.1	225	4	211	223	269	518 000	1 120 000	1 600	LRT 20022580
270	50	_	1.5	240	1.5	228	238	262	266 000	833 000	1 500	LRT 22024050
300	80	_	2.1	245	4	231	243	289	536 000	1 200 000	1 400	LRT 22024580
300	60	_	2	265	2	249	262	291	345 000	1 150 000	1 300	LRT 24026560
320	80		2.1	265	4	251	262	309	565 000	1 320 000	1 300	LRT 24026580
320	60	_	2	285	2	269	282	311	354 000	1 220 000	1 100	LRT 26028560
360	100	_	2.1	290	4	271	287	349	847 000	1 900 000	1 100	LRT 260290100
350	69	_	2	305	2.5	289	302	341	486 000	1 550 000	950	LRT 28030569
380	100	_	2.1	310	4	291	307	369	877 000	2 040 000	950	LRT 280310100
380	80		2.1	330	2.5	311	327	369	610 000	1 900 000	900	LRT 30033080
420	118		3	340	4	313	337	407	1 130 000	2 650 000	850	LRT 300340118
400	80	_	2.1	350	2.5	331	347	389	635 000	2 040 000	750	LRT 32035080
440	118		3	360	4	333	357	427	1 170 000	2 830 000	750	LRT 320360118
420	80	_	2.1	370	2.5	351	367	409	651 000	2 140 000	700	LRT 34037080

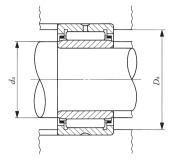
700

LRT 340380118

MACHINED TYPE NEEDLE ROLLER BEARINGS


With Inner Ring




Shaft dia. 360 — 440mm

Shaft				Identification num	ber		Mass (Ref.)	
dia. mm	NA 49	NA 69	NA 48	TAFI	TRI	GTRI	g	d
360	NA 4972		NA 4872 —		_	_	26 400 60 200	360 360
380	 NA 4976	_	NA 4876 —	<u> </u>			44 600 90 300	1
400	NA 4980	_	_	_	_	_	94 400	400
420	NA 4984	—	_			_	98 500	420
440	NA 4988						131 000	440

Notes(1)	Minimum allowable value of chamfer dimension r
----------	--

NA49 NA48

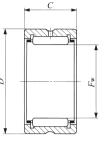
В	ounda	ıry dim	ension	is m	m	Standard mounting dimensions mm			Basic dynamic load rating	Basic static load rating	Allowable rotational speed(3)	Assembled inner ring
D	C	В	$r_{\rm s min}^{(1)}$	F_{w}	S	d Min.	a Max.	D_{a} Max.	C N	$egin{array}{c} C_0 \ N \end{array}$	rpm	
440 480	80 118	_	2.1 3	390 400	2.5 4	371 373	387 397	429 467	680 000 1 260 000	2 320 000 3 200 000	650 600	LRT 36039080 LRT 360400118
480 520			2.1 4	415 430	3 5	391 396	412 427	469 504	951 000 1 540 000	2 860 000 4 030 000	600 500	LRT 380415100 LRT 380430140
540	140	_	4	450	5	416	447	524	1 590 000	4 270 000	500	LRT 400450140
560	140		4	470	5	436	467	544	1 640 000	4 510 000	500	LRT 420470140
600	160	_	4	490	5	456	487	584	1 910 000	5 140 000	400	LRT 440490160

⁽²⁾ Allowable axial shift amount of inner ring to outer ring
(3) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.
Remarks1. The outer ring has an oil groove and an oil hole.
2. No grease is prepacked. Perform proper lubrication.

TAFI TRI

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring, Inch Series


Shaft dia. 15.875 — 47.625mm

		Mass (Ref.)	Boundar	ry dimensions n	nm(inch)	Standard dimension	mounting ons mm
Shaft dia. mm (inch)	ldentification number	g	$F_{ m w}$	D	C	$D_{ m a}$ Max.	$r_{\rm as\ max}^{(1)}$
15.875 (5/8)	BR 101812	49	15.875(⁵ ⁄ ₈)	28.575 (1 ½)	19.050(3/4)	24.5	0.6
19.050 (³ ⁄ ₄)	BR 122012 BR 122016	56 75	19.050 (³ / ₄) 19.050 (³ / ₄)	31.750(1½) 31.750(1½)	19.050 (³ / ₄) 25.400 (1)	26.5 26.5	1
22.225 (7/8)	BR 142212 BR 142216	63 84.5	22.225(½) 22.225(½)	34.925(1 ³ / ₈) 34.925(1 ³ / ₈)	19.050 (³ / ₄) 25.400 (1)	29.7 29.7	1
25.400 (1)	BR 162412 BR 162416	69 92.5	25.400(1) 25.400(1)	38.100(1½) 38.100(1½)	19.050 (³ / ₄) 25.400 (1)	32.9 32.9	1
28.575 (1 ¹ / ₈)	BR 182616 BR 182620	102 128	28.575(1½) 28.575(1½)	41.275 (1 ½) 41.275 (1 ½)	25.400(1) 31.750(1½)	36 36	1 1
31.750 (1 ¹ ⁄ ₄)	BR 202816 BR 202820	110 138	31.750(1½) 31.750(1½)	44.450 (1 ³ ⁄ ₄) 44.450 (1 ³ ⁄ ₄)	25.400(1) 31.750(1½)	39.2 39.2	1 1
34.925 (1 ³ / ₈)	BR 223016 BR 223020	119 149	34.925 (1 ³ / ₈) 34.925 (1 ³ / ₈)	47.625(1½) 47.625(1½)	25.400(1) 31.750(1½)	42.4 42.4	1 1
38.100 (1½)	BR 243316 BR 243320	149 187	38.100(1½) 38.100(1½)	52.388 (2½6) 52.388 (2½6)	25.400(1) 31.750(1½)	45.1 45.1	1.5 1.5
41.275 (1 ⁵ / ₈)	BR 263516 BR 263520	158 199	41.275 (1 ½) 41.275 (1 ½)	55.562 (2 ½) 55.562 (2 ½)	25.400(1) 31.750(1½)	48.3 48.3	1.5 1.5
44.450 (1 ³ ⁄ ₄)	BR 283716 BR 283720 BR 283820	170 215 250	44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾)	58.738 (2 $\frac{5}{16}$) 58.738 (2 $\frac{5}{16}$) 60.325 (2 $\frac{3}{8}$)	25.400(1) 31.750(1½) 31.750(1½)	51.5 51.5 53.1	1.5 1.5 1.5
47.625 (1 ⁷ / ₈)	BR 303920	225	47.625 (1 ½)	61.912 (2 ½)	31.750(11/4)	54.7	1.5

housing

(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks1. The outer ring has an oil groove and an oil hole.

2. No grease is prepacked. Perform proper lubrication.

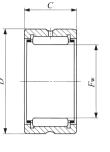
	F. w	
BR		

Basic dynamic load rating C	Basic static load rating C_0	Allowable rotational speed(2)	
N	N	rpm	
18 900	19 700	25 000	
21 700	24 400	20 000	
27 600	33 100	20 000	
23 000	27 100	18 000	
29 100	36 800	18 000	
25 300	31 900	16 000	
32 100	43 300	16 000	
34 900	49 900	14 000	
43 200	65 600	14 000	
36 000	53 500	13 000	
44 600	70 300	13 000	
38 500	60 000	11 000	
47 700	78 900	11 000	
43 700	66 900	11 000	
54 200	88 200	11 000	
44 800	70 900	9 500	
55 600	93 400	9 500	
47 500	78 200	9 000	
58 900	103 000	9 000	
58 900	103 000	9 000	
60 100	108 000	8 500	

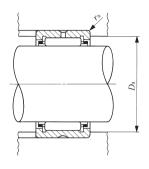
TRI

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring, Inch Series



Shaft dia. 50.800 — 101.600mm


		Mass (Ref.)	Boundar	ry dimensions m	nm(inch)	Standard mounting dimensions mm		
Shaft dia. mm (inch)	Identification number	g	${F}_{ m w}$	D	C	$D_{ m a}$ Max.	$r_{\rm as\ max}^{(1)}$	
50.800 (2)	BR 324116 BR 324120	190 240	50.800 (2) 50.800 (2)	65.088 (2 ½) 65.088 (2 ½)	25.400(1) 31.750(1 ¹ / ₄)	57.8 57.8	1.5 1.5	
57.150 (2 ¹ ⁄ ₄)	BR 364824 BR 364828	435 510	57.150 (2 ½) 57.150 (2 ½)	76.200(3) 76.200(3)	38.100(1½) 44.450(1¾)	69 69	1.5 1.5	
63.500 (2½)	BR 405224 BR 405228	475 555	63.500 (2 ½) 63.500 (2 ½)	82.550 (3 ½) 82.550 (3 ½)	38.100(1½) 44.450(1¾)	74.3 74.3	2 2	
69.850 (2 ³ ⁄ ₄)	BR 445624 BR 445628	510 600	69.850 (2 ³ ⁄ ₄) 69.850 (2 ³ ⁄ ₄)	88.900 (3 ½) 88.900 (3 ½)	38.100(1½) 44.450(1¾)	80.7 80.7	2 2	
76.200 (3)	BR 486024 BR 486028	555 650	76.200 (3) 76.200 (3)	95.250 (3 ³ / ₄) 95.250 (3 ³ / ₄)	38.100(1½) 44.450(1¾)	87 87	2 2	
82.550 (3 ¹ ⁄ ₄)	BR 526828 BR 526832	990 1 140	82.550 (3 ½) 82.550 (3 ½)	107.950 (4 ½) 107.950 (4 ½)	44.450 (1 ³ ⁄ ₄) 50.800 (2)	99.7 99.7	2 2	
88.900 (3½)	BR 567232	1 220	88.900 (3 ½)	114.300 (4 1/2)	50.800(2)	106.1	2	
95.250 (3 ³ ⁄ ₄)	BR 607632	1 290	95.250 (3 ³ ⁄ ₄)	120.650(4¾)	50.800(2)	111.4	2.5	
101.600 (4)	BR 648032	1 370	101.600(4)	127.000(5)	50.800(2)	117.8	2.5	

Notes(1) Maximum permissible corner radius of the house

(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks1. In bearings with a roller set bore diameter $F_{\rm W}$ of 69.850 mm or less, the outer ring has an oil groove and an oil hole. In others, the outer ring has an oil groove and two oil holes.

Basic dynamic load rating	Basic static load rating C_{0}	Allowable rotational speed(2)	
N	N	rpm	
51 000 63 200	89 400 118 000	8 000 8 000	
90 300 105 000	158 000 191 000	7 000 7 000	
94 600 110 000	174 000 210 000	6 500 6 500	
98 700 114 000	189 000 228 000	5 500 5 500	
105 000 122 000	211 000 255 000	5 500 5 500	
141 000 154 000	259 000 290 000	5 000 5 000	
162 000	316 000	4 500	
169 000	342 000	4 000	
176 000	368 000	4 000	

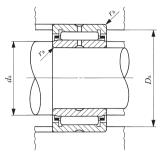
^{2.} No grease is prepacked. Perform proper lubrication.

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Inner Ring, Inch Series

Shaft dia. 9.525 — 41.275mm


				_					
01 6 11		Mass (Ref.)	Boundary dimensions mm(inch)						
Shaft dia. mm (inch)	ldentification number	g	d	D	C	В	F_{w}	S (1)	
9.525 (3/8)	BRI 61812	67.5	9.525(3/8)	28.575 (1 ½)	19.050(3/4)	19.300	15.875(3/8)	0.3	
12.700 (½)	BRI 82012 BRI 82016	79.5 106	12.700 (½) 12.700 (½)	31.750(1½) 31.750(1½)	19.050 (³ / ₄) 25.400 (1)	19.300 25.650	19.050(³ / ₄) 19.050(³ / ₄)	0.3 0.5	
15.875 (5/8)	BRI 102212 BRI 102216	91 122	15.875 (½) 15.875 (½)	34.925 (1 ³ / ₈) 34.925 (1 ³ / ₈)	19.050 (³ / ₄) 25.400 (1)	19.300 25.650	22.225(½) 22.225(½)	0.3 0.5	
19.050 (³ ⁄ ₄)	BRI 122412 BRI 122416	102 136	19.050 (³ / ₄) 19.050 (³ / ₄)	38.100(1½) 38.100(1½)	19.050 (³ / ₄) 25.400 (1)	19.300 25.650	25.400(1) 25.400(1)	0.3 0.5	
22.225 (7/ ₈)	BRI 142616 BRI 142620	152 190	22.225 (½) 22.225 (½)	41.275 (1 ½) 41.275 (1 ½)	25.400(1) 31.750(1 ¹ / ₄)	25.650 32.000	28.575(1½) 28.575(1½)	0.5 0.5	
25.400 (1)	BRI 162816 BRI 162820	166 210	25.400(1) 25.400(1)	44.450 (1 ³ ⁄ ₄) 44.450 (1 ³ ⁄ ₄)	25.400(1) 31.750(1½)	25.650 32.000	31.750(1½) 31.750(1½)	0.5 0.5	
28.575 (1 ¹ / ₈)	BRI 183016 BRI 183020	182 225	28.575 (1 ½) 28.575 (1 ½)	47.625 (1 ½) 47.625 (1 ½)	25.400(1) 31.750(1½)	25.650 32.000	34.925(1 ³ / ₈) 34.925(1 ³ / ₈)	0.5 0.5	
31.750 (1 ¹ / ₄)	BRI 203316 BRI 203320	220 275	31.750(1½) 31.750(1½)	52.388 (2 ½) 52.388 (2 ½)	25.400(1) 31.750(1 ¹ / ₄)	25.650 32.000	38.100(1½) 38.100(1½)	0.5 0.5	
34.925 (1 ³ / ₈)	BRI 223516 BRI 223520	235 295	34.925 (1 ³ / ₈) 34.925 (1 ³ / ₈)	55.562 (2 ³ / ₁₆) 55.562 (2 ³ / ₁₆)	25.400(1) 31.750(1½)	25.650 32.000	41.275(1½) 41.275(1½)	0.5 0.5	
38.100 (1½)	BRI 243716 BRI 243720 BRI 243820 BRI 243920	250 315 350 380	38.100(1½) 38.100(1½) 38.100(1½) 38.100(1½)	58.738 (2 ½6) 58.738 (2 ½6) 60.325 (2 ½6) 61.912 (2 ½6)	25.400(1) 31.750(1½) 31.750(1½) 31.750(1½)	25.650 32.000 32.000 32.000	44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾) 47.625 (1 ¾)	0.5 0.5 0.5 0.5	
41.275 (1 ⁵ / ₈)	BRI 264116 BRI 264120	325 410	41.275 (1 ½) 41.275 (1 ½)	65.088 (2 ½) 65.088 (2 ½)	25.400(1) 31.750(1 ¹ / ₄)	25.650 32.000	50.800 (2) 50.800 (2)	0.5 0.5	


Allowable axial shift amount of inner ring to outer ring Notes(1)

Maximum permissible corner radius of the shaft or housing

(3) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks1. The inner ring and the outer ring each have an oil groove and an oil hole.

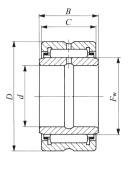
	tandard dimensio			Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
	! a	۱ ـ	(2)	C	C_0	speed(3)	
Min.	Max.	$D_{ m a}$ Max.	$r_{\rm as\ max}$	N	N	rpm	
14	14.5	24.5	0.6	18 900	19 700	25 000	LRB 61012
17.5	18	26.5	1	21 700	24 400	20 000	LRB 81212
17.5	18	26.5	1	27 600	33 100	20 000	LRB 81216
21	21.2	29.7	1	23 000	27 100	18 000	LRB 101412
21	21.2	29.7		29 100	36 800	18 000	LRB 101416
24	24.4	32.9	1	25 300	31 900	16 000	LRB 121612
24	24.4	32.9		32 100	43 300	16 000	LRB 121616
27	27.5	36	1	34 900	49 900	14 000	LRB 141816
27	27.5	36		43 200	65 600	14 000	LRB 141820
30.5	30.7	39.2	1	36 000	53 500	13 000	LRB 162016
30.5	30.7	39.2	1	44 600	70 300	13 000	LRB 162020
33.5	33.9	42.4	1	38 500	60 000	11 000	LRB 182216
33.5	33.9	42.4	1	47 700	78 900	11 000	LRB 182220
37	37.1	45.1	1.5	43 700	66 900	11 000	LRB 202416
37	37.1	45.1	1.5	54 200	88 200	11 000	LRB 202420
40.2	40.2	48.3	1.5	44 800	70 900	9 500	LRB 222616
40.2	40.2	48.3	1.5	55 600	93 400	9 500	LRB 222620
43.3	43.4	51.5	1.5	47 500	78 200	9 000	LRB 242816
43.3	43.4	51.5	1.5	58 900	103 000	9 000	LRB 242820
43.3	43.4	53.1	1.5	58 900	103 000	9 000	LRB 242820
43.3	43.4	54.7	1.5	60 100	108 000	8 500	LRB 243020
48	49	57.8	1.5	51 000	89 400	8 000	LRB 263216
48	49	57.8	1.5	63 200	118 000	8 000	LRB 263220

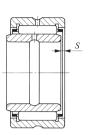
TAFI TRI

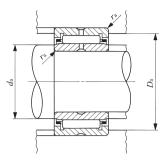
MACHINED TYPE NEEDLE ROLLER BEARINGS

With Inner Ring, Inch Series

Shaft dia. 44.450 — 88.900mm


		Mass		D			I- \	
Shaft dia.	Identification	(Ref.)		Bounda	ary dimensions	s mm(inc	n)	
mm (inch)	number	g	d	D	C	В	F_{w}	S(1)
44.450 (1 ³ / ₄)	BRI 284824 BRI 284828	735 855	44.450 (1 ³ ⁄ ₄) 44.450 (1 ³ ⁄ ₄)	76.200(3) 76.200(3)	38.100(1½) 44.450(1¾)	38.350 44.700	57.150 (2 ½) 57.150 (2 ½)	1
50.800 (2)	BRI 325224 BRI 325228	810 945	50.800 (2) 50.800 (2)	82.550 (3 ½) 82.550 (3 ½)	38.100(1½) 44.450(1¾)	38.350 44.700	63.500 (2 ½) 63.500 (2 ½)	1 1
57.150 (2 ¹ ⁄ ₄)	BRI 365624 BRI 365628	885 1 040	57.150(2½) 57.150(2½)	88.900 (3 ½) 88.900 (3 ½)	38.100(1½) 44.450(1¾)	38.350 44.700	69.850 (2 ³ ⁄ ₄) 69.850 (2 ³ ⁄ ₄)	1
63.500 (2½)	BRI 406024 BRI 406028	965 1 130	63.500 (2 ½) 63.500 (2 ½)	95.250 (3 ³ / ₄) 95.250 (3 ³ / ₄)	38.100(1½) 44.450(1¾)	38.350 44.700	76.200 (3) 76.200 (3)	1
69.850 (2 ³ ⁄ ₄)	BRI 446828 BRI 446832	1 520 1 740	69.850 (2 ³ ⁄ ₄) 69.850 (2 ³ ⁄ ₄)	107.950(4½) 107.950(4½)	44.450 (1 ³ ⁄ ₄) 50.800 (2)	44.700 51.050	82.550 (3 ½) 82.550 (3 ½)	1.5 3
76.200 (3)	BRI 487232	1 860	76.200 (3)	114.300(4½)	50.800 (2)	51.050	88.900 (3 ½)	3
82.550 (3 ¹ ⁄ ₄)	BRI 527632	1 980	82.550 (3 ½)	120.650(4¾)	50.800(2)	51.050	95.250 (3 ³ ⁄ ₄)	3
88.900 (3½)	BRI 568032	2 120	88.900 (3 ½)	127.000(5)	50.800(2)	51.050	101.600(4)	3


Notes(1)	Allowable axial shift amount of inner ring to outer ring


(2) Maximum permissible corner radius of the shaft or housing
(3) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. In bearings with a bearing bore diameter, d, of 57.150 mm or less, the outer ring has an oil groove and an oil hole. In bearings with a bearing bore diameter, d, of 76.200 mm or less, the inner ring has an oil groove and an oil hole. In others, the inner ring and the outer ring each have an oil groove and two oil holes.

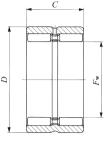
2. No grease is prepacked. Perform proper lubrication.

	b	3	H

	Standard mounting dimensions mm		dimensions mm			load rating load rating rotational			Assembled inner ring
d	a	D_{a}	$r_{\rm as\ max}^{(2)}$	C	C_0	speed(3)			
Min.	Max.	Max.	us mun	N	N	rpm			
52.5 52.5	55 55	69 69	1.5 1.5	90 300 105 000	158 000 191 000	7 000 7 000	LRB 283624 LRB 283628		
58 58	61 61	74.3 74.3	2 2	94 600 110 000	174 000 210 000	6 500 6 500	LRB 324024 LRB 324028		
65 65	67 67	80.7 80.7	2 2	98 700 114 000	189 000 228 000	5 500 5 500	LRB 364424 LRB 364428		
71 71	73 73	87 87	2 2	105 000 122 000	211 000 255 000	5 500 5 500	LRB 404824 LRB 404828		
77 77	79 79	99.7 99.7	2 2	141 000 154 000	259 000 290 000	5 000 5 000	LRB 445228 LRB 445232		
83.5	86	106.1	2	162 000	316 000	4 500	LRB 485632		
91	93	111.4	2.5	169 000	342 000	4 000	LRB 526032		
97	99	117.8	2.5	176 000	368 000	4 000	LRB 566432		

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring, Inch Series


Shaft dia. 15.875 — 50.800mm

		Mass (Ref.)		mounting ons mm			
Shaft dia. mm (inch)	Identification number	g	F_{w}	D	C	$D_{ m a}$ Max.	$r_{\rm as\ max}$
15.875 (5/8)	GBR 101812	55.5	15.875(⁵ ⁄ ₈)	28.575 (1½)	19.050(3/4)	24.5	0.6
19.050 (³ ⁄ ₄)	GBR 122012	63	19.050(3/4)	31.750 (1½)	19.050(3/4)	27	0.6
22.225 (7/8)	GBR 142212 GBR 142216	71 95.5	22.225(½) 22.225(½)	34.925(1 ³ / ₈) 34.925(1 ³ / ₈)	19.050 (³ / ₄) 25.400 (1)	30 30	0.6 0.6
25.400 (1)	GBR 162412 GBR 162416	79 106	25.400 (1) 25.400 (1)	38.100(1½) 38.100(1½)	19.050 (¾) 25.400 (1)	33.3 33.3	0.6 0.6
28.575 (1 ¹ / ₈)	GBR 182616	117	28.575 (1½)	41.275 (1 ⁵ ⁄ ₈)	25.400 (1)	36.3	0.6
31.750 (1 ¹ ⁄ ₄)	GBR 202816	128	31.750 (1½)	44.450 (1 ³ ⁄ ₄)	25.400 (1)	39.6	0.6
34.925 (1 ³ / ₈)	GBR 223016	137	34.925 (1 ³ / ₈)	47.625 (1½)	25.400 (1)	42.8	0.6
38.100 (1½)	GBR 243316 GBR 243320	168 205	38.100(1½) 38.100(1½)	52.388 (2½6) 52.388 (2½6)	25.400(1) 31.750(1½)	47.3 47.3	0.6 0.6
41.275 (1 ⁵ / ₈)	GBR 263516 GBR 263520	180 220	41.275(1½) 41.275(1½)	55.562 (2 ¾ ₆) 55.562 (2 ¾ ₆)	25.400(1) 31.750(1½)	50.5 50.5	0.6 0.6
44.450 (1 ³ ⁄ ₄)	GBR 283720 GBR 283820	235 275	44.450 (1 ³ ⁄ ₄) 44.450 (1 ³ ⁄ ₄)	58.738(2½) 60.325(2¾)	31.750(1½) 31.750(1½)	53.7 55.3	0.6 0.6
47.625 (1 ⁷ / ₈)	GBR 303920	250	47.625 (1½)	61.912 (2 ½)	31.750 (1 ½)	56.2	1
50.800 (2)	GBR 324116 GBR 324120	215 265	50.800 (2) 50.800 (2)	65.088 (2 ½) 65.088 (2 ½)	25.400(1) 31.750(1½)	59.2 59.2	1

Notes(1)	Maximum per	missible corner	radius	of the	housing

(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks1. The outer ring has an oil groove and an oil hole.

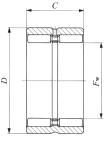
2. No grease is prepacked. Perform proper lubrication.

Basic dynamic load rating	Basic static load rating C_{0}	Allowable rotational speed(2)
N	N	rpm
23 500	28 500	9 500
26 400	34 500	8 000
28 600 38 300	40 100 58 300	7 000 7 000
31 000 41 400	46 100 67 100	6 000 6 000
43 900	75 300	5 500
46 600	83 900	4 500
49 500	91 800	4 500
54 200 64 100	97 700 121 000	4 000 4 000
56 600 67 000	105 000 130 000	3 500 3 500
69 700 69 700	141 000 141 000	3 500 3 500
72 400	150 000	3 000
63 100 74 600	130 000 162 000	3 000 3 000

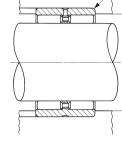
TRI

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring, Inch Series


Shaft dia. 57.150 — 107.950mm

		Mass Boundary dimensions mm(inch) (Ref.)				Standard mounting dimensions mm		
Shaft dia. mm (inch)	Identification number	g	${F}_{ m w}$	D	C	$D_{ m a}$ Max.	$r_{\rm as\ max}^{(1)}$	
57.150 (2 ¹ / ₄)	GBR 364824 GBR 364828	490 580	57.150(2½) 57.150(2½)	76.200(3) 76.200(3)	38.100 (1 ½) 44.450 (1 ¾)	69.2 69.2	1.5 1.5	
63.500 (2½)	GBR 405224 GBR 405228	535 635	63.500 (2 ½) 63.500 (2 ½)	82.550 (3 ½) 82.550 (3 ½)	38.100 (1½) 44.450 (1¾)	75.7 75.7	1.5 1.5	
69.850 (2 ³ ⁄ ₄)	GBR 445624 GBR 445628	585 690	69.850 (2 ³ / ₄) 69.850 (2 ³ / ₄)	88.900 (3 ½) 88.900 (3 ½)	38.100 (1½) 44.450 (1¾)	82 82	1.5 1.5	
76.200 (3)	GBR 486024 GBR 486028	630 745	76.200(3) 76.200(3)	95.250 (3 ³ / ₄) 95.250 (3 ³ / ₄)	38.100 (1½) 44.450 (1¾)	88 88	1.5 1.5	
82.550 (3 ¹ ⁄ ₄)	GBR 526828 GBR 526832	1 100 1 240	82.550 (3 ½) 82.550 (3 ½)	107.950 (4 ½) 107.950 (4 ½)	44.450 (1 ³ ⁄ ₄) 50.800 (2)	99.9 99.9	1.5 1.5	
88.900 (3½)	GBR 567232	1 330	88.900 (3 ½)	114.300 (4 1/2)	50.800 (2)	106.3	1.5	
95.250 (3 ³ ⁄ ₄)	GBR 607632	1 420	95.250(3¾)	120.650(4¾)	50.800 (2)	112.6	1.5	
101.600 (4)	GBR 648032	1 500	101.600(4)	127.000(5)	50.800 (2)	119	1.5	
107.950 (4 ¹ ⁄ ₄)	GBR 688432	1 580	107.950(4½)	133.350 (5 1/4)	50.800 (2)	125.3	1.5	


Notes(1) Maximum permissible corner radius of the hous	ible corner radius of the housing
--	-----------------------------------

(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks1. The outer ring has an oil groove and an oil hole.

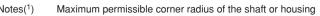
2. No grease is prepacked. Perform proper lubrication.

GBR

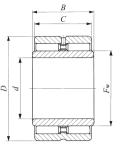
$F_{\mathbf{w}}$	<u>.</u>		

Basic dynamic load rating	Basic static load rating C_{0}	Allowable rotational speed(2)	
N	N	rpm	
113 000 133 000	224 000 276 000	2 500 2 500	
120 000 141 000	248 000 306 000	2 500 2 500	
125 000 147 000	273 000 336 000	2 000 2 000	
131 000 154 000	298 000 368 000	2 000 2 000	
193 000 214 000	396 000 452 000	1 800 1 800	
221 000	488 000	1 700	
228 000	522 000	1 600	
237 000	556 000	1 500	
242 000	590 000	1 400	

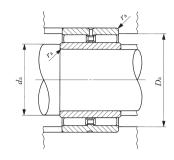
TAFI TRI


MACHINED TYPE NEEDLE ROLLER BEARINGS

With Inner Ring, Inch Series



Shaft dia. 9.525 — 41.275mm


		Mass		Boundary o	dimensions m	m(inch)	
Shaft dia.	Identification	(Ref.)		I	I		I
mm (inch)	number	g	d	D	С	В	F_{w}
9.525 (3/8)	GBRI 61812	74	9.525(3/8)	28.575 (1½)	19.050(3/4)	19.300	15.875(5/8)
12.700 (½)	GBRI 82012	86.5	12.700(½)	31.750 (1½)	19.050(3/4)	19.300	19.050(3/4)
15.875 (⁵ / ₈)	GBRI 102212 GBRI 102216	99 133	15.875(½) 15.875(½)	34.925 (1 ³ / ₈) 34.925 (1 ³ / ₈)	19.050 (³ / ₄) 25.400 (1)	19.300 25.650	22.225(½) 22.225(½)
19.050 (³ ⁄ ₄)	GBRI 122412 GBRI 122416	112 150	19.050(³ / ₄) 19.050(³ / ₄)	38.100(1½) 38.100(1½)	19.050 (³ / ₄) 25.400 (1)	19.300 25.650	25.400 (1) 25.400 (1)
22.225 (7/ ₈)	GBRI 142616	167	22.225(1/8)	41.275 (1 ⁵ / ₈)	25.400 (1)	25.650	28.575 (1 ½)
25.400 (1)	GBRI 162816	184	25.400 (1)	44.450 (1 ³ ⁄ ₄)	25.400 (1)	25.650	31.750 (1½)
28.575 (1 ¹ / ₈)	GBRI 183016	200	28.575(11/8)	47.625 (1½)	25.400 (1)	25.650	34.925 (1 ³ / ₈)
31.750 (1 ¹ ⁄ ₄)	GBRI 203316 GBRI 203320	235 291	31.750(1½) 31.750(1½)	52.388 (2 ½) 52.388 (2 ½)	25.400(1) 31.750(1 ¹ / ₄)	25.650 32.000	38.100(1½) 38.100(1½)
34.925 (1 ³ / ₈)	GBRI 223516 GBRI 223520	255 316	34.925 (1 ³ / ₈) 34.925 (1 ³ / ₈)	55.562 (2 $\frac{3}{16}$) 55.562 (2 $\frac{3}{16}$)	25.400 (1) 31.750 (1 ½)	25.650 32.000	41.275 (1 ½) 41.275 (1 ½)
38.100 (1½)	GBRI 243720 GBRI 243820 GBRI 243920	335 375 410	38.100(1½) 38.100(1½) 38.100(1½)	58.738 (2 ½)6 60.325 (2 ¾) 61.912 (2 ½)6	31.750(1½) 31.750(1½) 31.750(1½)	32.000 32.000 32.000	44.450(1¾) 44.450(1¾) 47.625(1½)
41.275 (1 ⁵ / ₈)	GBRI 264116 GBRI 264120	350 435	41.275 (1 ⁵ / ₈) 41.275 (1 ⁵ / ₈)	65.088 (2 ½) 65.088 (2 ½)	25.400(1) 31.750(1½)	25.650 32.000	50.800(2) 50.800(2)

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

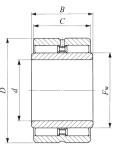
	Standard mounting dimensions mm		Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed (2)	Assembled inner ring	
d		D_{a}	$r_{\rm as\ max}^{(1)}$	C	C 0	οροσα ()	
Min.	Max.	Max.		N	N	rpm	
14	14.5	24.5	0.6	23 500	28 500	9 500	LRBZ 61012
17.5	18	27	0.6	26 400	34 500	8 000	LRBZ 81212
21	21.2	30	0.6	28 600	40 100	7 000	LRBZ 101412
21	21.2	30	0.6	38 300	58 300	7 000	LRBZ 101416
24	24.4	33.3	0.6	31 000	46 100	6 000	LRBZ 121612
24	24.4	33.3	0.6	41 400	67 100	6 000	LRBZ 121616
27	27.5	36.3	0.6	43 900	75 300	5 500	LRBZ 141816
30.5	30.7	39.6	0.6	46 600	83 900	4 500	LRBZ 162016
33.5	33.9	42.8	0.6	49 500	91 800	4 500	LRBZ 182216
37	37.1	47.3	0.6	54 200	97 700	4 000	LRBZ 202416
37	37.1	47.3	0.6	64 100	121 000	4 000	LRBZ 202420
40.2	40.2	50.5	0.6	56 600	105 000	3 500	LRBZ 222616
40.2	40.2	50.5	0.6	67 000	130 000	3 500	LRBZ 222620
43.3	43.4	53.7	0.6	69 700	141 000	3 500	LRBZ 242820
43.3	43.4	55.3	0.6	69 700	141 000	3 500	LRBZ 242820
43.3	45	56.2	1	72 400	150 000	3 000	LRBZ 243020
48	49	59.2	1	63 100	130 000	3 000	LRBZ 263216
48	49	59.2	1	74 600	162 000	3 000	LRBZ 263220

TAFI TRI

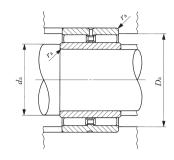
MACHINED TYPE NEEDLE ROLLER BEARINGS

With Inner Ring, Inch Series

Shaft dia. 44.450 — 95.250mm

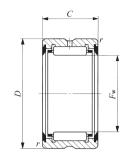

Chaft dia	Identification	Mass (Ref.)						
Shaft dia. mm (inch)	number	g	d	D	C	В	F_{w}	
44.450 (1 ³ / ₄)	GBRI 284824 GBRI 284828	790 925	44.450 (1 ³ ⁄ ₄) 44.450 (1 ³ ⁄ ₄)	76.200(3) 76.200(3)	38.100(1½) 44.450(1¾)	38.350 44.700	57.150(2½) 57.150(2½)	
50.800 (2)	GBRI 325224 GBRI 325228	870 1 030	50.800(2) 50.800(2)	82.550 (3 ½) 82.550 (3 ½)	38.100(1½) 44.450(1¾)	38.350 44.700	63.500 (2 ½) 63.500 (2 ½)	
57.150 (2 ¹ ⁄ ₄)	GBRI 365624 GBRI 365628	955 1 130	57.150(2½) 57.150(2½)	88.900 (3 ½) 88.900 (3 ½)	38.100 (1 ½) 44.450 (1 ¾)	38.350 44.700	69.850 (2 ³ / ₄) 69.850 (2 ³ / ₄)	
$63.500 (2\frac{1}{2})$	GBRI 406024 GBRI 406028	1 040 1 230	63.500(2½) 63.500(2½)	95.250 (3 ³ ⁄ ₄) 95.250 (3 ³ ⁄ ₄)	38.100(1½) 44.450(1¾)	38.350 44.700	76.200(3) 76.200(3)	
69.850 (2 ³ / ₄)	GBRI 446828 GBRI 446832	1 630 1 840	69.850 (2 ¾ ₄) 69.850 (2 ¾ ₄)	107.950 (4 ½) 107.950 (4 ½)	44.450 (1 ³ ⁄ ₄) 50.800 (2)	44.700 51.050	82.550(3½) 82.550(3½)	
76.200 (3)	GBRI 487232	1 970	76.200 (3)	114.300 (4 ½)	50.800(2)	51.050	88.900 (3 ½)	
82.550 (3 ¹ ⁄ ₄)	GBRI 527632	2 110	82.550 (3½)	120.650 (4 ³ ⁄ ₄)	50.800(2)	51.050	95.250 (3 ³ ⁄ ₄)	
88.900 (3½)	GBRI 568032	2 250	88.900 (3½)	127.000(5)	50.800(2)	51.050	101.600(4)	
95.250 (3 ³ ⁄ ₄)	GBRI 608432	2 380	95.250 (3 ³ / ₄)	133.350 (5 1/4)	50.800(2)	51.050	107.950(41/4)	

Notes(1)	Maximum permissible corner radius of the shaft or housing


(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

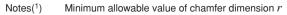
Remarks1. The outer ring has an oil groove and an oil hole.

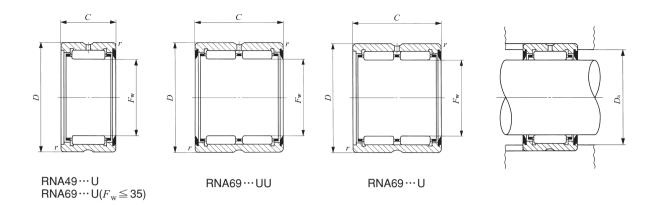
2. No grease is prepacked. Perform proper lubrication.


	dimensions mm load rating load rating rotational					Assembled inner ring	
d	a	$D_{\rm a}$	$r_{\rm as\ max}^{(1)}$	C	C_0	opecu ()	
Min.	Max.	Max.		N	N	rpm	
52.5 52.5	55 55	69.2 69.2	1.5 1.5	113 000 133 000	224 000 276 000	2 500 2 500	LRBZ 283624 LRBZ 283628
58 58	61 61	75.7 75.7	1.5 1.5	120 000 141 000	248 000 306 000	2 500 2 500	LRBZ 324024 LRBZ 324028
65 65	67 67	82 82	1.5 1.5	125 000 147 000	273 000 336 000	2 000 2 000	LRBZ 364424 LRBZ 364428
71 71	73 73	88 88	1.5 1.5	131 000 154 000	298 000 368 000	2 000 2 000	LRBZ 404824 LRBZ 404828
77 77	79 79	99.9 99.9	1.5 1.5	193 000 214 000	396 000 452 000	1 800 1 800	LRBZ 445228 LRBZ 445232
83.5	86	106.3	1.5	221 000	488 000	1 700	LRBZ 485632
91	93	112.6	1.5	228 000	522 000	1 600	LRBZ 526032
97	99	119	1.5	237 000	556 000	1 500	LRBZ 566432
103	105	125.3	1.5	242 000	590 000	1 400	LRBZ 606832

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, Without Inner Ring




RNA49 \cdots UU RNA69 \cdots UU($F_{\mathrm{w}} \leq$ 35)

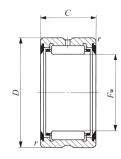
Shaft dia. 14 — 45mm

Shaft		Identificati	on number	number			Boundary dimensions mm			
dia. mm	With two seals	With one seal	With two seals	With one seal	g	$F_{ m w}$	D	C	$r_{\rm s min}^{(1)}$	
14	RNA 4900UU	RNA 4900U	_	_	16.3	14	22	13	0.3	
16	RNA 4901UU	RNA 4901U	RNA 6901UU	 RNA 6901U	17.9 30	16 16	24 24	13 22	0.3 0.3	
18	RNA 49/14UU	RNA 49/14U	_	_	19.7	18	26	13	0.3	
20	RNA 4902UU —	RNA 4902U	RNA 6902UU	 RNA 6902U	21.5 37.5	20 20	28 28	13 23	0.3 0.3	
22	RNA 4903UU	RNA 4903U	RNA 6903UU	 RNA 6903U	23 40.5	22 22	30 30	13 23	0.3 0.3	
25	RNA 4904UU	RNA 4904U	RNA 6904UU	 RNA 6904U	54.5 95.5	25 25	37 37	17 30	0.3 0.3	
28	RNA 49/22UU	RNA 49/22U	RNA 69/22UU	 RNA 69/22U	55.5 97.5	28 28	39 39	17 30	0.3 0.3	
30	RNA 4905UU	RNA 4905U	 RNA 6905UU	 RNA 6905U	63 111	30 30	42 42	17 30	0.3 0.3	
32	RNA 49/28UU —	RNA 49/28U	 RNA 69/28UU	 RNA 69/28U	75.5 133	32 32	45 45	17 30	0.3 0.3	
35	RNA 4906UU	RNA 4906U	 RNA 6906UU	 RNA 6906U	71 125	35 35	47 47	17 30	0.3 0.3	
40	RNA 49/32UU	RNA 49/32U	RNA 69/32UU	 RNA 69/32U	94.5 170	40 40	52 52	20 36	0.6 0.6	
42	RNA 4907UU	RNA 4907U	RNA 6907UU	 RNA 6907U	112 200	42 42	55 55	20 36	0.6 0.6	
45	RNA 49/38UU	RNA 49/38U	_	_	119	45	58	20	0.6	

Allowable rotational speed applies to grease lubrication.

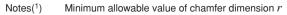
Standard mounting Basic dynamic load rating C					
Da Max. mm C Co Volume speed(2) 20 8 080 8 490 14 000 22 8 470 9 320 12 000 22 15 500 20 400 12 000 24 9 260 10 800 11 000 26 9 570 11 600 9 500 26 18 500 27 100 9 500 28 10 300 13 100 8 500 28 19 800 30 600 8 500 35 18 000 20 500 7 500 35 33 000 44 600 7 500 37 18 300 23 700 7 000 37 33 800 52 000 7 000 40 20 300 25 100 6 500 40 39 200 58 700 6 500 43 21 000 26 800 6 000 43 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400		,			
Max. mm N rpm 20 8 080 8 490 14 000 22 8 470 9 320 12 000 24 9 260 10 800 11 000 26 9 570 11 600 9 500 26 18 500 27 100 9 500 28 10 300 13 100 8 500 28 19 800 30 600 8 500 35 18 000 20 500 7 500 35 33 000 44 600 7 500 37 18 300 23 700 7 000 37 33 800 52 000 7 000 40 20 300 25 100 6 500 40 39 200 58 700 6 500 43 21 000 26 800 6 000 43 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 29 400 44 200 5 00					
20 8 080 8 490 14 000 22 8 470 9 320 12 000 22 15 500 20 400 12 000 24 9 260 10 800 11 000 26 9 570 11 600 9 500 26 18 500 27 100 9 500 28 10 300 13 100 8 500 28 19 800 30 600 8 500 35 18 000 20 500 7 500 35 33 000 44 600 7 500 37 18 300 23 700 7 000 37 33 800 52 000 7 000 40 20 300 25 100 6 500 40 39 200 58 700 6 500 43 21 000 26 800 6 000 43 38 900 59 100 6 000 45 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 50 300 88 300 5 000 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
22 8 470 9 320 12 000 22 15 500 20 400 12 000 24 9 260 10 800 11 000 26 9 570 11 600 9 500 26 18 500 27 100 9 500 28 10 300 13 100 8 500 28 19 800 30 600 8 500 35 18 000 20 500 7 500 35 33 000 44 600 7 500 37 18 300 23 700 7 000 40 20 300 25 100 6 500 40 39 200 58 700 6 500 43 21 000 26 800 6 000 43 21 500 28 400 5 500 45 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 29 400 44 200 5 000 48 50 300 88 300 5 000 51 30 100 46 300 4 500 <	mm	N	N	rpm	
22 15 500 20 400 12 000 24 9 260 10 800 11 000 26 9 570 11 600 9 500 28 10 300 27 100 9 500 28 19 800 30 600 8 500 28 19 800 30 600 8 500 35 18 000 20 500 7 500 37 18 300 23 700 7 000 37 33 800 52 000 7 000 40 20 300 25 100 6 500 40 39 200 58 700 6 500 43 21 000 26 800 6 000 43 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 29 400 44 200 5 000 48 29 400 44 200 5 000 51 30 100 46 300 4 500	20	8 080	8 490	14 000	
24 9 260 10 800 11 000 26 9 570 11 600 9 500 26 18 500 27 100 9 500 28 10 300 13 100 8 500 28 19 800 30 600 8 500 35 18 000 20 500 7 500 35 33 000 44 600 7 500 37 18 300 23 700 7 000 37 33 800 52 000 7 000 40 20 300 25 100 6 500 40 39 200 58 700 6 500 43 21 000 26 800 6 000 43 21 500 28 400 5 500 45 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 29 400 44 200 5 000 48 50 300 88 300 5 000 51 30 100 46 300 4 500					
26 9 570 11 600 9 500 26 18 500 27 100 9 500 28 10 300 13 100 8 500 28 19 800 30 600 8 500 35 18 000 20 500 7 500 35 33 000 44 600 7 500 37 18 300 23 700 7 000 37 33 800 52 000 7 000 40 20 300 25 100 6 500 40 39 200 58 700 6 500 43 21 000 26 800 6 000 43 38 900 59 100 6 000 45 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 29 400 44 200 5 000 48 50 300 88 300 5 000 51 30 100 46 300 4 500	22	15 500	20 400	12 000	
26 18 500 27 100 9 500 28 10 300 13 100 8 500 28 19 800 30 600 8 500 35 18 000 20 500 7 500 35 33 000 44 600 7 500 37 18 300 23 700 7 000 37 33 800 52 000 7 000 40 20 300 25 100 6 500 40 39 200 58 700 6 500 43 21 000 26 800 6 000 43 21 500 28 400 5 500 45 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 29 400 44 200 5 000 51 30 100 46 300 4 500	24	9 260	10 800	11 000	
28 10 300 13 100 8 500 28 19 800 30 600 8 500 35 18 000 20 500 7 500 35 33 000 44 600 7 500 37 18 300 23 700 7 000 37 33 800 52 000 7 000 40 20 300 25 100 6 500 40 39 200 58 700 6 500 43 21 000 26 800 6 000 43 38 900 59 100 6 000 45 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 29 400 88 300 5 000 51 30 100 46 300 4 500	26	9 570	11 600	9 500	
28 19 800 30 600 8 500 35 18 000 20 500 7 500 35 33 000 44 600 7 500 37 18 300 23 700 7 000 37 33 800 52 000 7 000 40 20 300 25 100 6 500 40 39 200 58 700 6 500 43 21 000 26 800 6 000 43 38 900 59 100 6 000 45 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 29 400 44 200 5 000 48 50 300 88 300 5 000 51 30 100 46 300 4 500	26	18 500	27 100	9 500	
35 18 000 20 500 7 500 35 33 000 44 600 7 500 37 18 300 23 700 7 000 37 33 800 52 000 7 000 40 20 300 25 100 6 500 40 39 200 58 700 6 500 43 21 000 26 800 6 000 43 38 900 59 100 6 000 45 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 29 400 44 200 5 000 48 50 300 88 300 5 000 51 30 100 46 300 4 500	28	10 300	13 100	8 500	
35 33 000 44 600 7 500 37 18 300 23 700 7 000 37 33 800 52 000 7 000 40 20 300 25 100 6 500 40 39 200 58 700 6 500 43 21 000 26 800 6 000 43 38 900 59 100 6 000 45 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 50 300 88 300 5 000 51 30 100 46 300 4 500	28	19 800	30 600	8 500	
37 18 300 23 700 7 000 37 33 800 52 000 7 000 40 20 300 25 100 6 500 40 39 200 58 700 6 500 43 21 000 26 800 6 000 43 38 900 59 100 6 000 45 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 50 300 88 300 5 000 51 30 100 46 300 4 500	35	18 000	20 500	7 500	
37 33 800 52 000 7 000 40 20 300 25 100 6 500 40 39 200 58 700 6 500 43 21 000 26 800 6 000 43 38 900 59 100 6 000 45 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 50 300 88 300 5 000 51 30 100 46 300 4 500	35	33 000	44 600	7 500	
40 20 300 25 100 6 500 40 39 200 58 700 6 500 43 21 000 26 800 6 000 43 38 900 59 100 6 000 45 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 50 300 88 300 5 000 51 30 100 46 300 4 500	37	18 300	23 700	7 000	
40 39 200 58 700 6 500 43 21 000 26 800 6 000 43 38 900 59 100 6 000 45 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 50 300 88 300 5 000 51 30 100 46 300 4 500	37	33 800	52 000	7 000	
43 21 000 26 800 6 000 43 38 900 59 100 6 000 45 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 50 300 88 300 5 000 51 30 100 46 300 4 500	40	20 300	25 100	6 500	
43 38 900 59 100 6 000 45 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 50 300 88 300 5 000 51 30 100 46 300 4 500	40	39 200	58 700	6 500	
45 21 500 28 400 5 500 45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 50 300 88 300 5 000 51 30 100 46 300 4 500	43	21 000	26 800	6 000	
45 40 100 63 000 5 500 48 29 400 44 200 5 000 48 50 300 88 300 5 000 51 30 100 46 300 4 500	43	38 900	59 100	6 000	
48	45	21 500	28 400	5 500	
48 50 300 88 300 5 000 51 30 100 46 300 4 500	45	40 100	63 000	5 500	
51 30 100 46 300 4 500	48	29 400	44 200	5 000	
	48	50 300	88 300	5 000	
F1	51	30 100	46 300	4 500	
51 51 600 92 600 4 500	51	51 600	92 600	4 500	
54 31 600 50 400 4 000	54	31 600	50 400	4 000	

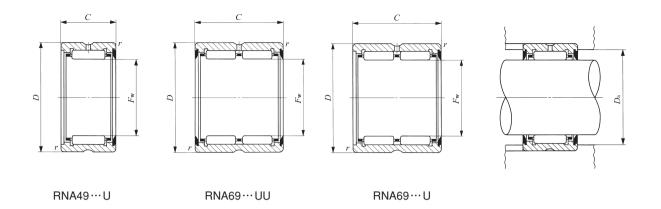
Remarks1. The outer ring has an oil groove and an oil hole.


2. Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, Without Inner Ring




RNA49…UU

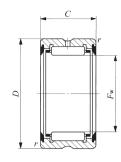
Shaft dia. 48 — 85mm

Shaft		Identificati	on number		Mass (Ref.)	Boundary dimensions mm			
dia. mm	With two seals	With one seal	With two seals	With one seal	g	$F_{ m w}$	D	C	$r_{\rm s min}^{(1)}$
48	RNA 4908UU	RNA 4908U	 RNA 6908UU		150 270	48 48	62 62	22 40	0.6 0.6
50	RNA 49/42UU	RNA 49/42U	_	_	173	50	65	22	0.6
52	RNA 4909UU	RNA 4909U	- RNA 6909UU	 RNA 6909U	197 355	52 52	68 68	22 40	0.6 0.6
55	RNA 49/48UU	RNA 49/48U		_	187	55	70	22	0.6
58	RNA 4910UU	RNA 4910U		 RNA 6910U	177 320	58 58	72 72	22 40	0.6 0.6
60	RNA 49/52UU	RNA 49/52U	_	_	200	60	75	22	0.6
63	RNA 4911UU —	RNA 4911U		 RNA 6911U	265 470	63 63	80 80	25 45	1
65	RNA 49/58UU	RNA 49/58U		_	275	65	82	25	1
68	RNA 4912UU —	RNA 4912U		 RNA 6912U	285 505	68 68	85 85	25 45	1
70	RNA 49/62UU	RNA 49/62U	_	_	320	70	88	25	1
72	RNA 4913UU —	RNA 4913U	 RNA 6913UU	 RNA 6913U	325 580	72 72	90 90	25 45	1
75	RNA 49/68UU	RNA 49/68U	_		465	75	95	30	1
80	RNA 4914UU —	RNA 4914U		 RNA 6914U	495 910	80 80	100 100	30 54	1
85	RNA 4915UU —	RNA 4915U	 RNA 6915UU	 RNA 6915U	520 960	85 85	105 105	30 54	1

Allowable rotational speed applies to grease lubrication.

Standard mounting	,	Basic static	Allowable
dimension	load rating	load rating	rotational
D_{a}	C	C_0	speed(²)
Max. mm	N	N	rpm
58	37 200	58 400	4 000
58	63 700	117 000	4 000
61	38 000	60 900	4 000
64	38 900	63 400	3 500
64	66 600	127 000	3 500
66	39 600	66 100	3 500
68	41 300	71 100	3 500
68	70 800	142 000	3 500
71	42 100	73 600	3 000
75	52 200	85 700	3 000
75	89 400	171 000	3 000
77	53 400	89 200	3 000
80	54 500	92 800	3 000
80	93 400	186 000	3 000
83	55 700	96 300	2 500
85	56 800	99 800	2 500
85	97 400	200 000	2 500
90	73 900	133 000	2 500
95	76 900	143 000	2 500
95	124 000	281 000	2 500
100	79 600	153 000	2 000
100	128 000	299 000	2 000

Remarks1. The outer ring has an oil groove and an oil hole.

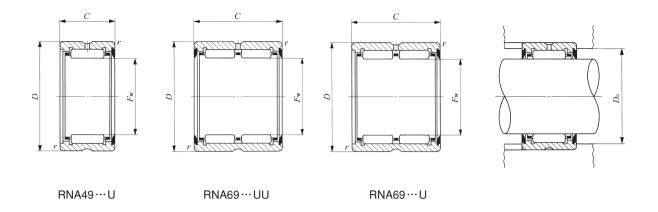

2. Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, Without Inner Ring

RNA49…UU

Shaft dia. 90 — 160mm

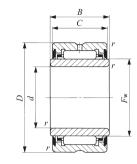

Shaft		Identificati	on number		Mass Boundary dir (Ref.) mm				sions
dia. mm	With two seals	Is With one seal With two seals With one seal		With one seal	g	F_{w}	D	C	$r_{\rm s min}^{(1)}$
90	RNA 4916UU	RNA 4916U	 RNA 6916UU	 RNA 6916U	545 1 010	90	110 110	30 54	1
95	RNA 49/82UU	RNA 49/82U	—	—	570	95	115	30	1
100	RNA 4917UU	RNA 4917U	 RNA 6917UU	 RNA 6917U	695 1 300	100 100	120 120	35 63	1.1
105	RNA 4918UU	RNA 4918U	 RNA 6918UU	 RNA 6918U	730 1 360	105 105	125 125	35 63	1.1 1.1
110	RNA 4919UU	RNA 4919U —		 RNA 6919U	760 1 420	110 110	130 130	35 63	1.1 1.1
115	RNA 4920UU	RNA 4920U	_	_	1 200	115	140	40	1.1
125	RNA 4922UU	RNA 4922U	_	_	1 280	125	150	40	1.1
135	RNA 4924UU	RNA 4924U	_	_	1 940	135	165	45	1.1
150	RNA 4926UU	RNA 4926U	_	_	2 360	150	180	50	1.5
160	RNA 4928UU	RNA 4928U			2 510	160	190	50	1.5

Minimum allowable value of chamfer dimension \boldsymbol{r} Notes(1)

Allowable rotational speed applies to grease lubrication.

Remarks1. The outer ring has an oil groove and an oil hole.

2. Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

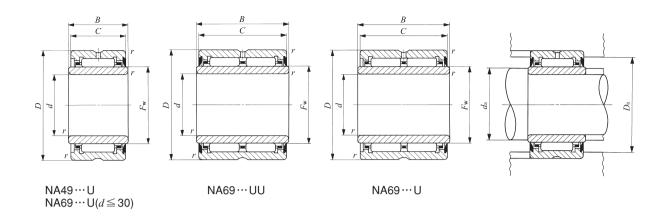

Standard mounting dimension $D_{ m a}$	Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed(2)
Max. mm	N	N	rpm
105 105	80 700 132 000	158 000 317 000	2 000 2 000
110	83 200	168 000	2 000
113.5 113.5	103 000 168 000	225 000 448 000	1 900 1 900
118.5 118.5	106 000 172 000	238 000 471 000	1 800 1 800
123.5 123.5	109 000 177 000	250 000 493 000	1 700 1 700
133.5	134 000	297 000	1 700
143.5	140 000	322 000	1 500
158.5	178 000	410 000	1 400
172	206 000	511 000	1 300
182	214 000	549 000	1 200

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, With Inner Ring

 $NA49 \cdots UU$ $NA69 \cdots UU(d \le 30)$

Shaft dia. 10 — 40mm

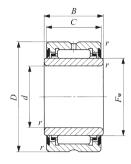

Shaft		Identificati	on number		Mass Boundary dimensions (Ref.) mm					
dia. mm	With two seals	With one seal	With two seals	With one seal	g	d	D	C	В	
10	NA 4900UU	NA 4900U	_		24.5	10	22	13	14	
12	NA 4901UU —	NA 4901U	— NA 6901UU	— NA 6901U	27.5 45.5	12 12	24 24	13 22	14 23	
15	NA 4902UU	NA 4902U			36	15	28	13	14	
	—	—	NA 6902UU	NA 6902U	62.5	15	28	23	24	
17	NA 4903UU	NA 4903U			39.5	17	30	13	14	
	—	—	NA 6903UU	NA 6903U	68.5	17	30	23	24	
20	NA 4904UU	NA 4904U			78.5	20	37	17	18	
	—	—	NA 6904UU	NA 6904U	137	20	37	30	31	
22	NA 49/22UU	NA 49/22U		—	87.5	22	39	17	18	
	—	—	NA 69/22UU	NA 69/22U	153	22	39	30	31	
25	NA 4905UU	NA 4905U			92.5	25	42	17	18	
	—	—	NA 6905UU	NA 6905U	162	25	42	30	31	
28	NA 49/28UU	NA 49/28U			101	28	45	17	18	
	—	—	NA 69/28UU	NA 69/28U	177	28	45	30	31	
30	NA 4906UU	NA 4906U			106	30	47	17	18	
	—	—	NA 6906UU	NA 6906U	185	30	47	30	31	
32	NA 49/32UU	NA 49/32U		—	167	32	52	20	21	
	—	—	NA 69/32UU	NA 69/32U	300	32	52	36	37	
35	NA 4907UU —	NA 4907U	 NA 6907UU	— NA 6907U	179 320	35 35	55 55	20 36	21 37	
40	NA 4908UU —	NA 4908U —	NA 6908UU	NA 6908U	245 440	40 40	62 62	22 40	23 41	

Notes(1) Minimum allowable value of chamfer dimension \boldsymbol{r}

Allowable rotational speed applies to grease lubrication.

Remarks1. The outer ring has an oil groove and an oil hole.

2. Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

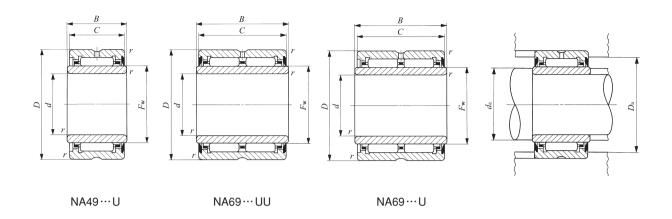

			dard mou	_	Basic dynamic	Basic static	Allowable	Assembled inner ring
	dimensions mm		mm	load rating	load rating	rotational		
(1)		a	l _a	$D_{\rm a}$	C	C_0	speed(2)	
$r_{\rm s min}$	$F_{\rm w}$	Min.	Max.	Max.				
					N	N	rpm	
0.3	14	12	13	20	8 080	8 490	14 000	LRTZ 101414
0.3	16	14	15	22	8 470	9 320	12 000	LRTZ 121614
0.3	16	14	15	22	15 500	20 400	12 000	LRTZ 121623
	20							
0.3	20	17	19	26	9 570	11 600	9 500	LRTZ 152014
0.3	20	17	19	26	18 500	27 100	9 500	LRTZ 152024
0.3	22	19	21	28	10 300	13 100	8 500	LRTZ 172214
0.3	22	19	21	28	19 800	30 600	8 500	LRTZ 172224
0.0	0.5	00	0.4	0.5	10.000	00 500	7.500	LDTZ 000540
0.3	25	22	24	35	18 000	20 500	7 500	LRTZ 202518
0.3	25	22	24	35	33 000	44 600	7 500	LRTZ 202531
0.3	28	24	27	37	18 300	23 700	7 000	LRTZ 222818
0.3	28	24	27	37	33 800	52 000	7 000	LRTZ 222831
0.3	30	27	29	40	20 300	25 100	6 500	LRTZ 253018
0.3	30	27	29	40	39 200	58 700	6 500	LRTZ 253031
0.3	32	30	31	43	21 000	26 800	6 000	LRTZ 283218
0.3	32	30	31	43	38 900	59 100	6 000	LRTZ 283231
0.3	35	32	34	45	21 500	28 400	5 500	LRTZ 303518
0.3	35	32	34	45	40 100	63 000	5 500	LRTZ 303531
0.6	40	36	39	48	29 400	44 200	5 000	LRTZ 324021
0.6	40	36	39	48	50 300	88 300	5 000	LRTZ 324037
0.6	42	39	41	51	30 100	46 300	4 500	LRTZ 354221
0.6	42	39	41	51	51 600	92 600	4 500	LRTZ 354237
0.6	48	44	47	58	37 200	58 400	4 000	LRTZ 404823
0.6	48	44	47	58	63 700	117 000	4 000	LRTZ 404841
J. J								

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, With Inner Ring

NA49···UU

Shaft dia. 45 — 110mm


Shaft		Identificati	on number		Mass (Ref.)	Bour	Boundary dimensions mm			
dia.	With two seals	With one seal	With two seals	With two seals With one seal			D	C	В	
	NA 4909UU	NA 4909U	_		g 290	45	68	22	23	
45	_		NA 6909UU	NA 6909U	520	45	68	40	41	
50	NA 4910UU	NA 4910U	_	_	295	50	72	22	23	
		_	NA 6910UU	NA 6910U	530	50	72	40	41	
55	NA 4911UU —	NA 4911U —	MA 6911UU	NA 6911U	415 730	55 55	80 80	25 45	26 46	
60	NA 4912UU	NA 4912U	_	_	445	60	85	25	26	
	_	_	NA 6912UU	NA 6912U	785	60	85	45	46	
65	NA 4913UU —	NA 4913U —	— NA 6913UU	— NA 6913U	475 845	65 65	90 90	25 45	26 46	
	NA 4914UU	NA 4914U		- NA 09130	770	70	100	30	31	
70	—	—	NA 6914UU	NA 6914U	1 400	70	100	54	55	
75	NA 4915UU	NA 4915U		_	815	75	105	30	31	
	_	_	NA 6915UU	NA 6915U	1 480	75	105	54	55	
80	NA 4916UU —	NA 4916U —	— NA 6916UU	— NA 6916U	860 1 570	80 80	110 110	30 54	31 55	
	NA 4917UU	NA 4917U			1 300	85	120	35	36	
85	—	—	NA 6917UU	NA 6917U	2 360	85		63	64	
90	NA 4918UU	NA 4918U	_	_	1 360	90	125	35	36	
	_	-	NA 6918UU	NA 6918U	2 480	90	125	63	64	
95	NA 4919UU —	NA 4919U —	— NA 6919UU	— NA 6919U	1 420 2 600	95 95	130 130	35 63	36 64	
100	NA 4920UU	NA 4920U			1 980	100	140	40	41	
110	NA 4922UU	NA 4922U	_	_	2 150	110	150	40	41	

Notes(1) Minimum allowable value of chamfer dimension \boldsymbol{r}

Allowable rotational speed applies to grease lubrication.

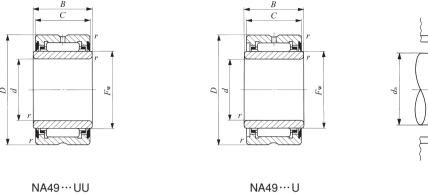
Remarks1. The outer ring has an oil groove and an oil hole.

2. Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

$r_{ m s~min}^{(1)}$	$ F_{ m w} $		lard mou ensions a Max.		Basic dynamic load rating C	Basic static load rating C_0	Allowable rotational speed(2)	Assembled inner ring
0.6 0.6	52 52	49 49	51 51	64 64	N 38 900 66 600	N 63 400 127 000	3 500 3 500	LRTZ 455223 LRTZ 455241
0.6	58	54	57	68	41 300	71 100	3 500	LRTZ 505823
0.6	58	54	57	68	70 800	142 000	3 500	LRTZ 505841
1	63	60	61	75	52 200	85 700	3 000	LRTZ 556326
	63	60	61	75	89 400	171 000	3 000	LRTZ 556346
1	68	65	66	80	54 500	92 800	3 000	LRTZ 606826
1	68	65	66	80	93 400	186 000	3 000	LRTZ 606846
1	72	70	70.5	85	56 800	99 800	2 500	LRTZ 657226
1	72	70	70.5	85	97 400	200 000	2 500	LRTZ 657246
1	80	75	78	95	76 900	143 000	2 500	LRTZ 708031
1	80	75	78	95	124 000	281 000	2 500	LRTZ 708055
1	85	80	83	100	79 600	153 000	2 000	LRTZ 758531
1	85	80	83	100	128 000	299 000	2 000	LRTZ 758555
1	90	85	88	105	80 700	158 000	2 000	LRTZ 809031
1	90	85	88	105	132 000	317 000	2 000	LRTZ 809055
1.1	100	91.5	98	113.5	103 000	225 000	1 900	LRTZ 8510036
1.1	100	91.5	98	113.5	168 000	448 000	1 900	LRTZ 8510064
1.1	105	96.5	103	118.5	106 000	238 000	1 800	LRTZ 9010536
1.1	105	96.5	103	118.5	172 000	471 000	1 800	LRTZ 9010564
1.1	110	101.5	108	123.5	109 000	250 000	1 700	LRTZ 9511036
1.1	110	101.5	108	123.5	177 000	493 000	1 700	LRTZ 9511064
1.1	115	106.5	113	133.5	134 000	297 000	1 700	LRTZ 10011541
1.1	125	116.5	123	143.5	140 000	322 000	1 500	LRTZ 11012541

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, With Inner Ring



Shaft dia. 120 — 140mm

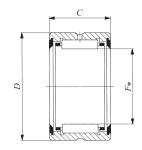
Shaft		Identificati	on number		Mass (Ref.)	Boundary dimensions mm			
dia. mm	With two seals	h two seals With one seal With two seals With one seal		g	d	D	C	В	
120	NA 4924UU	NA 4924U	_	_	2 990	120	165	45	46
130	NA 4926UU	NA 4926U	_	_	4 080	130	180	50	51
140	NA 4928UU	NA 4928U	<u>—</u>		4 340	140	190	50	51

Notes(1) Minimum allowable value of chamfer dimen

on rAllowable rotational speed applies to grease lubrication.

}

Standard mounting dimensions mm Page Basic static God rating C									
N N rpm 1.1 135 126.5 133 158.5 178 000 410 000 1 400 LRTZ 12013546 1.5 150 138 148 172 206 000 511 000 1 300 LRTZ 13015051	(1)		dimensions mm		load rating	load rating	rotational	Assembled inner ring	
1.5 150 138 148 172 206 000 511 000 1 300 LRTZ 13015051	s min	F_{w}	Min.	^a Max.	Max.	N	N	rpm	
	1.1	135	126.5	133	158.5	178 000	410 000	1 400	LRTZ 12013546
1.5 160 148 158 182 214 000 549 000 1 200 LRTZ 14016051	1.5	150	138	148	172	206 000	511 000	1 300	LRTZ 13015051
	1.5	160	148	158	182	214 000	549 000	1 200	LRTZ 14016051


Remarks1. The outer ring has an oil groove and an oil hole.

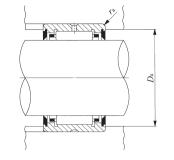
2. Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

MACHINED TYPE NEEDLE ROLLER

With Seal, Without Inner Ring, Inch Series

BR...UU

Shaft dia. 15.875 — 50.800mm


	Identification	on number	Mass	Douglaw dimensions movingh)			
01 (: !!	Identification number		(Ref.)	Boundary dimensions mm(inch)			
Shaft dia. mm (inch)			g	F_{w}	D	C	
15.875 (5/8)	BR 101816 UU	BR 101816 U	54	15.875 (5/ ₈)	28.575 (1 ½)	25.400 (1)	
19.050 (³ ⁄ ₄)	BR 122016 UU	BR 122016 U	68	19.050 (3/4)	31.750 (1 ½)	25.400 (1)	
22.225 (%)	BR 142216 UU	BR 142216 U	76	22.225 (7/ ₈)	34.925 (1 ³ ⁄ ₈)	25.400 (1)	
25.400 (1)	BR 162416 UU	BR 162416 U	83	25.400 (1)	38.100 (1 ½)	25.400 (1)	
28.575 (1½)	BR 182620 UU	BR 182620 U	115	28.575 (1 ½)	41.275 (1 ⁵ ⁄ ₈)	31.750 (1 ½)	
31.750 (1 ¹ / ₄)	BR 202820 UU	BR 202820 U	124	31.750 (1 ½)	44.450 (1 ¾ ₄)	31.750 (1 ½)	
34.925 (1 ³ / ₈)	BR 223020 UU	BR 223020 U	134	34.925 (1 ³ ⁄ ₈)	47.625 (1 ½)	31.750 (1 ½)	
38.100 (1½)	BR 243320 UU	BR 243320 U	168	38.100 (1 ½)	52.388 (2 ½)	31.750 (1 ½)	
41.275 (1 ⁵ / ₈)	BR 263520 UU	BR 263520 U	179	41.275 (1 ½)	55.562 (2 ¾ ₁₆)	31.750 (1 ½)	
44.450 (1 ³ ⁄ ₄)	BR 283720 UU	BR 283720 U	193	44.450 (1 ³ ⁄ ₄)	58.738 (2 ½)	31.750 (1 ½)	
47.625 (1 ⁷ / ₈)	BR 303920 UU	BR 303920 U	202	47.625 (1 ½ ₈)	61.912 (2 ½ ₁₆)	31.750 (1 ½)	
50.800 (2)	BR 324120 UU	BR 324120 U	216	50.800 (2)	65.088 (2 % ₁₆)	31.750 (1 ½)	

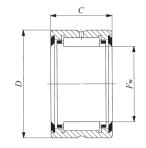
Notes(1)	Maximum permissible corner radius of the housing
(2)	Allowable rotational speed applies to grease lubrication

(2) Allowable rotational speed applies to grease lubrication.

Remarks1. The outer ring has an oil groove and an oil hole.

BR	•	U
		_

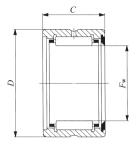
Standard dimension		Basic dynamic	Basic static	Allowable
unnensic		load rating $$	load rating ${C}_{0}$	rotational speed $^{(2)}$
D_{a}	$r_{\rm as\ max}^{(1)}$	C	C ₀	opeca()
Max.	us max	N	N	rpm
24.5	0.6	18 300	20 000	12 000
26.5	1.0	20 700	24 400	10 000
29.7	1.0	21 600	26 900	9 000
32.9	1.0	23 600	31 300	8 000
02.0	1.0	20 000	01000	0 000
20.0	1.0	04.000	40.000	7.000
36.0	1.0	34 900	49 900	7 000
39.2	1.0	36 000	53 500	6 500
42.4	1.0	38 500	60 000	5 500
45.1	1.5	43 700	66 900	5 500
48.3	1.5	44 800	70 900	4 500
40.0	1.0	44 000	70 000	7 000
E1 E	1 5	47 E00	70 200	4.500
51.5	1.5	47 500	78 200	4 500
54.7	1.5	48 500	82 100	4 000
57.8	1.5	51 000	89 400	4 000
				I .

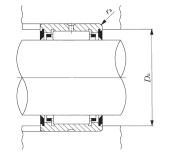

^{2.} Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

TRI

MACHINED TYPE NEEDLE ROLLER

With Seal, Without Inner Ring, Inch Series


BR...UU


Shaft dia. 57.150 — 95.250mm

	Identification	on number	Mass (Ref.)	Boundar	Boundary dimensions mm(inch)			
Shaft dia. mm (inch)	With two seals	With one seal	g	$F_{ m w}$	D	C		
57.150 (2½)	BR 364828 UU	BR 364828 U	459	57.150 (2 ½)	76.200 (3)	44.450 (1 ³ ⁄ ₄)		
63.500 (2½)	BR 405228 UU	BR 405228 U	499	63.500 (2 ½)	82.550 (3 ½)	44.450 (1 ³ ⁄ ₄)		
69.850 (2 ³ ⁄ ₄)	BR 445628 UU	BR 445628 U	540	69.850 (2 ³ ⁄ ₄)	88.900 (3 ½)	44.450 (1 ³ ⁄ ₄)		
76.200 (3)	BR 486028 UU	BR 486028 U	585	76.200 (3)	95.250 (3 ³ ⁄ ₄)	44.450 (1 ³ ⁄ ₄)		
82.550 (3 ¹ ⁄ ₄)	BR 526828 UU	BR 526828 U	891	82.550 (3 ½)	107.950 (4 ½)	44.450 (1 ³ ⁄ ₄)		
88.900 (3½)	BR 567232 UU	BR 567232 U	1 098	88.900 (3 ½)	114.300 (4 ½)	50.800 (2)		
95.250 (3 ³ ⁄ ₄)	BR 607632 UU	BR 607632 U	1 161	95.250 (3 ¾ ₄)	120.650 (4 ³ ⁄ ₄)	50.800 (2)		

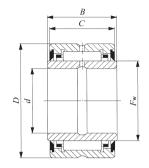
Notes(1)	Ma
----------	----

Maximum permissible corner radius of the housing

	•	•	•	ι
--	---	---	---	---

Standard mounting dimensions mm $D_a \mid r_{\rm as\ max}^{(1)}$		Basic dynamic load rating ${\cal C}$	Basic static load rating C_{0}	Allowable rotational speed(2)
$D_{ m a}$ Max.	' as max	N	N	rpm
69.0	1.5	90 300	158 000	3 500
74.3	2.0	94 600	174 000	3 000
80.7	2.0	98 700	189 000	2 500
87.0	2.0	105 000	211 000	2 500
99.7	2.0	109 000	227 000	2 500
106.1	2.0	142 000	265 000	2 000
111.4	2.5	148 000	287 000	2 000

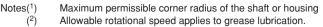
Allowable rotational speed applies to grease lubrication.

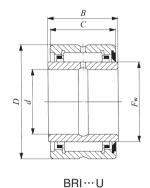

Remarks1. The outer ring has an oil groove and an oil hole.

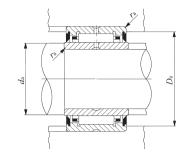
2. Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

MACHINED TYPE NEEDLE ROLLER

With Seal, With Inner Ring, Inch Series






BRI...UU

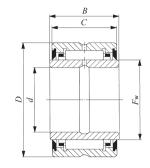
Shaft dia. 9.525 — 44.450mm

01 (* 1;	Identification	on number	Mass (Ref.)						
Shaft dia. mm (inch)	With two seals	With one seal	g	d	D	C	В		
9. 525 (3/8)	BRI 61816 UU	BRI 61816 U	79	9.525 (3/8)	28.575 (1 ½)	25.400 (1)	25.650		
12.700 (½)	BRI 82016 UU	BRI 82016 U	99	12.700 (½)	31.750 (1 ½)	25.400 (1)	25.650		
15.875 (5/8)	BRI 102216 UU	BRI 102216 U	113.5	15.875 (5/ ₈)	34.925 (1 ³ ⁄ ₈)	25.400 (1)	25.650		
19.050 (¾)	BRI 122416 UU	BRI 122416 U	127	19.050 (3/4)	38.100 (1 ½)	25.400 (1)	25.650		
22.225 (7/8)	BRI 142620 UU	BRI 142620 U	177	22.225 (7/ ₈)	41.275 (1 ⁵ ⁄ ₈)	31.750 (1 ½)	32.000		
25.400 (1)	BRI 162820 UU	BRI 162820 U	196	25.400 (1)	44.450 (1 ³ ⁄ ₄)	31.750 (1 ½)	32.000		
28.575 (1½)	BRI 183020 UU	BRI 183020 U	211	28.575 (1 ½)	47.625 (1 ½)	31.750 (1 ½)	32.000		
31.750 (1 ¹ / ₄)	BRI 203320 UU	BRI 203320 U	254	31.750 (1 ½)	52.388 (2 ½)	31.750 (1 ½)	32.000		
34.925 (1 ³ / ₈)	BRI 223520 UU	BRI 223520 U	275	34.925 (1 ³ ⁄ ₈)	55.562 (2 ½)	31.750 (1 ½)	32.000		
38.100 (1½)	BRI 243720 UU BRI 243920 UU	BRI 243720 U BRI 243920 U	293 362	38.100 (1 ½) 38.100 (1 ½)	58.738 (2 ½) 61.912 (2 ½)	31.750 (1 ½) 31.750 (1 ½)	32.000 32.000		
41.275 (1 ⁵ / ₈)	BRI 264120 UU	BRI 264120 U	386	41.275 (1 ⁵ ⁄ ₈)	65.088 (2 % ₁₆)	31.750 (1 ¹ ⁄ ₄)	32.000		
44.450 (1 ³ / ₄)	BRI 284828 UU	BRI 284828 U	804	44.450 (1 ³ ⁄ ₄)	76.200 (3)	44.450 (1 ³ / ₄)	44.700		

NA
TAF
TRI
BRI

$F_{ m w}$	Standard mounting dimensions mm $d_{\rm a} \mid D_{\rm a} \mid r_{\rm as\ max}^{(1)}$		Basic dynamic load rating	Basic static load rating C_{0}	Allowable rotational speed(2)	Assembled inner ring		
1 W	Min.	Max.	Max.		N	N	rpm	
15.875 (⁵ ⁄ ₈)	14	14.5	24.5	0.6	18 300	20 000	12 000	LRBZ 61016 B
19.050 (3/4)	17.5	18	26.5	0.6	20 700	24 400	10 000	LRBZ 81216 B
22.225 (½ ₈)	21	21.2	29.7	0.6	21 600	26 900	9 000	LRBZ 101416 B
25.400 (1)	24	24.4	32.9	0.6	23 600	31 300	8 000	LRBZ 121616 B
28.575 (1 ½)	27	27.5	36.0	0.6	34 900	49 900	7 000	LRBZ 141820 B
31.750 (1 ½)	30.5	30.7	39.2	0.6	36 000	53 500	6 500	LRBZ 162020 B
34.925 (1 ³ ⁄ ₈)	33.5	33.9	42.4	0.6	38 500	60 000	5 500	LRBZ 182220 B
38.100 (1 ½)	37	37.1	45.1	0.6	43 700	66 900	5 500	LRBZ 202420 B
41.275 (1 ½)	40.2	40.2	48.3	0.6	44 800	70 900	4 500	LRBZ 222620 B
44.450 (1 ³ ⁄ ₄) 47.625 (1 ⁷ ⁄ ₈)	43.3 43.3	43.4 45	51.5 54.7	0.6 1	47 500 48 500	78 200 82 100	4 500 4 000	LRBZ 242820 B LRBZ 243020 B
50.800 (2)	48	49	57.8	1	51 000	89 400	4 000	LRBZ 263220 B
57.150 (2 ½)	52.5	55	69.0	1.5	90 300	158 000	3 500	LRBZ 283628 B

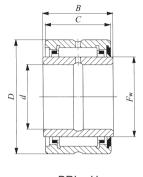
Remarks1. The inner ring and the outer ring each have an oil groove and an oil hole.

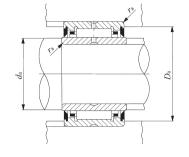

2. Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

TAFI TRI BRI

MACHINED TYPE NEEDLE ROLLER

With Seal, With Inner Ring, Inch Series




BRI...UU

Shaft dia. 50.800 — 82.550mm

Chaft die	Identificatio	n number	Mass (Ref.)	, , , , , , , , , , , , , , , , , , , ,					
Shaft dia. mm (inch)	With two seals	With one seal	g	d	D	C	В		
50.800 (2)	BRI 325228 UU	BRI 325228 U	889	50.800 (2)	82.550 (3 ½)	44.450 (1 ³ ⁄ ₄)	44.700		
57.150 (2½)	BRI 365628 UU	BRI 365628 U	980	57.150 (2 ½)	88.900 (3 ½)	44.450 (1 ³ ⁄ ₄)	44.700		
63.500 (2½)	BRI 406028 UU	BRI 406028 U	1 065	63.500 (2 ½)	95.250 (3 ³ ⁄ ₄)	44.450 (1 ¾ ₄)	44.700		
69.850 (2 ³ / ₄)	BRI 446828 UU	BRI 446828 U	1 421	69.850 (2 ³ ⁄ ₄)	107.950 (4 ½)	44.450 (1 ¾ ₄)	44.700		
76.200 (3)	BRI 487232 UU	BRI 487232 U	1 738	76.200 (3)	114.300 (4 ½)	50.800 (2)	51.050		
82.550 (3 ¹ ⁄ ₄)	BRI 527632 UU	BRI 527632 U	1 851	82.550 (3 ½)	120.650 (4 ¾ ₄)	50.800 (2)	51.050		

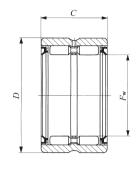
Notes(1)	Maximum permissible corner radius of the shaft or housing
(2)	All II and I all the second

BRI	•••	U

	Standa		ting dim	ensions	Basic dynamic	Basic static	Allowable	Assembled inner ring
E.	d		D_a	$r_{\rm as\ max}^{(1)}$	load rating $$	load rating $C_{ m 0}$	rotational speed(²)	
F_{w}	Min.	Max.	Max.	as max	N	N	rpm	
63.500 (2 ½)	58	61	74.3	1.5	94 600	174 000	3 000	LRBZ 324028 B
69.850 (2 ³ ⁄ ₄)	65	67	80.7	1.5	98 700	189 000	2 500	LRBZ 364428 B
76.200 (3)	71	73	87.0	1.5	105 000	211 000	2 500	LRBZ 404828 B
82.550 (3 ½ ₄)	77	79	99.7	1.5	109 000	227 000	2 500	LRBZ 445228 B
88.900 (3 ½)	83.5	86	106.1	1.5	142 000	265 000	2 000	LRBZ 485632 B
95.250 (3 ¾ ₄)	91	93	111.4	1.5	148 000	287 000	2 000	LRBZ 526032 B

⁽²⁾ Allowable rotational speed applies to grease lubrication.

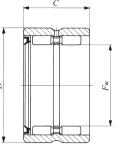
Remarks1. The inner ring and the outer ring each have an oil groove and an oil hole.


2. Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

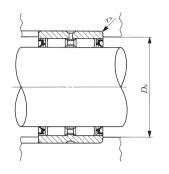
TAFI TRI BRI

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, Without Inner Ring, Inch Series


GBR...UU

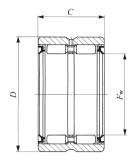
Shaft dia. 15.875 — 50.800mm


	Identification	on number	Mass	Boundary	/ dimensions	s mm(inch)	
Shaft dia.			(Ref.)	,			
mm (inch)	With two seals	With one seal	g	$F_{ m w}$	D	C	
15.875 (5/8)	GBR 101816 UU	GBR 101816 U	69.5	15.875(3/8)	28.575 (1 ½)	25.400 (1)	
19.050 (³ ⁄ ₄)	GBR 122016 UU	GBR 122016 U	79	19.050(3/4)	31.750(11/4)	25.400 (1)	
22.225 (7/8)	GBR 142216 UU	GBR 142216 U	89.5	22.225(7/8)	34.925 (1 ³ / ₈)	25.400 (1)	
25.400 (1)	GBR 162416 UU	GBR 162416 U	99	25.400 (1)	38.100(1½)	25.400 (1)	
28.575 (1½)	GBR 182620 UU	GBR 182620 U	139	28.575 (1 ½)	41.275 (1 5/8)	31.750 (1½)	
31.750 (1 ¹ ⁄ ₄)	GBR 202820 UU	GBR 202820 U	152	31.750 (1½)	44.450 (1 ³ ⁄ ₄)	31.750 (1½)	
34.925 (1 ³ / ₈)	GBR 223020 UU	GBR 223020 U	163	34.925 (1 ³ / ₈)	47.625 (1 ½)	31.750 (1½)	
38.100 (1½)	GBR 243320 UU	GBR 243320 U	200	38.100 (1 ½)	52.388 (2 ½)	31.750(11/4)	
41.275 (1 ⁵ / ₈)	GBR 263520 UU	GBR 263520 U	215	41.275 (1 ⁵ / ₈)	55.562 (2 3/16)	31.750(11/4)	
44.450 (1 ³ ⁄ ₄)	GBR 283720 UU	GBR 283720 U	230	44.450 (1 ³ ⁄ ₄)	58.738 (2 ½)	31.750(11/4)	
47.625 (1 ⁷ / ₈)	GBR 303920 UU	GBR 303920 U	240	47.625 (1 ½)	61.912 (2 7/16)	31.750 (1½)	
50.800 (2)	GBR 324120 UU	GBR 324120 U	255	50.800 (2)	65.088 (2 ½)	31.750 (1 ½)	

Notes(1)	Maximum permissible corner radius of the shaft or housing
(2)	Allowable retational speed applies to grosse lubrication

(2) Allowable rotational speed applies to grease lubrication. Remarks1. The outer ring has an oil groove and an oil hole.

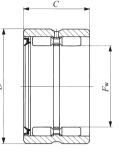
Ctamalanal		D : 1 :	B 1	All II
Standard dimension		Basic dynamic load rating	Basic static load rating	Allowable rotational
ъ.	(1)	C	C_0	speed(2)
D_{a}	r _{as max}			
Max.		N	N	rpm
24.5	0.6	23 500	28 500	5 000
27	0.6	26 400	34 500	4 000
30	0.6	28 600	40 100	3 500
33.3	0.6	31 000	46 100	3 000
36.3	0.6	43 900	75 300	3 000
39.6	0.6	46 600	83 900	2 500
42.8	0.6	49 500	91 800	2 500
47.3	0.6	54 200	97 700	2 000
50.5	0.6	56 600	105 000	1 900
53.7	0.6	58 900	114 000	1 800
56.2	1	61 100	121 000	1 700
59.2	1	63 100	130 000	1 600


^{2.} Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

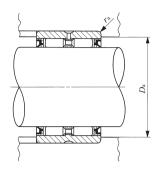
TRI

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, Without Inner Ring, Inch Series

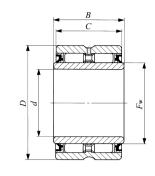

GBR...UU

Shaft dia. 57.150 — 107.950mm


	Identification	on number	Mass (Ref.)	Boundary	dimensions	mm(inch)
Shaft dia. mm (inch)	With two seals	With one seal	g	$F_{ m w}$	D	C
57.150 (2½)	GBR 364828 UU	GBR 364828 U	515	57.150 (2 ½)	76.200 (3)	44.450 (1 ³ ⁄ ₄)
63.500 (2½)	GBR 405228 UU	GBR 405228 U	560	63.500 (2 ½)	82.550 (3 ½)	44.450 (1 ³ ⁄ ₄)
69.850 (2 ³ ⁄ ₄)	GBR 445628 UU	GBR 445628 U	610	69.850 (2 ³ ⁄ ₄)	88.900 (3 ½)	44.450 (1 ³ ⁄ ₄)
76.200 (3)	GBR 486028 UU	GBR 486028 U	660	76.200 (3)	95.250 (3 ³ ⁄ ₄)	44.450 (1 ³ ⁄ ₄)
82.550 (3 ¹ ⁄ ₄)	GBR 526828 UU	GBR 526828 U	960	82.550 (3 ½)	107.950(4½)	44.450 (1 ³ ⁄ ₄)
88.900 (3½)	GBR 567232 UU	GBR 567232 U	1 240	88.900 (3 ½)	114.300 (4 ½)	50.800(2)
95.250 (3 ³ ⁄ ₄)	GBR 607632 UU	GBR 607632 U	1 320	95.250(3¾)	120.650 (4 3/4)	50.800 (2)
101.600 (4)	GBR 648032 UU	GBR 648032 U	1 380	101.600(4)	127.000(5)	50.800(2)
107.950 (4½)	GBR 688432 UU	GBR 688432 U	1 460	107.950 (4 1/4)	133.350 (5 1/4)	50.800(2)

Notes(1)	Maximum permissible corner radius of the shaft or housing
(²)	Allowable rotational speed applies to grease lubrication.

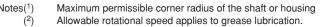
(2) Allowable rotational speed applies to grease lubring Remarks1. The outer ring has an oil groove and an oil hole.

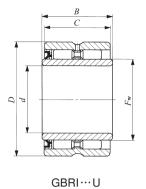

Standard dimension	mounting ons mm	Basic dynamic load rating $oldsymbol{C}$	Basic static load rating C_0	Allowable rotational speed(2)
$D_{ m a}$ Max.	$r_{\rm as\ max}$	N	N	rpm
IVIAX.		IN	IN	трпі
69.2	1.5	87 500	161 000	1 400
75.7	1.5	93 300	179 000	1 300
82	1.5	97 200	197 000	1 100
88	1.5	101 000	215 000	1 100
99.9	1.5	127 000	231 000	950
106.3	1.5	170 000	347 000	900
112.6	1.5	175 000	371 000	850
119	1.5	182 000	395 000	800
125.3	1.5	186 000	419 000	750

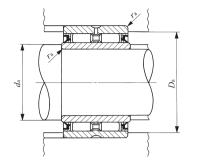
^{2.} Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, With Inner Ring, Inch Series






GBRI...UU

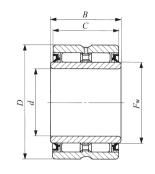
Shaft dia. 9.525 — 44.450mm

01. 6. 15	Identification	on number	Mass (Ref.)	mm(inch)		
Shaft dia. mm (inch)	With two seals	With one seal	g	d	D	C
9.525 (3/8)	GBRI 61816 UU	GBRI 61816 U	94.5	9.525(3/8)	28.575 (1 ½)	25.400 (1)
12.700 (½)	GBRI 82016 UU	GBRI 82016 U	110	12.700(½)	31.750(11/4)	25.400 (1)
15.875 (5/8)	GBRI 102216 UU	GBRI 102216 U	127	15.875 (⁵ / ₈)	34.925 (1 ³ / ₈)	25.400 (1)
19.050 (³ ⁄ ₄)	GBRI 122416 UU	GBRI 122416 U	143	19.050(3/4)	38.100 (1 ½)	25.400 (1)
22.225 (7/ ₈)	GBRI 142620 UU	GBRI 142620 U	200	22.225 (½)	41.275 (1 ⁵ / ₈)	31.750 (1 ½)
25.400 (1)	GBRI 162820 UU	GBRI 162820 U	220	25.400 (1)	44.450 (1 ³ ⁄ ₄)	31.750 (1 ½)
28.575 (1½)	GBRI 183020 UU	GBRI 183020 U	240	28.575 (1 ½)	47.625 (1 ½)	31.750 (1 ½)
31.750 (1 ¹ / ₄)	GBRI 203320 UU	GBRI 203320 U	286	31.750 (1 ½)	52.388 (2 ½)	31.750 (1½)
34.925 (1 ³ / ₈)	GBRI 223520 UU	GBRI 223520 U	311	34.925 (1 ³ / ₈)	55.562 (2 ³ / ₁₆)	31.750 (1½)
38.100 (1½)	GBRI 243720 UU GBRI 243920 UU	GBRI 243720 U GBRI 243920 U	330 400	38.100(1½) 38.100(1½)	58.738 (2 ½) 61.912 (2 ½)	31.750(1½) 31.750(1½)
41.275 (1 ⁵ / ₈)	GBRI 264120 UU	GBRI 264120 U	425	41.275 (1 5/8)	65.088 (2 %)	31.750(11/4)
44.450 (1 ³ ⁄ ₄)	GBRI 284828 UU	GBRI 284828 U	860	44.450 (1 ³ ⁄ ₄)	76.200 (3)	44.450 (1 ³ ⁄ ₄)

NA
TAFI
TRI
BRI

		tandard dimensio		า	Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed(2)	Assembled inner ring	
В	$F_{ m w}$	d Min.	Max.	$D_{ m a}$ Max.	$r_{\rm as\ max}^{(1)}$	N	N N	rpm	
25.650	15.875(3/8)	14	14.5	24.5	0.6	23 500	28 500	5 000	LRBZ 61016
25.650	19.050(3/4)	17.5	18	27	0.6	26 400	34 500	4 000	LRBZ 81216
25.650	22.225(1/8)	21	21.2	30	0.6	28 600	40 100	3 500	LRBZ 101416
25.650	25.400(1)	24	24.4	33.3	0.6	31 000	46 100	3 000	LRBZ 121616
32.000	28.575(11/8)	27	27.5	36.3	0.6	43 900	75 300	3 000	LRBZ 141820
32.000	31.750(11/4)	30.5	30.7	39.6	0.6	46 600	83 900	2 500	LRBZ 162020
32.000	34.925 (1 ³ / ₈)	33.5	33.9	42.8	0.6	49 500	91 800	2 500	LRBZ 182220
32.000	38.100 (1½)	37	37.1	47.3	0.6	54 200	97 700	2 000	LRBZ 202420
32.000	41.275(15/8)	40.2	40.2	50.5	0.6	56 600	105 000	1 900	LRBZ 222620
32.000 32.000	44.450 (1 ³ / ₄) 47.625 (1 ⁷ / ₈)	43.3 43.3	43.4 45	53.7 56.2	0.6 1	58 900 61 100	114 000 121 000	1 800 1 700	LRBZ 242820 LRBZ 243020
32.000	50.800(2)	48	49	59.2	1	63 100	130 000	1 600	LRBZ 263220
44.700	57.150 (2 ½)	52.5	55	69.2	1.5	87 500	161 000	1 400	LRBZ 283628

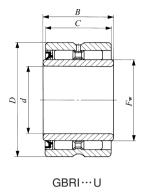
Remarks1. The outer ring has an oil groove and an oil hole.

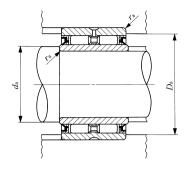

2. Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

TRI

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, With Inner Ring, Inch Series




GBRI...UU

Shaft dia. 50.800 — 95.250mm

01 6 1	Identification	on number	Mass (Ref.)	mm(inch)		
Shaft dia. mm (inch)	With two seals	With one seal	g	d	D	С
50.800 (2)	GBRI 325228 UU	GBRI 325228 U	950	50.800(2)	82.550 (3½)	44.450 (1 ³ ⁄ ₄)
57.150 (2 ¹ ⁄ ₄)	GBRI 365628 UU	GBRI 365628 U	1 050	57.150 (2 ½)	88.900(3½)	44.450 (1 ³ ⁄ ₄)
63.500 (2½)	GBRI 406028 UU	GBRI 406028 U	1 140	63.500 (2 ½)	95.250 (3 ³ ⁄ ₄)	44.450 (1 ³ ⁄ ₄)
69.850 (2 ³ ⁄ ₄)	GBRI 446828 UU	GBRI 446828 U	1 490	69.850 (2 ³ ⁄ ₄)	107.950(41/4)	44.450 (1 ³ ⁄ ₄)
76.200 (3)	GBRI 487232 UU	GBRI 487232 U	1 880	76.200 (3)	114.300(4½)	50.800(2)
82.550 (3 ¹ ⁄ ₄)	GBRI 527632 UU	GBRI 527632 U	2 010	82.550 (3 ½)	120.650(4¾)	50.800 (2)
88.900 (3½)	GBRI 568032 UU	GBRI 568032 U	2 130	88.900 (3 ½)	127.000(5)	50.800 (2)
95.250 (3 ³ ⁄ ₄)	GBRI 608432 UU	GBRI 608432 U	2 260	95.250(3¾)	133.350(5½)	50.800(2)

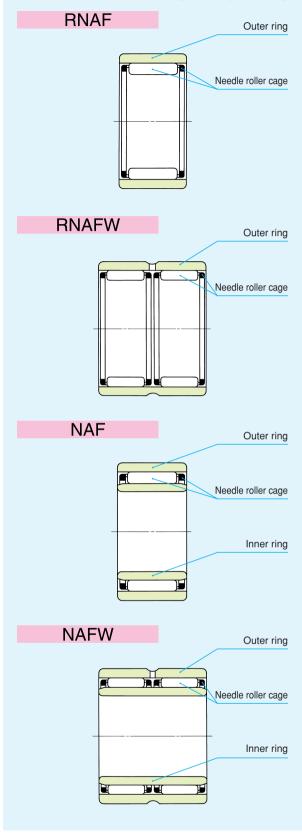
Note(1)	Maximum permissible corner radius of the shaft	or housing

			mountin	า	Basic dynamic load rating	Basic static load rating	Allowable rotational speed(2)	Assembled inner ring	
В	$F_{ m w}$	d Min.	a Max.	D_{a} Max.	$r_{\rm as\ max}^{(1)}$	N	C_0	rpm	
44.700	63.500 (2 ½)	58	61	75.7	1.5	93 300	179 000	1 300	LRBZ 324028
44.700	69.850 (2 ³ ⁄ ₄)	65	67	82	1.5	97 200	197 000	1 100	LRBZ 364428
44.700	76.200 (3)	71	73	88	1.5	101 000	215 000	1 100	LRBZ 404828
44.700	82.550 (3 ½)	77	79	99.9	1.5	127 000	231 000	950	LRBZ 445228
51.050	88.900 (3 ½)	83.5	86	106.3	1.5	170 000	347 000	900	LRBZ 485632
51.050	95.250 (3 ³ / ₄)	91	93	112.6	1.5	175 000	371 000	850	LRBZ 526032
51.050	101.600(4)	97	99	119	1.5	182 000	395 000	800	LRBZ 566432
51.050	107.950 (4 1/4)	103	105	125.3	1.5	186 000	419 000	750	LRBZ 606832

⁽²⁾ Allowable rotational speed applies to grease lubrication.

Remarks1. The outer ring has an oil groove and an oil hole.

2. Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.


- Needle Roller Bearings with Separable Cage Without Inner Ring
- Needle Roller Bearings with Separable Cage With Inner Ring

Structure and Features

In III Needle Roller Bearings with Separable Cage, the inner ring, outer ring and IK Needle Roller Cage are combined, and they can be separated easily. This type has a simple structure with high accuracy. In addition, the radial clearance can be freely chosen by selecting and combining these component parts. As Needle Roller Cages are used, these bearings have excellent rotational performance.

These bearings are most suitable for mass-production high accuracy products such as machine tools, textile machinery, and printing machines.

Structures of Needle Roller Bearings with Separable Cage

231

230

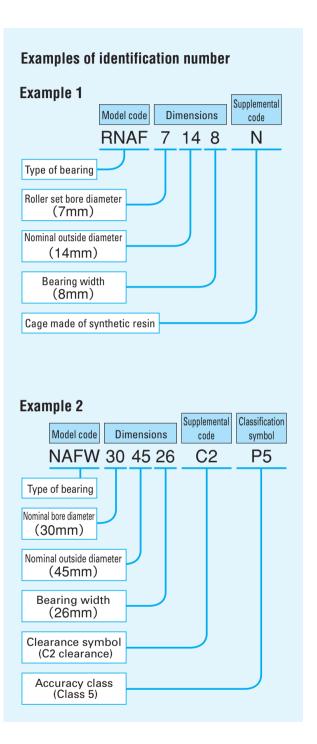
Types

Needle Roller Bearings with Separable Cage are available in the types shown in Table 1.

Table 1 Type of bearing

Туре	Single	e-row	Double-row		
	Without inner ring	With inner ring	Without inner ring	With inner ring	
Model code	RNAF	NAF	RNAFW	NAFW	

Needle Roller Bearings with Separable Cage - Without Inner Ring


The single-row as well as the double-row types are available with the same sectional height, and either of them can be selected according to load conditions. As shown in the section, "Design of shaft and housing" on page 47, any desired radial internal clearance can be selected by combining a shaft which is heattreated and finished by grinding.

Needle Roller Bearings with Separable Cage - With Inner Ring

These bearings are made to the CN clearance shown in Table 19 on page 40. When especially high accuracy is required, it is possible to supply semi-finished inner rings which have a finishing allowance on their outside diameter so that they can be ground after being press-fitted to shafts.

Identification Number

The identification number of Needle Roller Bearings with Separable Cage consists of a model code, dimensions, any supplemental codes and a classification symbol. The arrangement examples are as follows.

Needle Roller Bearings with Separable Cage are manufactured to the accuracy based on JIS (See page 34.). Tolerances for the smallest single roller set bore diameter of bearings without inner ring are based on Table 14 on page 36.

Clearance

Radial internal clearances of Needle Roller Bearings with Separable Cage are made to the CN clearance shown in Table 18 on page 40.

Fit

Recommended fits for Needle Roller Bearings with Separable Cage are shown in Tables 21 to 23 on pages 44 and 45.

Lubrication

Needle Roller Bearings with Separable Cage are not provided with prepacked grease. Perform proper lubrication for use. Using them without lubrication will increase the wear of the rolling contact surfaces and shorten their lives.

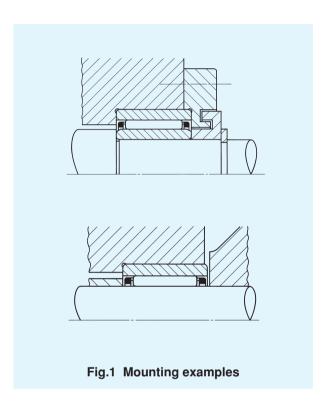
Oil Hole

The double-row type outer rings have both an oil hole and an oil groove, but the single-row type outer rings do not. When outer rings with an oil hole are required, attach "-OH" before the clearance symbol in the identification number, and when outer rings with both an oil hole and an oil groove are required, attach "-OG" to the same position.

Example: NAF 203517 - OH C2 P6

When outer rings with multiple oil holes or inner rings with oil hole(s) are required, please contact \mathbb{R}^{n} .

Operating temperature range


For synthetic resin cages, "N" is added at the end of the identification number. The operating temperature range for Needle Roller Bearings with Separable Cage is $-20 \sim +120^{\circ}\text{C}$. However, the maximum allowable temperature for synthetic resin cages is $+110^{\circ}\text{C}$, and when they are continuously operated, it is $+100^{\circ}\text{C}$.

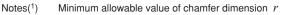
Mounting

Mounting examples of Needle Roller Bearings with Separable Cage are shown in Fig.1.

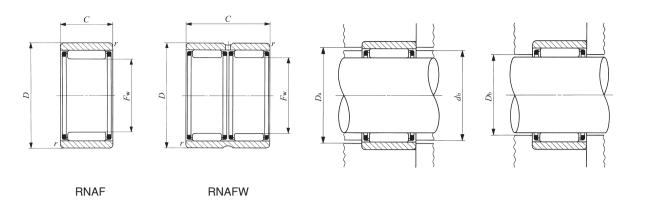
When mounting Needle Roller Bearings with Separable Cage, it is necessary to locate the needle cage axially. The needle cage is guided by shoulders of the shaft and housing or by side plates, and their guide surfaces must be heat-treated and finished by grinding at right angles to the shaft central axis.

Dimensions related to mounting are shown in the table of dimensions.

NAF


Without Inner Ring

Shaft dia. 5 — 18mm


Shaft		Mass (Ref.)	Bound	lary dim	ensions	s mm		lard mou	ınting mm	Basic dynamic load rating	load rating
dia. mm	Identification number	g	F_{w}	D	C	$r_{\rm s min}^{(1)}$	d_{b}	$D_{ m a}$ Max.	$D_{\mathfrak{b}}$	C N	C_0
5	RNAF 5108N	2.8	5	10	8	0.2	6.7	8.4	5.4	2 420	1 950
6	RNAF 6138N	5.5	6	13	8	0.3	8.4	11	6.4	2 700	2 320
7	RNAF 7148N	6.1	7	14	8	0.3	9.4	12	7.4	2 960	2 690
8	RNAF 81510 RNAFW 81620	8.2 20.5	8	15 16	10 20	0.3 0.3	10.4 10.8	13 14	8.4 8.4	3 630 6 220	3 600 7 200
10	RNAF 101710 RNAF 102012	9.6 18.7	10 10	17 20	10 12	0.3 0.3	12.4 13.5	15 18	10.4 10.4	4 160 5 940	4 550 6 000
12	RNAF 122212	19.5	12	22	12	0.3	15.5	20	12.4	9 030	8 460
14	RNAF 142213 RNAFW 142220 RNAF 142612	18.7 28.5 29	14 14 14	22 22 26	13 20 12	0.3 0.3 0.3	17.6 17.6 19.4	20 20 24	14.6 14.6 14.6	7 860 10 800 9 790	9 410 14 200 9 680
15	RNAF 152313 RNAFW 152320	19.7 30.5	15 15	23 23	13 20	0.3 0.3	18.6 18.6	21 21	15.6 15.6	8 250 11 400	10 200 15 400
16	RNAF 162413 RNAFW 162420 RNAF 162812	21 32 31.5	16 16 16	24 24 28	13 20 12	0.3 0.3 0.3	19.6 19.6 21.4	22 22 26	16.6 16.6 16.6	8 620 11 900 10 500	11 000 16 700 10 900
17	RNAF 172513 RNAFW 172520	22 33.5	17 17	25 25	13 20	0.3 0.3	20.6 20.6	23 23	17.6 17.6	8 980 12 400	11 800 17 900
18	RNAF 182613 RNAFW 182620 RNAF 183012 RNAFW 183024	23 35 34.5 69.5	18 18 18 18	26 26 30 30	13 20 12 24	0.3 0.3 0.3 0.3	21.6 21.6 23.4 23.4	24 24 28 28	18.6 18.6 18.6 18.6	9 330 12 900 11 800 20 200	12 700 19 100 13 100 26 200

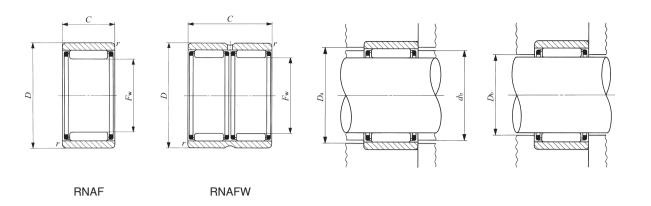
Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable.

Remarks1. The character "N" at the end of the identification number indicates that a synthetic resin cage is incorporated.

RNAF has no oil hole. RNAFW is provided with an oil groove and an oil hole on the outer ring.
 No grease is prepacked. Perform proper lubrication.

Allowable rotational speed(2)	
rpm	
85 000	
75 000	
65 000	
60 000 60 000	
50 000 50 000	
40 000	
35 000 35 000 35 000	
35 000 35 000	
30 000 30 000	
30 000 30 000	
30 000 30 000 30 000	

Without Inner Ring



Shaft dia. 20 — 40mm

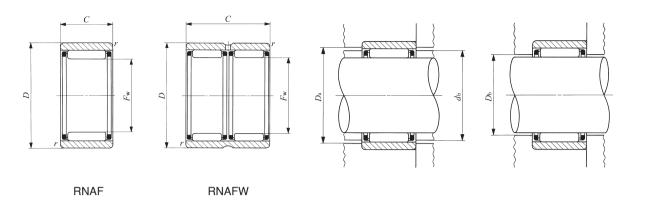
Shaft	11 25 2	Mass (Ref.)	Bound	ary dim	ensions	s mm		lard mou ensions	inting mm	Basic dynamic load rating	load rating
dia. mm	Identification number	g	F_{w}	D	C	$r_{\rm s min}^{(1)}$	$d_{\mathfrak{b}}$	$D_{ m a}$ Max.	$D_{\mathfrak{b}}$	C N	C ₀
20	RNAF 202813	25	20	28	13	0.3	23.6	26	20.6	9 590	13 500
	RNAFW 202826	49.5	20	28	26	0.3	23.6	26	20.6	16 400	27 100
	RNAF 203212	37.5	20	32	12	0.3	25.4	30	20.6	12 400	14 300
	RNAFW 203224	75	20	32	24	0.3	25.4	30	20.6	21 200	28 600
22	RNAF 223013	27	22	30	13	0.3	25.6	28	22.6	10 200	15 200
	RNAFW 223026	53.5	22	30	26	0.3	25.6	28	22.6	17 500	30 300
	RNAF 223516	58.5	22	35	16	0.3	27.8	33	22.6	17 600	20 900
	RNAFW 223532	117	22	35	32	0.3	27.8	33	22.6	30 200	41 800
25	RNAF 253517	51	25	35	17	0.3	29.5	33	25.6	17 300	26 600
	RNAFW 223526	78	25	35	26	0.3	29.5	33	25.6	22 400	37 200
	RNAF 253716	57	25	37	16	0.3	30.4	35	25.6	19 400	24 500
	RNAFW 253732	114	25	37	32	0.3	30.4	35	25.6	33 200	49 000
28	RNAF 284016	62.5	28	40	16	0.3	33.4	38	28.6	20 100	26 500
	RNAFW 284032	125	28	40	32	0.3	33.4	38	28.6	34 400	53 000
30	RNAF 304017	59	30	40	17	0.3	34.5	38	30.6	18 700	31 100
	RNAFW 304026	90.5	30	40	26	0.3	34.5	38	30.6	24 200	43 400
	RNAF 304216	66	30	42	16	0.3	35.4	40	30.6	20 800	28 400
	RNAFW 304232	132	30	42	32	0.3	35.4	40	30.6	35 700	56 800
35	RNAF 354517	67.5	35	45	17	0.3	39.5	43	35.6	20 500	36 900
	RNAFW 354526	103	35	45	26	0.3	39.5	43	35.6	26 600	51 500
	RNAF 354716	75.5	35	47	16	0.3	40.4	45	35.6	23 100	33 900
	RNAFW 354732	151	35	47	32	0.3	40.4	45	35.6	39 500	67 800
40	RNAF 405017	76	40	50	17	0.3	43.5	48	40.8	22 200	42 700
	RNAFW 405034	152	40	50	34	0.3	43.5	48	40.8	38 000	85 400
	RNAF 405520	140	40	55	20	0.3	45.2	53	40.8	31 400	48 000
	RNAFW 405540	280	40	55	40	0.3	45.2	53	40.8	53 900	96 000

Minimum allowable value of chamfer dimension r

(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable. Remarks1. RNAF has no oil hole. RNAFW is provided with an oil groove and an oil hole on the outer ring.

Allowable rotational speed(2)
rpm
25 000 25 000 25 000 25 000
25 000 25 000 25 000 25 000
20 000 20 000 20 000 20 000
18 000 18 000
17 000 17 000 17 000 17 000
14 000 14 000 14 000 14 000
12 000 12 000 12 000 12 000

Without Inner Ring



Shaft dia. 45 — 100mm

Shaft		Mass (Ref.)	Bound	ary dim	ensions	s mm		lard mou	unting mm	Basic dynamic	Basic static
dia.	Identification number	(11011)	_			(1)	$d_{\rm h}$	D_a	D_{h}	C	C_0
mm		g	F_{w}	$F_{\mathrm{w}} \mid D \mid$	C	$r_{\rm s min}$	J	Max.		N	N
	RNAF 455517	83.5	45	55	17	0.3	48.5	53	45.8	23 300	47 100
45	RNAFW 455534	167	45	55	34	0.3	48.5	53	45.8	39 900	94 200
	RNAF 456220 RNAFW 456240	184	45	62 62	20 40	0.3	50.9	60	45.8 45.8	33 200	53 300
		370	45				50.9	60		56 900	107 000
	RNAF 506220 RNAFW 506240	138	50	62	20	0.3	54.2	60	50.8	27 100	59 300
50	RNAFW 506240 RNAF 506520	275 170	50 50	62 65	40 20	0.3	54.2 55.2	60 63	50.8 50.8	46 400 35 900	119 000 61 100
	RNAFW 506540	340	50	65	40	0.6	55.2	61	50.8	61 500	122 000
	RNAF 556820	167	55	68	20	0.3	59.5	66	55.8	28 600	66 000
55	RNAFW 556840	335	55	68	40	0.3	59.5	66	55.8	49 000	132 000
33	RNAF 557220	220	55	72	20	1	60.9	67	55.8	37 400	66 400
	RNAFW 557240	440	55	72	40	1	60.9	67	55.8	64 100	133 000
60	RNAF 607820	255	60	78	20	1	66.3	73	60.8	38 900	71 700
	RNAFW 607840	510	60	78	40	1	66.3	73	60.8	66 700	143 000
65	RNAF 658530	470	65	85	30	1.5	72	77	66	1	127 000
	RNAFW 658560	945	65	85	60	1.5	72	77	66	102 000	255 000
70	RNAF 709030	500	70	90	30	1.5	77	82	71		136 000
	RNAFW 709060	1 000	70	90	60	1.5	77	82	71	105 000	272 000
75	RNAF 759530	530	75	95	30	1.5	82	87	76	63 100	
	RNAFW 759560	1 060	75	95	60	1.5	82	87	76	108 000	289 000
80	RNAF 8010030	560	80	100	30	1.5	87	92	81		153 000
	RNAFW 8010060	1 120	80	100	60	1.5	87	92	81	111 000	306 000
85	RNAF 8510530	590	85	105	30	1.5	92	97	86	66 600	161 000
90	RNAF 9011030	625	90	110	30	1.5	97	102	91	69 600	174 000
95	RNAF 9511530	655	95	115	30	1.5	102	107	96	70 900	182 000
100	RNAF 10012030	685	100	120	30	1.5	107	112	101	72 500	191 000

Minimum allowable value of chamfer dimension r

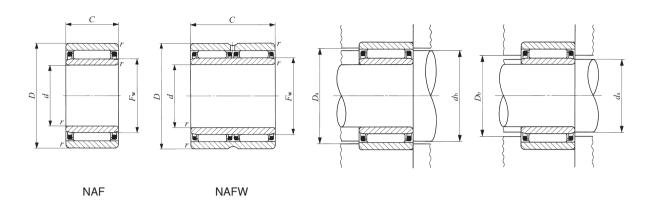
(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable. Remarks1. RNAF has no oil hole. RNAFW is provided with an oil groove and an oil hole on the outer ring.

owable ational $\operatorname{eed}(^2)$
rpm
1 000 1 000 1 000 1 000
0 000 0 000 0 000 0 000
9 000 9 000 9 000 9 000
8 500 8 500
7 500 7 500
7 000 7 000
6 500 6 500
6 000 6 000
6 000
5 500
5 500
4 500

NAF

NEEDLE ROLLER BEARINGS WITH SEPARABLE CAGE

With Inner Ring



Shaft dia. 6 – 25mm

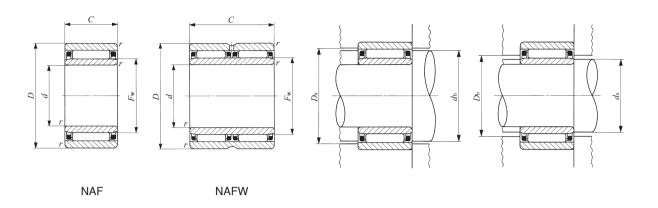
Shaft		Mass (Ref.)	Bour	ndary dii	mensior	ns mm		Standa	rd mour	nting dir	mension	s mm
dia. mm	Identification number	g	d	D	C	$r_{\rm s min}^{(1)}$	$F_{ m w}$	d_{b}	$D_{ m a}$ Max.	Min.	Max.	$D_{\mathfrak{b}}$
6	NAF 61710	13.5	6	17	10	0.3	10	12.4	15	8	9.7	10.4
7	NAF 72012	22.5	7	20	12	0.3	10	13.5	18	9	9.7	10.4
9	NAF 92212	24	9	22	12	0.3	12	15.5	20	11	11.5	12.4
10	NAF 102213 NAFW 102220 NAF 102612	26 40 36	10 10 10	22 22 26	13 20 12	0.3 0.3 0.3	14 14 14	17.6 17.6 19.4	20 20 24	12 12 12	13 13 13	14.6 14.6 14.6
12	NAF 122413 NAFW 122420 NAF 122812	29.5 45.5 40	12 12 12	24 24 28	13 20 12	0.3 0.3 0.3	16 16 16	19.6 19.6 21.4	22 22 26	14 14 14	15 15 15	16.6 16.6 16.6
15	NAF 152813 NAFW 152826 NAF 153212	38.5 77.5 50.5	15 15 15	28 28 32	13 26 12	0.3 0.3 0.3	20 20 20	23.6 23.6 25.4	26 26 30	17 17 17	19 19 19	20.6 20.6 20.6
17	NAF 173013 NAFW 173026 NAF 173516 NAFW 173532	42.5 84.5 77.5 155	17 17 17 17	30 30 35 35	13 26 16 32	0.3 0.3 0.3 0.3	22 22 22 22	25.6 25.6 27.8 27.8	28 28 33 33	19 19 19 19	21 21 21 21	22.6 22.6 22.6 22.6
20	NAF 203517 NAFW 203526 NAF 203716 NAFW 203732	74 114 79 158	20 20 20 20	35 35 37 37	17 26 16 32	0.3 0.3 0.3 0.3	25 25 25 25	29.5 29.5 30.4 30.4	33 33 35 35	22 22 22 22	24 24 24 24	25.6 25.6 25.6 25.6
25	NAF 254017 NAFW 254026 NAF 254216 NAFW 254232	87.5 135 94 186	25 25 25 25 25	40 40 42 42	17 26 16 32	0.3 0.3 0.3 0.3	30 30 30 30	34.5 34.5 35.4 35.4	38 38 40 40	27 27 27 27	29 29 29 29	30.6 30.6 30.6 30.6

Minimum allowable value of chamfer dimension r

(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable. Remarks1. RNAF has no oil hole. RNAFW is provided with an oil groove and an oil hole on the outer ring.

Basic dynamic load rating C	Basic static load rating C_0	Allowable rotational speed(2)	Assembled inner ring
N	N	rpm	
4 160	4 550	50 000	LRT 61010
5 940	6 000	50 000	LRT 71012-1
9 030	8 460	40 000	LRT 91212
7 860 10 800 9 790	9 410 14 200 9 680	35 000 35 000 35 000	LRT 101413 LRT 101420 LRT 101412
8 620 11 900 10 500	11 000 16 700 10 900	30 000 30 000	LRT 121613 LRT 121620 LRT 121612
9 590 16 400 12 400	13 500 27 100 14 300	25 000 25 000 25 000	LRT 152013 LRT 152026 LRT 152012
10 200 17 500 17 600 30 200	15 200 30 300 20 900 41 800	25 000 25 000 25 000 25 000	LRT 172213 LRT 172226 LRT 172216 LRT 172232
17 300 22 400 19 400 33 200	26 600 37 200 24 500 49 000	20 000 20 000 20 000 20 000	LRT 202517 LRT 202526 LRT 202516 LRT 202532
18 700 24 200 20 800 35 700	31 100 43 400 28 400 56 800	17 000 17 000 17 000 17 000	LRT 253017 LRT 253026 LRT 253016 LRT 253032

With Inner Ring



Shaft dia. 30 — 65mm

Shaft		Mass (Ref.)	Bour	ndary di	mensior	ns mm		Standard mounting dimensions mm					
dia. mm	Identification number	g	d	D	C	$r_{\rm s min}$	F_{w}	$d_{\mathfrak{b}}$	$D_{ m a}$ Max.	Min.	Max.	$D_{\mathfrak{b}}$	
30	NAF 304517 NAFW 304526 NAF 304716 NAFW 304732	101 155 107 215	30 30 30	45 45 47 47	17 26 16 32	0.3 0.3 0.3 0.3	35 35 35 35	39.5 39.5 40.4 40.4	43 43 45 45	32 32 32 32	34 34 34 34	35.6 35.6 35.6 35.6	
35	NAF 355017	115	35	50	17	0.3	40	43.5	48	37	39	40.8	
	NAFW 355034	230	35	50	34	0.3	40	43.5	48	37	39	40.8	
	NAF 355520	186	35	55	20	0.3	40	45.2	53	37	39	40.8	
	NAFW 355540	375	35	55	40	0.3	40	45.2	53	37	39	40.8	
40	NAF 405517	128	40	55	17	0.3	45	48.5	53	42	44	45.8	
	NAFW 405534	255	40	55	34	0.3	45	48.5	53	42	44	45.8	
	NAF 406220	235	40	62	20	0.3	45	50.9	60	42	44	45.8	
	NAFW 406240	475	40	62	40	0.3	45	50.9	60	42	44	45.8	
45	NAF 456220 NAFW 456240 NAF 457220 NAFW 457240	196 390 340 685	45 45 45 45	62 62 72 72	20 40 20 40	0.3 0.3 1	50 50 55 55	54.2 54.2 60.9 60.9	60 60 67 67	47 47 50 50	49 49 54 54	50.8 50.8 55.8 55.8	
50	NAF 506820 NAFW 506840 NAF 507820 NAFW 507840	230 465 390 775	50 50 50 50	68 68 78 78	20 40 20 40	0.3 0.3 1	55 55 60 60	59.5 59.5 66.3 66.3	66 66 73 73	52 52 55 55	54 54 59 59	55.8 55.8 60.8 60.8	
55	NAF 558530	690	55	85	30	1.5	65	72	77	63	63.5	66	
	NAFW 558560	1 380	55	85	60	1.5	65	72	77	63	63.5	66	
60	NAF 609030	740	60	90	30	1.5	70	77	82	68	68.5	71	
	NAFW 609060	1 480	60	90	60	1.5	70	77	82	68	68.5	71	
65	NAF 659530	790	65	95	30	1.5	75	82	87	73	73.5	76	
	NAFW 659560	1 580	65	95	60	1.5	75	82	87	73	73.5	76	

Minimum allowable value of chamfer dimension r

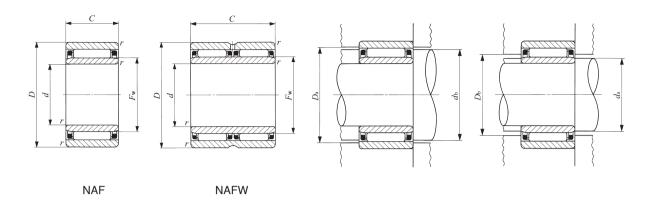
(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable. Remarks1. RNAF has no oil hole. RNAFW is provided with an oil groove and an oil hole on the outer ring.

Basic dynamic load rating C	Basic static load rating C_0	Allowable rotational speed(2)	Assembled inner ring
N	N	rpm	
20 500	36 900	14 000	LRT 303517
26 600	51 500	14 000	LRT 303526
23 100	33 900	14 000	LRT 303516
39 500	67 800	14 000	LRT 303532
22 200	42 700	12 000	LRT 354017
38 000	85 400	12 000	LRT 354034
31 400	48 000	12 000	LRT 354020
53 900	96 000	12 000	LRT 354040
23 300	47 100	11 000	LRT 404517
39 900	94 200	11 000	LRT 404534
33 200	53 300	11 000	LRT 404520
56 900	107 000	11 000	LRT 404540
27 100	59 300	10 000	LRT 455020
46 400	119 000	10 000	LRT 455040
37 400	66 400	9 000	LRT 455520
64 100	133 000	9 000	LRT 455540
28 600	66 000	9 000	LRT 505520
49 000	132 000	9 000	LRT 505540
38 900	71 700	8 500	LRT 506020
66 700	143 000	8 500	LRT 506040
59 300	127 000	7 500	LRT 556530
102 000	255 000	7 500	LRT 556560
61 200	136 000	7 000	LRT 607030
105 000	272 000	7 000	LRT 607060
63 100	144 000	6 500	LRT 657530
108 000	289 000	6 500	LRT 657560

NAF

NEEDLE ROLLER BEARINGS WITH SEPARABLE CAGE

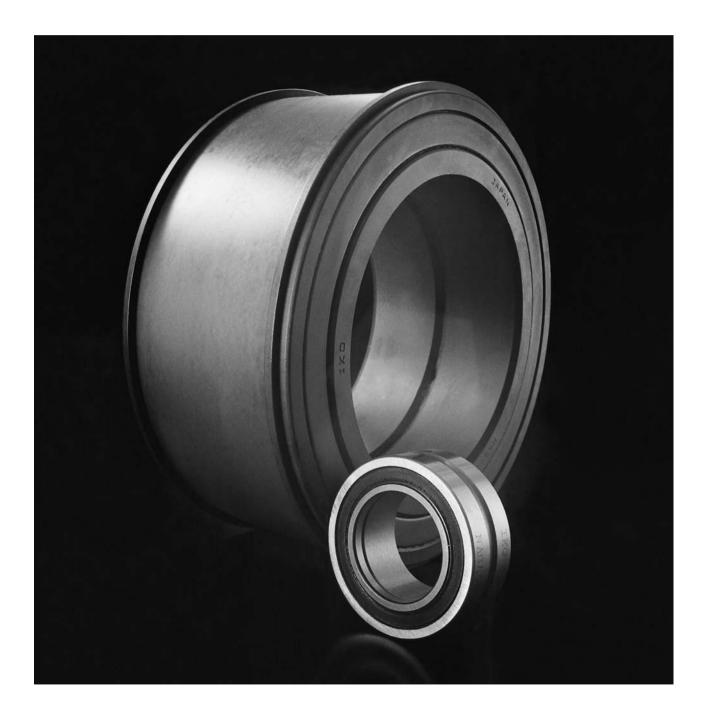
With Inner Ring



Shaft dia. 70 — 90mm

		Mass	Bour	ndary dii	mensio	ns mm		Standard mounting dimensions mm					
Shaft dia.	Identification number	(Ref.)	d	D		$r_{\rm s min}^{(1)}$	$F_{ m w}$	$d_{\rm b}$	D_{a}	a	1	D_{b}	
mm		g	a	D	C	r _{s min}	$\Gamma_{ m W}$		Max.	Min.	Max.		
70	NAF 7010030 NAFW 7010060	835 1 680	70 70	100 100	30 60	1.5 1.5	80 80	87 87	92 92	78 78	78.5 78.5	81 81	
75	NAF 7510530	885	75	105	30	1.5	85	92	97	83	83.5	86	
80	NAF 8011030	935	80	110	30	1.5	90	97	102	88	88.5	91	
85	NAF 8511530	985	85	115	30	1.5	95	102	107	93	93.5	96	
90	NAF 9012030	1 040	90	120	30	1.5	100	107	112	98	98.5	101	

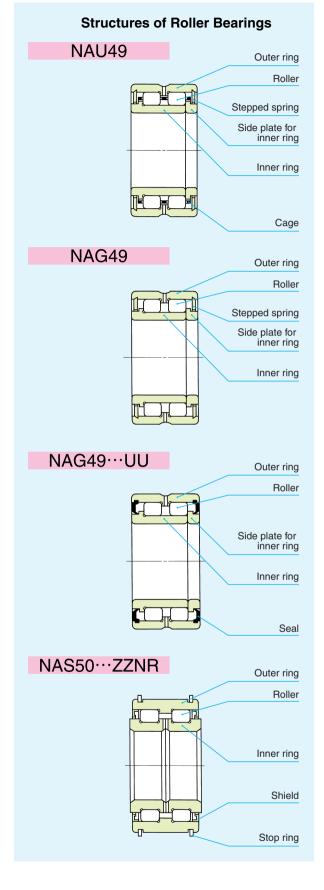
(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable. Remarks1. RNAF has no oil hole. RNAFW is provided with an oil groove and an oil hole on the outer ring.



Basic dynamic load rating $\cal C$	Basic static load rating C_0	Allowable rotational speed(2)		mbled r ring			
N	N	rpm					
	153 000 306 000			08030-1 08060			
66 600	161 000	6 000	LRT 7	58530-1			
69 600	174 000	5 500	LRT 80	09030-1			
70 900	182 000	5 500	LRT 8	59530			
72 500	191 000	4 500	LRT 90°	10030			

NAG NAU TRU NAS

ROLLER BEARINGS


- Caged Roller Bearings
- Full Complement Roller Bearings
- **●**Roller Bearings for Sheaves

Structure and Features

In two rows are non-separable heavy-duty bearings. They can withstand not only radial loads but axial loads as well, which are supported at the contacts between the shoulders of inner and outer rings and the end faces of rollers. Therefore, they are most suitable for use at the fixing side of a shaft. Like needle roller bearings, they are also compact.

Roller bearings include the caged type, full complement type and the type for sheaves, and any bearings suitable for the operating conditions can be selected. In particular, these bearings are used for heavy-duty machines such as construction machinery, and industrial machinery.

246

Types

The types of Roller Bearings shown in Table 1 are available.

Table 1 Type of bearing

Type Series	Caged type	Full complement type	For sheaves	
Standard	Standard NAU49 TRU			
With seal	NAU49…UU TRU…UU	NAG49 ··· UU	NAS50 ··· UUNR	
With shield			NAS50 ··· ZZNR	

Caged Roller Bearings

These bearings are suitable for high-speed rotations and fluctuating loads. Also, as the axial distance between the double-row rollers is comparatively large, large moment loads can be supported.

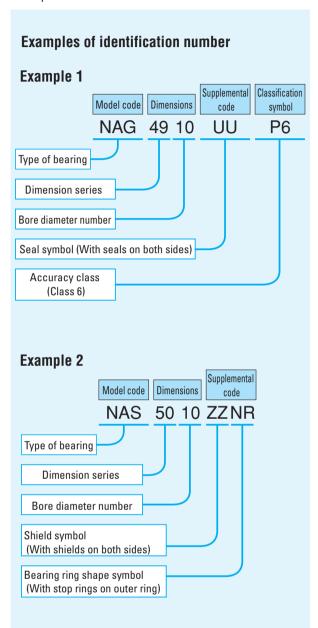
Caged roller bearings with seal incorporate seals on both sides. Synthetic resin rubber seals are excellent in the prevention of dust penetration and grease leakage, providing an excellent sealing effect.

Full Complement Roller Bearings

These bearings are suitable for low-speed rotations or oscillating motions and heavy loads. Similar to the caged type, the structure is advantageous for supporting moment loads.

The bearings with seal incorporate seals on both sides.

Roller Bearings for Sheaves


These bearings are the double-row full complement type with a low sectional height designed for use in sheaves. There are two types; the sealed type and the shield type. They can withstand heavy radial loads and shock loads at comparatively low-speed rotations, and can also withstand axial loads.

They can easily be fixed axially to sheaves using the stop rings of the outer ring. As the width of the inner ring is designed to be larger than that of the outer ring, they require no spacer between sheaves. The structure is stable because the double-row rollers can withstand the moment loads caused by rope transition.

The surfaces of these bearings are treated to have high corrosion resistance.

Identification Number

The identification number of Roller Bearings consists of a model code, dimensions, any supplemental codes and a classification symbol. The arrangement examples are shown below.

Accuracy

Roller Bearings are manufactured in accordance with JIS (See page 34.). A side plate for inner ring is assembled on one side of caged or full complement roller bearings. The tolerance of bore diameter of the side plate is shown below. Tolerances of Roller Bearings for Sheaves represent the values before surface treatment. The tolerance of internal distance between cir-clips is shown below.

Tolerance of bore diameter of the side plate d: E7 Tolerance of internal distance between cir-clips C_1 : 0 \sim +0.4mm

Clearance

Roller Bearings are manufactured to the CN clearance shown in Table 18 on page 40. However, Roller Bearings for Sheaves are manufactured so that proper operating clearances are obtained after being mounted with a specified fit.

Fit

The recommended fits for Roller Bearings are shown in Tables 21 to 22 on pages 44 and 45. The recommended fits for Roller Bearings for Sheaves are shown in Table 2.

Table 2 Recommended fits for Roller Bearings for Sheaves

Tolerance class of shaft	Tolerance class of housing bore
g6	N7

Lubrication

Bearings with prepacked grease are shown in Table 3. For Caged Roller Bearings and Full Complement Roller Bearings, ALVANIA GREASE 2 (SHELL) is prepacked as the lubricating grease. For Roller Bearings for Sheaves, ALVANIA EP GREASE 2 (SHELL) is prepacked as the lubricating grease.

In the case of bearings without prepacked grease, perform proper lubrication for use. Operating without lubrication will increase the wear of the rolling contact surfaces and shorten their lirees.

Oil Hole

The number of oil holes of the inner and outer rings is shown in Table 4.

Operating Temperature Range

Table 3 Bearings with prepacked grease

O: With prepacked grease X: Without prepacked grease

				1 1
	Туре	Standard	With seals	With shields
Caged type	NAU , TRU	×	0	_
Full complement type	NAG	×	0	_
For sheaves	NAS	_	0	0

Table 4 Number of oil holes of the inner ring and outer ring

	Туре		Number	Number of oil holes			
Nominal bore diameter d r			Standard	Standard With seals With shields		of the inner ring	
Caged type	NAU	<i>d</i> ≦ 17	0	0		0	
	INAU	17 < d	2	2		J	
	TRU		2	2	_	0	
Full complement type	NAG		0	0		0	
i un complement type	INAG	17 < d	2	2			
For sheaves NAS			<u> </u>	0	0	2	

Remark The bearings with oil holes are also provided with an oil groove.

Axial Load Capacity

Axial load capacity is not determined from the basic dynamic load rating based on rolling fatigue, but is determined by the amount of heat generated by sliding contact between the ends of rollers and guide shoulders of the inner and outer rings. It is therefore limited by the load conditions, sliding speeds, lubrication methods, etc.

The axial load capacity of Roller Bearings is obtained from the following equation.

If the axial load increases in comparison with the radial load, it will start to interfere with the smooth rolling motion. The axial load should therefore be within 20% of the radial load.

 $\left(d_{\rm m} = \frac{d+D}{2}\right)$

n: Rotational speed rpm When $d_{\rm m}n \leq$ 1000, $f_{\rm V} =$ 1.

and outside diameters mm

a : Value determined by type of bearing (See Table 5.)

 f_A : Axial load capacity factor (See Fig.1.)

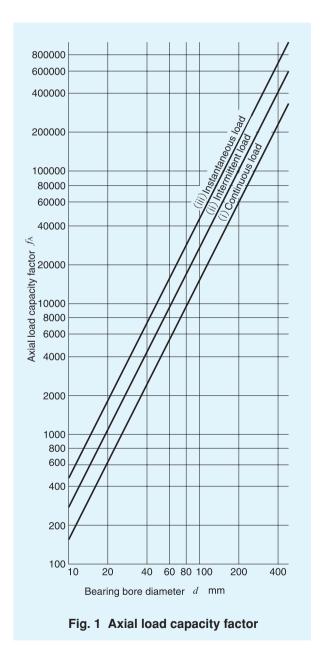
Table 5 Value by type of bearing

а
1
0.78
0.7

Calculation example

When a roller bearing for sheaves NAS 5016 ZZ NR is run at n = 250 rpm under grease lubrication and subjected to an intermittent axial load, the axial load capacity is calculated as follows.

As the bearing bore diameter is 80 mm, $f_{\rm A}$ = 18000 is obtained from the axial load capacity line of Fig. 1 (ii).


$$d_{\rm m} = \frac{80 + 125}{2} = 102.5$$

 $d_{\rm m}n = 102.5 \times 250 = 25600$

From Fig. 2, $f_v = 0.87$

Therefore, the axial load capacity $C_{\rm A}$ is obtained.

$$C_{\rm A} = f_{\rm v} \, a \, f_{\rm A} = 0.87 \times 1 \times 18000 = 15700 \, \text{N}$$

Unlike needle roller bearings, Caged and Full Complement Roller Bearings are non-separable.

As shown in Fig. 3 (1), the inner ring should be press-

respectively.

As shown in Fig. 3 (1), the inner ring should be pressfitted until it makes close contact with the shaft shoulder, and fixed axially with a nut. Dimensions of the shoulders of the shaft and housing should be based on J and $E_{\rm W}$ shown in the table of dimensions,

In the case of Roller Bearings for Sheaves, as shown in Fig. 3 (2), the outer ring should be fixed by stop rings after being press-fitted into the sheaves, and the inner ring should be fixed securely in the axial direction

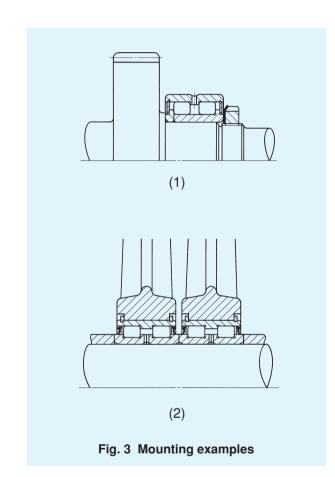


Fig. 2 Speed correction factor

Oil lubrication

Grease lubrication

 $d_{\rm m}n$

300000-

200000-

100000

50000 -

-0.60

0.80

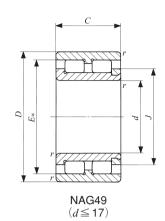
0.90

-0.98

10000 _____ 0.95

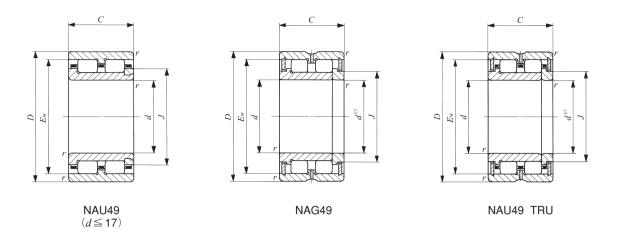
5000-

1000


NAU TRU NAS

ROLLER BEARINGS

Caged Roller Bearings Full Complement Roller Bearings


Shaft dia. 10 — 35mm

	Identification number Mass Boundary dimensions									
	ļ l	Mass (Ref.)		Во		dimension nm	ons			
Shaft dia. mm	Full complement type	Cag	ed type	g	d	D	C	(1) r _{s min}	J	$E_{ m w}$
10	NAG 4900 —	NAU 4900		25.5 24.5	10 10	22 22	13 13	0.3 0.3	15.5 15.5	18.5 18.5
12	NAG 4901 —	— NAU 4901	<u> </u>	28.5 27.5	12 12	24 24	13 13	0.3 0.3	17 17	20 20
15	NAG 4902 — —	NAU 4902	 TRU 153320	38 36.5 80.5	15 15 15	28 28 33	13 13 20	0.3 0.3 0.3	21 21 19.5	24 24 27
17	NAG 4903 —	NAU 4903	 TRU 173425	41 39.5 100	17 17 17	30 30 34	13 13 25	0.3 0.3 0.3	22.5 22.5 21.5	25.5 25.5 29.5
20	NAG 4904 — — —	NAU 4904 —	TRU 203820 TRU 203825	76.5 76 96.5 122	20 20 20 20	37 37 38 38	17 17 20 25	0.3 0.3 0.3 0.3	24 24 25 25	31.5 31.5 32.5 32.5
25	NAG 4905 —	NAU 4905	 TRU 254425	89.5 89 154	25 25 25	42 42 44	17 17 25	0.3 0.3 0.3	29.5 29.5 30.5	37 37 38
28	_		TRU 284530	173	28	45	30	0.3	31.5	39.5
30	NAG 4906 — —	NAU 4906	 TRU 304830	103 102 197	30 30 30	47 47 48	17 17 30	0.3 0.3 0.3	34 34 35	41.5 41.5 42.5
32	_	_	TRU 325230	260	32	52	30	0.6	38	46
35	NAG 4907 —	NAU 4907	TRU 355630	172 168 270	35 35 35	55 55 56	20 20 30	0.6 0.6 0.6	40 40 40	49 49 49

Notes(1) Minimum allowable value of chamfer dimension \boldsymbol{r}

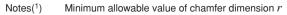
Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

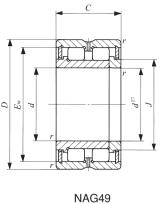
Considering that the axial load acts under practical operating conditions, up to 1/10 of this value is recommended for actual use. The NAG and NAU series with a bore diameter d of 17 mm or less have no oil hole. In others, the outer ring has an oil groove and Remarks1.

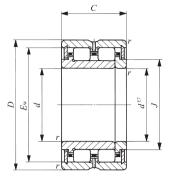
Basic dynamic load rating	Basic static load rating	Allowable rotational	
C	C_0	speed(2)	
N	N	rpm	
9 650	10 800	17 000	
6 580	6 470	30 000	
10 300	12 000	15 000	
6 950	7 120	25 000	
11 800	15 200	12 000	
7 950	9 020	20 000	
10 400	10 400	20 000	
12 300 8 240	16 500 9 670	11 000 19 000	
18 000	21 600	18 000	
15 600	18 900	9 500	
10 700	11 300	16 000	
12 100	13 400	16 000	
18 700	23 600	16 000	
17 500	23 200	7 500	
11 900 21 000	13 900 28 900	13 000 13 000	
28 700	43 800	12 000	
19 400	27 600	6 500	
13 000	16 200	12 000	
29 400	46 600	11 000	
29 800	44 200	10 000	
28 700	43 800	5 500	
19 500	26 300	10 000	
32 200	49 800	10 000	

NAU TRU NAS

ROLLER BEARINGS


Caged Roller Bearings
Full Complement Roller Bearings


Shaft dia. 40 — 80mm


	lo	dentification nur	mber	Mass (Ref.)		Во		dimensionm	ons	
Shaft dia. mm	Full complement type	Cag	led type	g	d	D	C	$r_{\rm s min}$	J	$E_{ m w}$
40	NAG 4908 — —	 NAU 4908	TRU 405930	225 265 220	40 40 40	62 59 62	22 30 22	0.6 0.6 0.6	46 45 46	56 52.5 56
42	_		TRU 426230	290	42	62	30	0.6	48	56.5
45	NAG 4909 —	 NAU 4909	TRU 456430	265 295 260	45 45 45	68 64 68	22 30 22	0.6 0.6 0.6	51 50.5 51	61 58.5 61
50	NAG 4910 —	NAU 4910	 TRU 507745	270 265 710	50 50 50	72 72 77	22 22 45	0.6 0.6 1	55.5 55.5 58	65.5 65.5 69
55	NAG 4911 — —	NAU 4911	 TRU 558138	395 385 615	55 55 55	80 80 81	25 25 38	1 1 1	61.5 61.5 61.5	72.5 72.5 72.5
60	NAG 4912 — —	NAU 4912	TRU 608945	425 415 880	60 60 60	85 85 89	25 25 45	1 1 1	67 67 69.5	77.5 77.5 81.5
65	NAG 4913 —	 NAU 4913	_ _	455 440	65 65	90 90	25 25	1 1	72 72	83 83
70	NAG 4914 —	 NAU 4914		725 705	70 70	100 100	30 30	1	79 79	91.5 91.5
75	NAG 4915 — —	NAU 4915	TRU 7510845	775 750 1 240	75 75 75	105 105 108	30 30 45	1 1 1	83.5 83.5 85.5	95.5 95.5 98.5
80	NAG 4916 —	NAU 4916	_	815 790	80 80	110 110	30 30	1 1	89.5 89.5	102 102

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Considering that the axial load acts under practical operating conditions, up to 1/10 of this value is recommended for actual use.

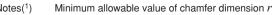
Remarks1. The outer ring has an oil groove and two oil holes.

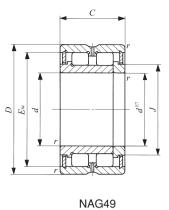
NAU49	TRU

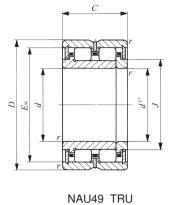
Basic dynamic load rating C	Basic static load rating C_0	Allowable rotational speed(2)	
N	N	rpm	
34 600	49 500	5 000	
34 700	62 500	8 500	
23 400	29 400	8 500	
34 600	57 800	8 000	
36 400	54 700	4 500	
32 600	59 700	8 000	
24 800	32 800	8 000	
38 200	59 900	4 000	
26 200	36 200	7 000	
75 700	134 000	7 000	
48 100	77 700	3 500	
33 000	47 000	6 500	
61 400	104 000	6 500	
50 300	84 300	3 500	
34 700	51 400	6 000	
88 100	152 000	6 000	
53 200	93 000	3 000	
36 900	57 100	5 500	
77 700	139 000	3 000	
53 700	84 600	5 000	
80 000	146 000	2 500	
54 800	88 200	5 000	
103 000	190 000	4 500	
83 000	157 000	2 500	
57 200	95 500	4 500	

NAU TRU

ROLLER BEARINGS


Caged Roller Bearings Full Complement Roller Bearings


Shaft dia. 85 — 140mm


	I .	dentification nu	mhor	Mass		D -		-1: :		
		dentinication nui	ilibei	(Ref.)		В0		dimensi nm	ons	
Shaft dia. mm	Full complement type	Caç	ged type	g	d	D	C	$r_{\rm s min}$	J	$E_{ m w}$
85	NAG 4917 — — —	NAU 4917	TRU 8511850 TRU 8512045	1 190 1 530 1 150 1 500	85 85 85 85	120 118 120 120	35 50 35 45	1.5 1 1.5 1.5	96 94.5 96 96.5	110 107.5 110 110
90	NAG 4918 — —	NAU 4918	TRU 9012550	1 250 1 210 1 740	90 90 90	125 125 125	35 35 50	1.5 1.5 1.5	101 101 101	115.5 115.5 114
95	NAG 4919 —	 NAU 4919	_	1 300 1 270	95 95	130 130	35 35	1.5 1.5	106 106	120.5 120.5
100	NAG 4920 — —	 NAU 4920	TRU 10013550	1 850 1 900 1 770	100 100 100	140 135 140	40 50 40	1.5 1.5 1.5	112	129.5 125.5 129.5
105	_		TRU 10515350	2 890	105	153	50	1.5	120	138
110	NAG 4922 —	NAU 4922	_	2 010 1 930	110 110	150 150	40 40	1.5 1.5	123 123	138.5 138.5
120	NAG 4924 —	— NAU 4924	_	2 780 2 680	120 120	165 165	45 45	1.5 1.5	136 136	153.5 153.5
125	_		TRU 12517860	4 490	125	178	60	1.5	143.5	162
130	NAG 4926 —	— NAU 4926		3 750 3 610	130 130	180 180	50 50	2 2	147 147	165.5 165.5
135	_		TRU 13518860	4 790	135	188	60	1.5	154	172.5
140	NAG 4928 —	 NAU 4928		3 990 3 840	140 140	190 190	50 50	2 2	157.5 157.5	

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Considering that the axial load acts under practical operating conditions, up to 1/10 of this value is recommended for actual use.

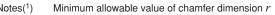
Remarks1. The outer ring has an oil groove and two oil holes.

NAU49	TRI

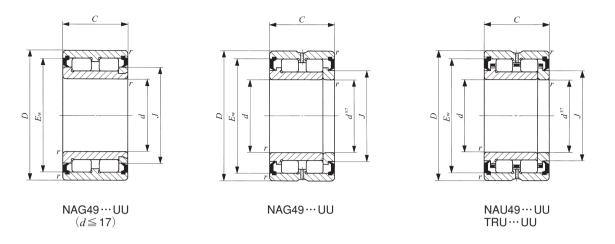
Basic dynamic load rating C	Basic static load rating C_0	Allowable rotational speed (2)	
N	N	rpm	
111 000	200 000	2 500	
114 000	222 000	4 000	
75 400	120 000	4 000	
110 000	215 000	4 000	
114 000	211 000	2 500	
79 500	130 000	4 000	
119 000	240 000	4 000	
117 000	222 000	2 000	
81 000	136 000	4 000	
152 000	292 000	2 000	
124 000	264 000	3 500	
106 000	181 000	3 500	
159 000	286 000	3 500	
161 000	322 000	1 900	
113 000	200 000	3 500	
208 000	431 000	1 700	
146 000	268 000	3 000	
211 000	408 000	3 000	
240 000	495 000	1 600	
166 000	304 000	2 500	
220 000	442 000	2 500	
249 000	531 000	1 500	
174 000	327 000	2 500	

NAU TRU NAS

ROLLER BEARINGS


Caged Roller Bearings With Seal
Full Complement Roller Bearings With Seal

Shaft dia. 10 — 40mm


	Identification number Mass Roundary dimensions										
		Identification numb	per	Mass (Ref.)	Boundary dimensions mm						
Shaft dia. mm	Full complement type	Cago	ed type	g	d	D	C	$r_{\rm s min}$	\int		
10	NAG 4900UU	_	_	25.5	10	22	13	0.3	15.5		
12	NAG 4901UU	_	_	28.5	12	24	13	0.3	17		
15	NAG 4902UU	_	 TRU 153320UU	38 80.5	15 15	28 33	13 20	0.3 0.3	21 19.5		
17	NAG 4903UU —	_ _	 TRU 173425UU	41 100	17 17	30 34	13 25	0.3 0.3	22.5 21.5		
20	NAG 4904UU — — —	NAU 4904UU — —	TRU 203820UU TRU 203825UU	76.5 76 96.5 122	20 20 20 20	37 37 38 38	17 17 20 25	0.3 0.3 0.3 0.3	24 24 25 25		
25	NAG 4905UU — —	NAU 4905UU	TRU 254425UU	89.5 89 154	25 25 25	42 42 44	17 17 25	0.3 0.3 0.3	29.5 29.5 30.5		
28	_	_	TRU 284530UU	173	28	45	30	0.3	31.5		
30	NAG 4906UU — —	NAU 4906UU	 TRU 304830UU	103 102 197	30 30 30	47 47 48	17 17 30	0.3 0.3 0.3	34 34 35		
32	_		TRU 325230UU	260	32	52	30	0.6	38		
35	NAG 4907UU — —	NAU 4907UU	TRU 355630UU	172 168 270	35 35 35	55 55 56	20 20 30	0.6 0.6 0.6	40 40 40		
40	NAG 4908UU — —	 NAU 4908UU	TRU 405930UU —	225 265 220	40 40 40	62 59 62	22 30 22	0.6 0.6 0.6	46 45 46		

⁽²⁾ Allowable rotational speed applies to grease lubrication. Considering that the axial load acts under practical operating conditions, up to 1/10 of this value is recommended for actual use.

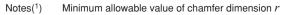
Remarks1. The NAG and NAU series with a bore diameter, d, of 17 mm or less have no oil hole. In others, the outer ring has an oil groove and two oil holes.

2. The bearings with seals are provided with prepacked grease.

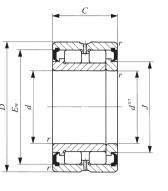
	Basic dynamic	Basic static	Allowable	
	load rating	load rating	rotational speed(²)	
Г	C	C_0	Specu()	
E_{w}	N	N	rpm	
19.5	9 650	10 800	10 000	
21	10 300	12 000	9 000	
25	11 800	15 200	7 000	
27	10 400	10 400	9 500	
26.5	12 300	16 500	6 500	
29.5	18 000	21 600	8 500	
31.5	15 600	18 900	5 500	
31.5	10 700	11 300	8 000	
32.5	12 100	13 400	7 500	
32.5	18 700	23 600	7 500	
37	17 500	23 200	4 500	
37	11 900	13 900	6 500	
38	21 000	28 900	6 000	
39.5	28 700	43 800	6 000	
41.5	19 400	27 600	4 000	
41.5	13 000	16 200	5 500	
42.5	29 400	46 600	5 500	
46	29 800	44 200	5 000	
49	28 700	43 800	3 500	
49	19 500	26 300	4 500	
49	32 200	49 800	4 500	
56	34 600	49 500	3 000	
52.5	34 700	62 500	4 000	
56	23 400	29 400	4 000	

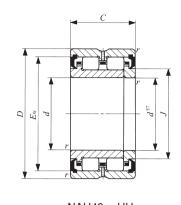
NAU TRU

ROLLER BEARINGS


Caged Roller Bearings With Seal Full Complement Roller Bearings With Seal

Shaft dia. 42 – 80mm


		Identification numb	per	Mass (Ref.)	Boundary dimensions mm				
Shaft dia. mm	Full complement type	Cago	ed type	g	d	D	C	$r_{\rm s min}$	J
42	_		TRU 426230UU	290	42	62	30	0.6	48
45	NAG 4909UU — —	 NAU 4909UU	TRU 456430UU	265 295 260	45 45 45	68 64 68	22 30 22	0.6 0.6 0.6	51 50.5 51
50	NAG 4910UU — —	NAU 4910UU —	TRU 507745UU	270 265 710	50 50 50	72 72 77	22 22 45	0.6 0.6 1	55.5 55.5 58
55	NAG 4911UU — —	— NAU 4911UU —	TRU 558138UU	395 385 615	55 55 55	80 80 81	25 25 38	1 1 1	61.5 61.5 61.5
60	NAG 4912UU — —	— NAU 4912UU —	TRU 608945UU	425 415 880	60 60 60	85 85 89	25 25 45	1 1 1	67 67 69.5
65	NAG 4913UU —	 NAU 4913UU	_ _	455 440	65 65	90 90	25 25	1 1	72 72
70	NAG 4914UU —	 NAU 4914UU		725 705	70 70	100 100	30 30	1	79 79
75	NAG 4915UU — —	— NAU 4915UU —	 TRU 7510845UU	775 750 1 240	75 75 75	105 105 108	30 30 45	1 1 1	83.5 83.5 85.5
80	NAG 4916UU —	 NAU 4916UU		815 790	80 80	110 110	30	1	89.5 89.5


Allowable rotational speed applies to grease lubrication. Considering that the axial load acts under practical operating conditions, up to 1/10 of this value is recommended for actual use.

Remarks1. The outer ring has an oil groove and two oil holes.

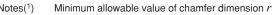
2. The bearings with seals are provided with prepacked grease.

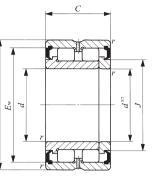
NAU49…UU TRU…UU

	Basic dynamic	Basic static	Allowable	
	load rating	load rating	rotational	
	C	C_0	speed(2)	
E_{w}	N	N	rpm	
56.5	34 600	57 800	4 000	
61	36 400	54 700	2 500	
58.5	32 600	59 700	3 500	
61	24 800	32 800	3 500	
65.5	38 200	59 900	2 500	
65.5	26 200	36 200	3 500	
69	75 700	134 000	3 500	
09	75 700	134 000	3 300	
72.5	48 100	77 700	2 000	
72.5	33 000	47 000	3 000	
72.5	61 400	104 000	3 000	
77.5	50 300	84 300	2 000	
77.5	34 700	51 400	3 000	
81.5	88 100	152 000	3 000	
83	53 200	93 000	1 900	
83	36 900	57 100	2 500	
91.5	77 700	139 000	1 800	
91.5	53 700	84 600	2 500	
95.5	80 000	146 000	1 700	
95.5	54 800	88 200	2 500	
98.5	103 000	190 000	2 000	
102	83 000	157 000	1 600	
102	57 200	95 500	2 000	

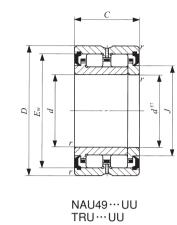
NAG NAU TRU NAS

ROLLER BEARINGS


Caged Roller Bearings With Seal Full Complement Roller Bearings With Seal



Shaft dia. 85 — 140mm


		Identification num	ber	Mass		Bound	ary din	nensions	3
Shaft dia. mm	Full complement type	Cag	ed type	(Ref.)	d	D	mm C	$r_{\rm s min}$	J
85	NAG 4917UU — — —	NAU 4917UU	TRU 8511850UU	1 190 1 530 1 150 1 500	85 85 85 85	120 118 120 120	35 50 35 45	1.5 1 1.5 1.5	96 94.5 96 96.5
90	NAG 4918UU — —	NAU 4918UU	TRU 9012550UU	1 250 1 210 1 740	90 90 90	125 125 125	35 35 50	1.5 1.5 1.5	101 101 101
95	NAG 4919UU —	— NAU 4919UU		1 300 1 270	95 95	130 130	35 35	1.5 1.5	106 106
100	NAG 4920UU — —	 NAU 4920UU	TRU 10013550UU	1 850 1 900 1 770	100 100 100	140 135 140	40 50 40	1.5 1.5 1.5	114.5 112 114.5
105	_	_	TRU 10515350UU	2 890	105	153	50	1.5	120
110	NAG 4922UU —	 NAU 4922UU	_	2 010 1 930	110 110	150 150	40 40	1.5 1.5	123 123
120	NAG 4924UU —	— NAU 4924UU	<u> </u>	2 780 2 680	120 120	165 165	45 45	1.5 1.5	136 136
125			TRU 12517860UU	4 490	125	178	60	1.5	143.5
130	NAG 4926UU —	 NAU 4926UU	_	3 750 3 610	130 130	180 180	50 50	2 2	147 147
135	_	_	TRU 13518860UU	4 790	135	188	60	1.5	154
140	NAG 4928UU —	 NAU 4928UU		3 990 3 840	140 140	190 190	50 50	2 2	157.5 157.5

Allowable rotational speed applies to grease lubrication. Considering that the axial load acts under practical operating conditions, up to 1/10 of this value is recommended for actual use.

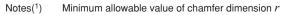
$E_{ m w}$	Basic dynamic load rating C	Basic static load rating C_0	Allowable rotational speed(2)	
	N		rpm	
110	111 000	200 000	1 500	
107.5 110	114 000 75 400	222 000 120 000	2 000 2 000	
110	110 000	215 000	2 000	
115.5	114 000	211 000	1 400	
115.5	79 500	130 000	1 900	
114	119 000	240 000	1 900	
120.5	117 000	222 000	1 300	
120.5	81 000	136 000	1 800	
129.5	152 000	292 000	1 200	
125.5	124 000	264 000	1 700	
129.5	106 000	181 000	1 700	
138	159 000	286 000	1 600	
138.5	161 000	322 000	1 100	
138.5	113 000	200 000	1 600	
153.5	208 000	431 000	1 000	
153.5	146 000	268 000	1 400	
162	211 000	408 000	1 400	
165.5	240 000	495 000	950	
165.5	166 000	304 000	1 300	
172.5	220 000	442 000	1 300	
176	249 000	531 000	900	
176	174 000	327 000	1 200	

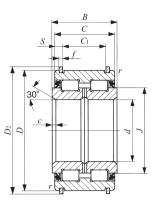
Remarks1. The outer ring has an oil groove and two oil holes.

2. The bearings with seals are provided with prepacked grease.

NAU TRU NAS

ROLLER BEARINGS


Roller Bearings for Sheaves



Shaft dia. 40 — 170mm

	Identificati	on number	Mass (Ref.)	Boundary dimensions mm						
Shaft dia. mm	Sealed type	Shield type	kg	d	D	D_2	В	С	C_1	S
40	NAS 5008UUNR	NAS 5008ZZNR	0.55	40	68	71.8	38	37	28	4.5
45	NAS 5009UUNR	NAS 5009ZZNR	0.70	45	75	78.8	40	39	30	4.5
50	NAS 5010UUNR	NAS 5010ZZNR	0.75	50	80	83.8	40	39	30	4.5
55	NAS 5011UUNR	NAS 5011ZZNR	1.15	55	90	94.8	46	45	34	5.5
60	NAS 5012UUNR	NAS 5012ZZNR	1.20	60	95	99.8	46	45	34	5.5
65	NAS 5013UUNR	NAS 5013ZZNR	1.30	65	100	104.8	46	45	34	5.5
70	NAS 5014UUNR	NAS 5014ZZNR	1.90	70	110	114.5	54	53	42	5.5
75	NAS 5015UUNR	NAS 5015ZZNR	2.00	75	115	119.5	54	53	42	5.5
80	NAS 5016UUNR	NAS 5016ZZNR	2.65	80	125	129.5	60	59	48	5.5
85	NAS 5017UUNR	NAS 5017ZZNR	2.80	85	130	134.5	60	59	48	5.5
90	NAS 5018UUNR	NAS 5018ZZNR	3.70	90	140	145.4	67	66	54	6
95	NAS 5019UUNR	NAS 5019ZZNR	3.90	95	145	150.4	67	66	54	6
100	NAS 5020UUNR	NAS 5020ZZNR	4.05	100	150	155.4	67	66	54	6
110	NAS 5022UUNR	NAS 5022ZZNR	6.50	110	170	175.4	80	79	65	7
120	NAS 5024UUNR	NAS 5024ZZNR	6.95	120	180	188.4	80	79	65	7
130	NAS 5026UUNR	NAS 5026ZZNR	10.5	130	200	208.4	95	94	77	8.5
140	NAS 5028UUNR	NAS 5028ZZNR	11.0	140	210	218.4	95	94	77	8.5
150	NAS 5030UUNR	NAS 5030ZZNR	13.5	150	225	233.4	100	99	81	9
160	NAS 5032UUNR	NAS 5032ZZNR	16.5	160	240	248.4	109	108	89	9.5
170	NAS 5034UUNR	NAS 5034ZZNR	22.5	170	260	270	122	121	99	11

Allowable rotational speed applies to grease lubrication. Considering that the axial load acts under practical operating conditions, up to 1/10 of this value is recommended for actual use.

3

3

3

3

3

3

3

3

3.5

3.5

3.5

1

1.5

139.5

156

167

176.5

188.5

1.5 204.5

400 000

537 000

543 000

623 000

720 000

857 000

750 000

1 000 000

1 070 000

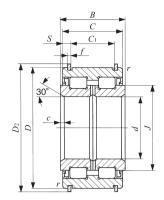
1 210 000

1 390 000

1 730 000

850

750


700

650

650

600

Basic dynamic Basic static

NAS50 ··· ZZNR

		l .a.	I	load rating \overline{C}	load rating ${\it C}_{ m 0}$	rotational speed(2)
f	c	$r_{\rm s min}^{(1)}$	J	N	N	rpm
2	1.5	0.6	50	79 500	116 000	2 500
2	1.5	0.6	56	95 500	144 000	2 000
2	1.5	0.6	61	100 000	158 000	2 000
2.5	2	0.6	68	118 000	193 000	1 800
2.5	2	0.6	73	123 000	208 000	1 700
2.5	2	0.6	78	128 000	224 000	1 600
2.5	2	0.6	84	171 000	284 000	1 400
2.5	2	0.6	91	179 000	308 000	1 300
2.5	2	0.6	97	251 000	428 000	1 300
2.5	2	0.6	101	257 000	446 000	1 200
2.5	2.5	0.6	110	305 000	540 000	1 100
2.5	2.5	0.6	114	312 000	562 000	1 100
2.5	2.5	0.6	118	318 000	584 000	1 000
2.5	3	1	130	384 000	697 000	900

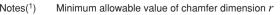
Allowable

Remarks1. The inner ring has an oil groove and two oil holes.

2. Roller Bearings for Sheaves are provided with prepacked grease.

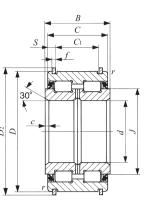
NAU TRU NAS

ROLLER BEARINGS

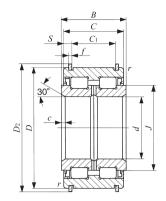

Roller Bearings for Sheaves

Shaft dia. 180 — 440mm

				_	_		_			
	Identificati	on number	Mass (Ref.)	Boundary dimensions mm						
Shaft dia. mm	Sealed type	Shield type	kg	d	D	D_2	В	C	C_1	S
180	NAS 5036UUNR	NAS 5036ZZNR	30.0	180	280	294	136	135	110	12.5
190	NAS 5038UUNR	NAS 5038ZZNR	31.5	190	290	306	136	135	110	12.5
200	NAS 5040UUNR	NAS 5040ZZNR	40.5	200	310	326	150	149	120	14.5
220	NAS 5044UUNR	NAS 5044ZZNR	52.0	220	340	356	160	159	130	14.5
240	NAS 5048UUNR	NAS 5048ZZNR	55.5	240	360	376	160	159	130	14.5
260	NAS 5052UUNR	NAS 5052ZZNR	85.0	260	400	416	190	189	154	17.5
280	NAS 5056UUNR	NAS 5056ZZNR	90.9	280	420	440	190	189	154	17.5
300	NAS 5060UU	NAS 5060ZZ	130	300	460		218	216		
320	NAS 5064UU	NAS 5064ZZ	135	320	480	_	218	216		
340	NAS 5068UU	NAS 5068ZZ	180	340	520		243	241		
360	NAS 5072UU	NAS 5072ZZ	190	360	540		243	241		_
380	NAS 5076UU	NAS 5076ZZ	200	380	560		243	241		
400	NAS 5080UU	NAS 5080ZZ	265	400	600		272	270		
420	NAS 5084UU	NAS 5084ZZ	275	420	620		272	270		
440	NAS 5088UU	NAS 5088ZZ	310	440	650		280	278		



Allowable rotational speed applies to grease lubrication. Considering that the axial load acts under practical operating conditions, up to 1/10 of this value is recommended for actual use.


Remarks 1. The bearings with a bore diameter d of 300 mm or more has neither stop rings nor stop ring grooves.

2. The inner ring has an oil groove and two oil holes.

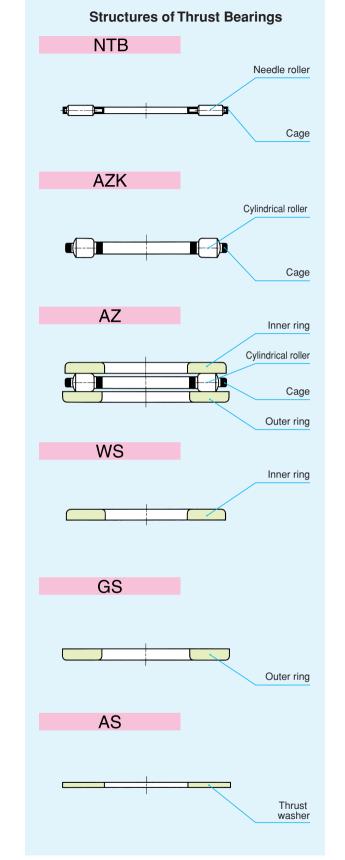
- 3. Roller Bearings for Sheaves are provided with prepacked grease.

NAS50 ··· ZZNR

				Basic dynamic	Dania statia	Allowable
				load rating	Basic static load rating	rotational
		(1)	_	C	C_0	speed(2)
f	c	$r_{\rm s min}$	J	N	N	rpm
5	3.5	1.5	217	1 070 000	2 140 000	550
5	3.5	1.5	225	1 120 000	2 230 000	500
5	3.5	1.5	242	1 310 000	2 650 000	500
6	4	1.5	260	1 510 000	3 110 000	450
6	4	1.5	278.5	1 570 000	3 350 000	400
7	5	2	312	2 130 000	4 510 000	350
7	5	2	335	2 210 000	4 860 000	350
_	5	2	359	2 670 000	5 870 000	300
_	5	2	375	2 700 000	6 140 000	300
_	6	2.5	404	3 370 000	7 560 000	300
_	6	2.5	423	3 420 000	7 940 000	250
	6	2.5	442	3 580 000	8 300 000	250
_	6	2.5	471	4 250 000	10 100 000	250
_	6	2.5	490	4 390 000	10 400 000	250
_	8	3	516	4 570 000	10 900 000	200

THRUST BEARINGS

- Thrust Needle Roller Bearings
- ●Thrust Roller Bearings



Structure and Features

Thrust Bearings consist of a precisely made cage and rollers. They have high rigidity and high load capacities and can be used in small spaces.

Thrust Needle Roller Bearings incorporate needle rollers, while Thrust Roller Bearings incorporate cylindrical rollers. Various types of raceway rings are available, and suitable bearings can be selected according to the operating conditions.

When the bearing mounting surfaces of a machine are heat-treated and finished by grinding as raceways, Thrust Bearings can be used without raceway rings allowing the machine to be made more conpact. They are most suited to applications where high accuracy is required at high speeds and under fluctuating heavy loads, such as driving mechanisms for automobiles, machine tools, and high-pressure pumps.

AS AZK WS·GS

268

In III Thrust Bearings, the types shown in Table 1 are available.

Table 1.1 Type of bearing

Туре	Thrust needle	Thrust rolle	er bearings
	roller bearings	Without inner and outer rings	With inner and outer rings
Model code	NTB	AZK	AZ

Table 1.2 Type of bearing ring

Туре	Inner ring	Outer ring	Thrust washer
Model code	WS	GS	AS

Thrust Needle Roller Bearings

These bearings consist of a cage made from a steel plate, which is precisely press formed and surfacehardened, and needle rollers with a diameter variation within $2\mu m$. They have a rigid structure and a high lubricant-retaining capacity.

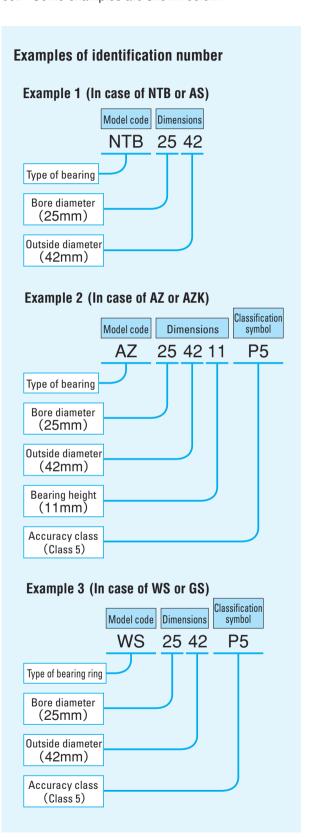
As they have the lowest sectional height compared with other thrust bearings, they can be used instead of conventional thrust washers and can withstand high-speed rotations with a low coefficient of friction.

Specially designed thin inner rings (WS) and outer rings (GS), and especially thin (1 mm thick) thrust washers (AS), are available for use in various applica-

These bearings are generally used by utilizing their inner surface as the guide surface.

Thrust Roller Bearings

In this series, the caged cylindrical rollers AZK and the complete bearings AZ in which AZK are combined with an inner ring (WS) and an outer ring (GS) are available.


The cage has a special precise structure which is highly rigid, and cylindrical rollers are outwardly arranged and guided by the cage with exact precision to enable them to withstand heavy loads even at high rotational speeds.

Owing to the high accuracy of the bearing height T, they are suitable for use in machine tools, ultra-high pressure pumps, etc.

These bearings are generally used by utilizing their inner surface as the guide surface.

Identification Number

The identification number of Thrust Bearings consists of a model code, dimensions and a classification symbol. Some examples are shown below.

The accuracy of Thrust Bearings is based on JIS B 1514:2000 as shown in Table 2.

Table 2.1 Tolerances

Table 2.1 Tolerances					unit: μ m	
Type of bearing	Item	Dimension	Dimension symbol		Tolerance	
		Bore diameter	d		E11	
Thrust needle roller bearings	NTB	Outside diameter	D		c12	
		Width	$D_{ m w}$	Equivalent to	JIS B 1506 Class 2	
		Bore diameter	d_{c}	٨٥٨	oor Table 2.2	
Thrust roller bearings	A 717	Outside diameter	$D_{\rm c}$	AS I	per Table 2.2	
	AZK	Width	147.141	D	$1 \le D_{\mathrm{w}} \le 10$	Equivalent to JIS B 1506 Class 2
			$D_{ m w}$	$10 < D_{\rm w} \le 30$	Equivalent to JIS B 1506 Class 3	
	AZ	Height	T	As per Table 2.3		
		Bore diameter	d	As per Table 2.4		
Inner rings	WS	Outside diameter	D		b12	
		Width	В		h11	
		Bore diameter	d		B12	
Outer rings	GS	Outside diameter	D	Ası	per Table 2.4	
		Width	В		h11	
		Bore diameter	d	E12		
Thrust washers	AS	Outside diameter	D		e12	
		Width	S		± 50	

Table 2.2 Tolerances of bore and outside diameters for A7K series

	11	nit	-
ι	JI.	ш	\sim

unit: µ											
Nominal o			_{dc} e diameter ation	$arDelta_{D ext{c}}$ Cage outside diameter deviation							
0ver	Incl.	High	Low	High	Low						
_	50	+100	0	0	- 300						
50	100	+200	0	0	- 400						
100	200	+300	0	0	- 500						
200	300	+500	0	0	– 700						
300	400	+700	0	0	— 1000						
400	500	_	1	0	- 1200						

Table 2.3 Tolerances of height for AZ series

AS

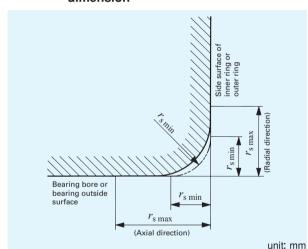
AZK

ws-gs

Nominal bea	d ring bore dia. m	Δ Deviation of an act	$T_{ m S}$ tual bearing height
Over	Incl.	High	Low
_	18	0	– 75
18	30	0	– 75
30	50	0	- 100
50	80	0	- 125
80	120	0	— 150
120	180	0	— 175
180	250	0	- 200
250	315	0	- 225
315	400	0	- 300
400	500	0	- 400

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

Table 2.4 Tolerances and allowable values for WS and GS


- 11	ni	t:	11	m

d or	· D (1)		Inner ring			Outer ring		Inner ring or outer ring			
	earing bore utside dia.	$\Delta_{d{ m mp}}$ Single plane mean bore diameter deviation		$V_{d\mathrm{p}}$ Bore diameter variation in a sin-	$\Delta_{D{ m mp}}$ Single plane mean outside diameter deviation		$V_{D{ m p}}$ Outside diameter variation in a sin-	tside diameter lation in a sin-		variation	
n	nm			gle radial plane			gle radial plane	Class 0	Class 6	Class 5	
Over	Incl.	High	Low	Max.	High	Low	Max.		Max.		
_	18	0	- 8	6	0	- 11	8	10	5	3	
18	30	0	- 10	8	0	- 13	10	10	5	3	
30	50	0	- 12	9	0	- 16	12	10	6	3	
50	80	0	- 15	11	0	- 19	14	10	7	4	
80	120	0	- 20	15	0	- 22	17	15	8	4	
120	180	0	- 25	19	0	- 25	19	15	9	5	
180	250	0	- 30	23	0	- 30	23	20	10	5	
250	315	0	- 35	26	0	- 35	26	25	13	7	
315	400	0	- 40	30	0	-40	30	30	15	7	
400	500	0	- 45	34	0	- 45	34	30	18	9	

Notes(1) d for Δ_{dmp} and V_{dp} , and D for Δ_{Dmp} and V_{Dp} , respectively. d for thickness variations of inner and outer rings .

(2) d_i for thickness variations of rings for NAX(I) and NBX(I).

Table 2.5 Permissible limit values for chamfer dimension

$r_{ m s\;min}$	Radial and axial directions $r_{ m s\ max}$
0.3	0.8
0.6	1.5
1	2.2
1.1	2.7
1.5	3.5
2	4
2.1	4.5
3	5.5
4	6.5
5	8

The recommended fits for Thrust Bearings are shown in Table 3.

Table 3 Recommended fits

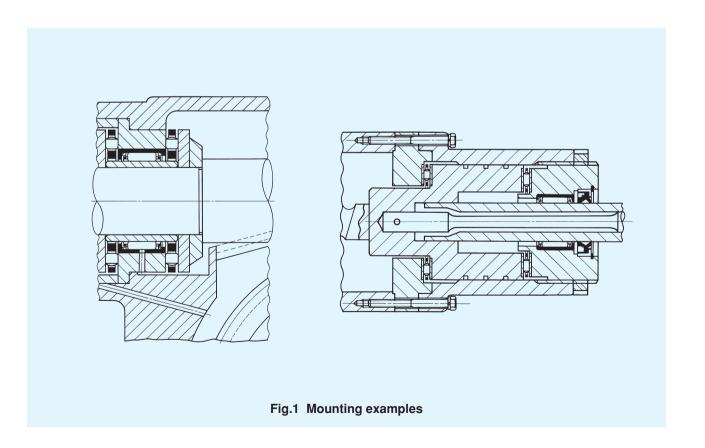
Type of bearing		Tolerance class		
Type of bearing		Shaft	Housing bore	
Thrust needle roller bearings	NTB	h8(h10)		
Thrust roller bearings	AZK	hG/h0\		
Tillust Toller bearings	AZ	h6(h8)	H7(H9)	
Inner rings	ws	h6(h8)		
Outer rings	GS		H7(H9)	
Thrust washers	AS	h8(h10)		

Mounting

When mounting Thrust Bearings, the following items should be considered.

1 When inner and outer rings are not used, the hardness of the raceway surfaces should be $58 \sim 64$ HRC, the effective hardening depth should be adequate, and the surface roughness should be less than 0.2 μ mR_{a}

2When mounting inner and outer rings to shaft and housing bore, dimensions related to mounting should be based on the dimension tables.


Also, the mounting surfaces should be finished at right angles to the center axis and they should be sufficiently rigid.

3To avoid elastic deformation, the thrust washer AS must be seated uniformly on its mating surface.

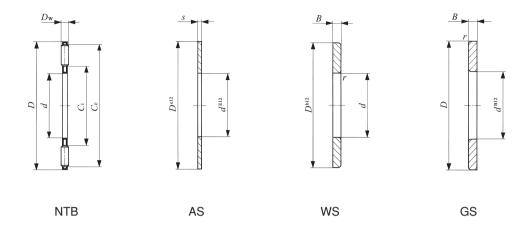
A small warp in an AS washer will be corrected automatically when an axial load is applied.

4 Thrust Roller Bearings are combinations of a copper alloy component and cylindrical rollers. When handling the AZK itself, care should be taken to prevent deformations, blemishes, etc.

AZK ws·gs

THRUST BEARINGS

Thrust Needle Roller Bearings



Shaft dia. 10 — 85mm

Shaft	Identification number								
dia.	Thrust needle roller bearing	Mass (Ref.) g	Thrust washer	Mass (Ref.) g	Inner ring	Outer ring	Mass (Ref.) g		
10	NTB 1024	3.3	AS 1024	2.9	WS 1024	GS 1024	8		
12	NTB 1226	3.8	AS 1226	3.2	WS 1226	GS 1226	8.9		
15	NTB 1528	4.1	AS 1528	3.4	WS 1528	GS 1528	9.3		
16	NTB 1629	4.3	AS 1629	3.6	WS 1629	GS 1629	9.8		
17	NTB 1730	4.5	AS 1730	3.7	WS 1730	GS 1730	10.2		
18	NTB 1831	4.7	AS 1831	3.9	WS 1831	GS 1831	10.7		
20	NTB 2035	6.1	AS 2035	5	WS 2035	GS 2035	13.8		
25	NTB 2542	8.2	AS 2542	6.9	WS 2542	GS 2542	21		
30	NTB 3047	9.4	AS 3047	7.9	WS 3047	GS 3047	24		
35	NTB 3552	10.6	AS 3552	8.9	WS 3552	GS 3552	31.5		
40	NTB 40603	22	AS 4060	12.1	WS 4060	GS 4060	42.5		
45	NTB 4565	24.5	AS 4565	13.3	WS 4565	GS 4565	53.5		
50	NTB 5070	26.5	AS 5070	14.5	WS 5070	GS 5070	58.5		
55	NTB 5578	33.5	AS 5578	18.5	WS 5578	GS 5578	93		
60	NTB 6085	38.5	AS 6085	22	WS 6085	GS 6085	105		
65	NTB 6590	41.5	AS 6590	23.5	WS 6590	GS 6590	124		
70	NTB 7095	61	AS 7095	25	WS 7095	GS 7095	132		
75	NTB 75100	65	AS 75100	26.5	WS 75100	GS 75100	153		
80	NTB 80105	68.5	AS 80105	28	WS 80105	GS 80105	162		
85	NTB 85110	72	AS 85110	29.5	WS 85110	GS 85110	170		

	mm						I	Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed(2)
d	D	D_{w}	S	В	$r_{\rm s min}^{(1)}$	$C_{\rm i}$	$C_{\rm e}$	N	N	rpm
10	24	2	1	2.75	0.3	14	22	7 820	23 900	15 000
12	26	2	1	2.75	0.3	16	24	8 340	26 900	13 000
15	28	2	1	2.75	0.3	18	26	8 830	29 900	12 000
16	29	2	1	2.75	0.3	19	27	9 070	31 400	11 000
17	30	2	1	2.75	0.3	20	28	9 320	32 900	11 000
18	31	2	1	2.75	0.3	21	29	9 550	34 400	10 000
20	35	2	1	2.75	0.3	23	33	11 700	46 500	9 000
25	42	2	1	3	0.6	29	40	14 400	64 700	7 500
30	47	2	1	3	0.6	34	45	15 400	73 300	6 500
35	52	2	1	3.5	0.6	39	50	16 300	81 900	5 500
40	60	3	1	3.5	0.6	45	57	24 200	108 000	5 000
45	65	3	1	4	0.6	50	62	25 900	121 000	4 500
50	70	3	1	4	0.6	55	67	27 600	135 000	4 000
55	78	3	1	5	0.6	61	75	32 400	171 000	4 000
60	85	3	1	4.75	1	66	82	38 200	219 000	3 500
65	90	3	1	5.25	1	71	87	40 100	237 000	3 000
70	95	4	1	5.25	1	75	91	47 400	244 000	3 000
75	100	4	1	5.75	1	80	96	48 400	256 000	3 000
80	105	4	1	5.75	1	85	101	49 500	267 000	2 500
85	110	4	1	5.75	1	90	106	50 300	279 000	2 500

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

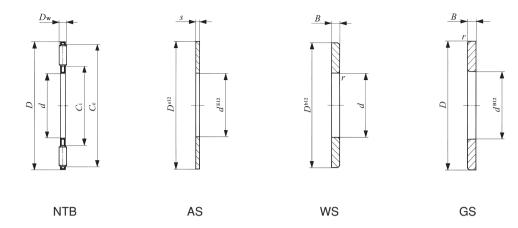
Notes(1) Minimum allowable value of chamfer dimension r(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 25% of this value is allowable.

NTB AS

AZK WS·GS

THRUST BEARINGS

Thrust Needle Roller Bearings



Shaft dia. 90 — 130mm

Shaft	Identification number											
dia.	Thrust needle roller bearing	Mass (Ref.) g	Thrust washer	Mass (Ref.) g	Inner ring	Outer ring	Mass (Ref.)					
90	NTB 90120	92	AS 90120	38	WS 90120	GS 90120	250					
100	NTB 100135	119	AS 100135	50	WS 100135	GS 100135	350					
110	NTB 110145	129	<u> </u>	_	WS 110145	GS 110145	380					
120	NTB 120155	139	<u> </u>		WS 120155	GS 120155	410					
130	NTB 130170	225	_	—	WS 130170	GS 130170	660					

Minimum allowable value of chamfer dimension r(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 25% of this value is allowable.

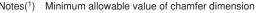
	ı	Boui		dimen nm		l	I	Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed(²)	
d	D	D_{w}	S	В	$r_{\rm s min}^{(1)}$	$C_{\rm i}$	$C_{\rm e}$	N	N	rpm	
90	120	4	1	6.5	1	96	116	64 500	394 000	2 500	
100	135	4	1	7	1	107	131	80 300	541 000	2 000	
110	145	4		7	1	117	141	83 200	578 000	2 000	
120	155	4		7	1	127	151	87 900	634 000	1 800	
130	170	5		9	1	137	165	120 000	839 000	1 700	

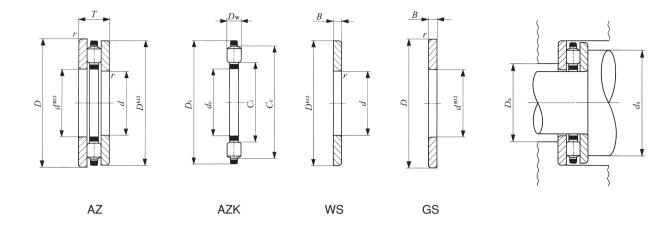
IKO

AZK ws·GS

THRUST BEARINGS

Thrust Roller Bearings





Shaft dia. 10 — 65mm

					Identificat	ion number					
Shaft					100111111001						
dia.	Thru rolle	ıst er bearing	Mass (Ref.)		ust er bearing	Mass (Ref.)	Inne	r ring	Oute	er ring	Mass (Ref.)
mm			g			g					g
10	AZ	10249	24.6	AZK	10243.5	8.6	WS	1024	GS	1024	8
12	AZ	12269	26.5	AZK	12263.5	8.7	WS	1226	GS	1226	8.9
15	ΑZ	15289	28	AZK	15283.5	9.4	WS	1528	GS	1528	9.3
17	ΑZ	17309	30.5	AZK	17303.5	10.1	WS	1730	GS	1730	10.2
20	AZ	203510	45.5	AZK	20354.5	17.9	WS	2035	GS	2035	13.8
25	AZ	254211	70	AZK	25425	28	WS	2542	GS	2542	21
30	AZ	304711	79	AZK	30475	31	WS	3047	GS	3047	24
	AZ	305216	160	AZK	30527.5	70	WS	3052	GS	3052	45
35	AZ AZ	355212 356218	99 260	AZK AZK	35525 35627.5	36 98	WS WS	3552 3562	GS GS	3552 3562	31.5 81
	AZ	406013	139	AZK	40606	54	WS	4060	GS	4060	42.5
40	AZ	406819	310	AZK	40689	132	WS	4068	GS	4068	89
45	AZ	456514	169	AZK	45656	62	WS	4565	GS	4565	53.5
-10	AZ	457320	360	AZK	45739	144	WS	4573	GS	4573	108
50	AZ	507014	185	AZK	50706	68	WS	5070	GS	5070	58.5
	AZ	507822	430	AZK	507811	194	WS	5078	GS	5078	118
55	AZ	557816	275	AZK	55786	89	WS	5578	GS	5578	93
	AZ	559025	725	AZK	559011	275	WS	5590	GS	5590	225
60	AZ	608517	345	AZK	60857.5	135	WS	6085	GS	6085	105
60	AZ AZ (609526 6013026	770 2 090	AZK (609511 6013010	290 790	WS WS 6	6095 60130	GS GS	6095 60130	240 650
		659018	380	AZK	65907.5	132		6590		6590	124
65		6510027	860		6510011	310		65100		65100	275

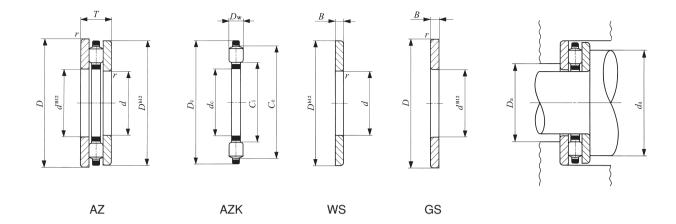
Notes(1) Minimum allowable value of chamfer dimension r(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 25% of this value is allowable.

	Boundary dimensions mm											Basic dynamic load rating	Basic static load rating	Allowable rotational speed(2)
d	D	T	$d_{\rm c}$	$D_{\rm c}$	D_{w}	В	$r_{\rm smin}^{(1)}$	$C_{\rm i}$	$C_{\rm e}$	$d_{\rm a}$ Min.	$igg _{Max.}$	<i>C</i> N	C_0 N	rpm
10	24	9	10.04	23.6	3.5	2.75	0.3	13	21	21	13	8 990	19 100	18 000
12	26	9	12.04	25.6	3.5	2.75	0.3	15	23	23	16	10 400	23 900	16 000
15	28	9	15.04	27.6	3.5	2.75	0.3	17	25	25	18	10 200	23 900	14 000
17	30	9	17.04	29.6	3.5	2.75	0.3	19	27	27	20	11 400	28 600	13 000
20	35	10	20.04	34.6	4.5	2.75	0.3	22	33	33	23	19 000	48 700	11 000
25	42	11	25.05	41.6	5	3	0.6	28	39	39	28	22 700	60 700	9 000
30 30	47 52	11 16	30.05 30.05	46.5 51.5	5 7.5	3 4.25	0.6 0.6	33 35	44 49	44 48	33 36	27 400 38 400	81 000 95 700	8 000 7 500
35 35	52 62	12 18	35.05 35.05	51.5 61.5	5 7.5	3.5 5.25	0.6 1	38 42	49 58	49 57	39 43	29 100 47 900	91 100 135 000	7 000 6 500
40 40	60 68	13 19	40.05 40.05	59.5 67.5	6 9	3.5 5	0.6 1	44 45	57 64	57 64	44 46	41 700 68 700	133 000 195 000	6 000 5 500
45 45	65 73	14 20	45.05 45.05	64.5 72.5	6 9	4 5.5	0.6 1	49 50	62 69	62 69	49 51	40 800 75 700	133 000 227 000	5 500 5 000
50 50	70 78	14 22	50.05 50.05	69.5 77.5	6 11	4 5.5	0.6 1	54 55	67 74	67 73	54 56	43 300 84 300	148 000 232 000	5 000 4 500
55 55	78 90	16 25	55.05 55.05	77.5 89.5	6 11	5 7	0.6 1	59 63	75 85	75 84	60 63	51 700 108 000	192 000 332 000	4 500 4 000
60 60	85 95 130	17 26 26	60.05 60.05 60.05	84.5 94.5 129.5	7.5 11 10	4.75 7.5 8	1 1 1.5	65 68 79	81 90 119	81 89 119	66 68 80	64 600 106 000 158 000	224 000 332 000 634 000	4 000 4 000 3 000
65 65	90 100	18 27	65.05 65.05	89.5 99.5	7.5 11	5.25 8	1	70 73	86 95	86 94	71 73	68 300 116 000	247 000 379 000	4 000 3 500

NTB AS AZK WS·GS

THRUST BEARINGS

Thrust Roller Bearings



Shaft dia. 70 — 130mm

01 6			Identificat	tion number			
Shaft dia. mm	Thrust roller bearing	Mass (Ref.) g	Thrust roller bearing	Mass (Ref.) g	Inner ring	Outer ring	Mass (Ref.) g
70	AZ 709518	420	AZK 70957.5	156	WS 7095	GS 7095	132
	AZ 7010527	905	AZK 7010511	325	WS 70105	GS 70105	290
	AZ 7014026	2 250	AZK 7014010	890	WS 70140	GS 70140	680
75	AZ 7510019	465	AZK 751007.5	159	WS 75100	GS 75100	153
	AZ 7511027	960	AZK 7511011	340	WS 75110	GS 75110	310
80	AZ 8010519	495	AZK 801057.5	171	WS 80105	GS 80105	162
	AZ 8011528	1 060	AZK 8011511	370	WS 80115	GS 80115	345
	AZ 8015026	2 500	AZK 8015010	920	WS 80150	GS 80150	790
85	AZ 8511019	530	AZK 851107.5	190	WS 85110	GS 85110	170
	AZ 8512531	1 460	AZK 8512512	510	WS 85125	GS 85125	475
90	AZ 9012022	790	AZK 901209	290	WS 90120	GS 90120	250
	AZ 9013535	2 040	AZK 9013514	750	WS 90135	GS 90135	645
	AZ 9016026	2 710	AZK 9016010	1 000	WS 90160	GS 90160	855
100	AZ 10013525	1 190	AZK 10013511	490	WS 100135	GS 100135	350
	AZ 10015038	2 720	AZK 10015015	980	WS 100150	GS 100150	870
	AZ 10019039	5 960	AZK 10019015	2 120	WS 100190	GS 100190	1 920
110	AZ 11014525	1 350	AZK 11014511	590	WS 110145	GS 110145	380
	AZ 11016040	3 220	AZK 11016017	1 320	WS 110160	GS 110160	950
	AZ 11020039	6 400	AZK 11020015	2 280	WS 110200	GS 110200	2 060
120	AZ 12015525	1 450	AZK 12015511	630	WS 120155	GS 120155	410
	AZ 12017542	4 020	AZK 12017518	1 640	WS 120175	GS 120175	1 190
	AZ 12022039	7 730	AZK 12022015	2 730	WS 120220	GS 120220	2 500
130	AZ 13017030	2 180	AZK 13017012	860	WS 130170	GS 130170	660
	AZ 13018542	4 300	AZK 13018518	1 760	WS 130185	GS 130185	1 270
	AZ 13023039	8 240	AZK 13023015	2 940	WS 130230	GS 130230	2 650

Notes(1) Minimum allowable value of chamfer dimension	n
---	---

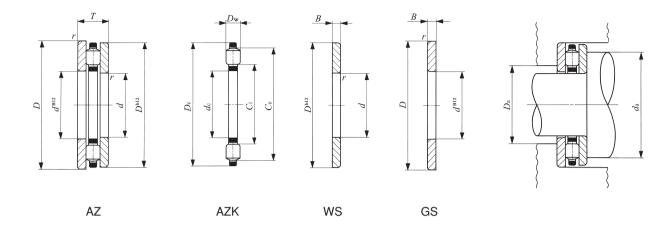
Minimum allowable value of chamfer dimension r(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 25% of this value is allowable.

	Boundary dimensions mm											Basic dynamic load rating	Basic static load rating	Allowable rotational
d	D	T	$d_{\rm c}$	$D_{\rm c}$	$D_{ m w}$	В	$r_{\rm smin}^{(1)}$		$C_{\rm e}$	$d_{\rm a}$ Min.	$D_{ m a}$ Max.	<i>C</i> N	C_0 N	speed(2)
70	95	18	70.05	94.5	7.5	5.25	1	75	91	91	76	72 000	269 000	3 500
70	105	27	70.05	104.5	11	8	1	78	100	99	78	114 000	379 000	3 500
70	140	26	70.05	139.5	10	8	1.1	89	129	129	90	169 000	713 000	3 000
75	100	19	75.05	99.5	7.5	5.75	1	80	96	96	81	71 100	269 000	3 500
75	110	27	75.05	109.5	11	8		83	105	104	83	123 000	427 000	3 000
80	105	19	80.05	104.5	7.5	5.75	1	85	101	101	86	74 500	292 000	3 000
80	115	28	80.05	114.5	11	8.5	1	88	110	109	88	122 000	427 000	3 000
80	150	26	80.05	149.5	10	8	1.5	99	139	139	100	180 000	792 000	2 500
85	110	19	85.05	109.5	7.5	5.75	1	90	106	106	91	77 800	314 000	3 000
85	125	31	85.05	124.5	12	9.5		95	119	118	95	145 000	513 000	3 000
90	120	22	90.05	119.5	9	6.5	1	97	116	115	97	99 700	390 000	3 000
90	135	35	90.05	134.5	14	10.5	1.1	100	129	128	101	181 000	626 000	2 500
90	160	26	90.05	159.5	10	8	1.5	109	149	149	110	189 000	871 000	2 500
100	135	25	100.05	134.5	11	7	1	108	130	129	108	136 000	522 000	2 500
100	150	38	100.05	149.5	15	11.5	1.1	112	143	142	113	219 000	796 000	2 500
100	190	39	100.1	189.3	15	12	1.5	119	179	177	120	333 000	1 420 000	2 000
110	145	25	110.1	144.5	11	7	1	118	140	139	118	142 000	569 000	2 500
110	160	40	110.1	159.5	17	11.5	1.1	120	154	153	121	282 000	1 030 000	2 000
110	200	39	110.1	199.3	15	12	2	129	188	187	130	388 000	1 770 000	2 000
120	155	25	120.1	154.5	11	7	1	128	150	149	128	149 000	617 000	2 000
120	175	42	120.1	174.5	18	12	1.1	132	168	167	133	313 000	1 160 000	2 000
120	220	39	120.1	219	15	12	2.1	141	207	206	142	415 000	1 980 000	1 800
130	185	30	130.1	169.5	12	9	1	140	164	163	140	176 000	741 000	2 000
130		42	130.1	184.5	18	12	1.5	142	178	177	143	333 000	1 290 000	1 900
130		39	130.1	229	15	12	2.1	151	217	216	152	440 000	2 180 000	1 700

NTB AS AZK WS·GS

THRUST BEARINGS

Thrust Roller Bearings



Shaft dia. 140 — 280mm

			Identificat	ion number			
Shaft dia. mm	Thrust roller bearing	Mass (Ref.) g	Thrust roller bearing	Mass (Ref.) g	Inner ring	Outer ring	Mass (Ref.) g
140	AZ 14018031	2 410	AZK 14018012	920	WS 140180	GS 140180	745
	AZ 14019542	4 560	AZK 14019518	1 860	WS 140195	GS 140195	1 350
	AZ 14024039	8 680	AZK 14024015	3 100	WS 140240	GS 140240	2 790
150	AZ 15019031	2 560	AZK 15019012	980	WS 150190	GS 150190	790
	AZ 15020542	4 840	AZK 15020518	1 980	WS 150205	GS 150205	1 430
	AZ 15025039	9 140	AZK 15025015	3 260	WS 150250	GS 150250	2 940
160	AZ 16020031	2 710	AZK 16020012	1 030	WS 160200	GS 160200	840
	AZ 16027039	10 800	AZK 16027015	3 840	WS 160270	GS 160270	3 480
170	AZ 17023045	6 220	AZK 17023019	2 420	WS 170230	GS 170230	1 900
	AZ 17028039	11 300	AZK 17028015	4 020	WS 170280	GS 170280	3 640
180	AZ 18024045	6 540	AZK 18024019	2 540	WS 180240	GS 180240	2 000
	AZ 18031039	14 600	AZK 18031015	5 200	WS 180310	GS 180310	4 700
190	AZ 19025548	8 060	AZK 19025520	3 100	WS 190255	GS 190255	2 480
	AZ 19032039	15 000	AZK 19032015	5 280	WS 190320	GS 190320	4 860
200	AZ 20026548	8 430	AZK 20026520	3 250	WS 200265	GS 200265	2 590
	AZ 20034039	17 200	AZK 20034015	6 120	WS 200340	GS 200340	5 540
220	AZ 22029050	10 400	AZK 22029022	4 280	WS 220290	GS 220290	3 060
	AZ 22036052	24 000	AZK 22036020	8 000	WS 220360	GS 220360	8 000
240	AZ 24031554	13 200	AZK 24031524	5 520	WS 240315	GS 240315	3 840
	AZ 24038052	26 500	AZK 24038020	9 440	WS 240380	GS 240380	8 530
260	AZ 26034055	15 400	AZK 26034025	6 600	WS 260340	GS 260340	4 400
	AZ 26042080	51 600	AZK 26042030	18 200	WS 260420	GS 260420	16 700
280	AZ 28044080	54 600	AZK 28044030	19 200	WS 280440	GS 280440	17 700

Notes(1) Minimum allowable value of chamfer dimension	n i
---	-----

Minimum allowable value of chamfer dimension r(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 25% of this value is allowable.

	Boundary dimensions mm										mounting as mm	Basic dynamic load rating	Basic static load rating	Allowable rotational speed(2)
d	D	T	$d_{\rm c}$	$D_{\rm c}$	$D_{ m w}$	В	$r_{\rm smin}$	$C_{\rm i}$	$C_{\rm e}$	$d_{\rm a}$ Min.	D_{a} Max.	<i>C</i> N	C_0 N	rpm
140	180	31	140.1	179.5	12	9.5	1	150	174	173	150	184 000	798 000	1 900
140	195	42	140.1	194.5	18	12	1.5	152	188	187	153	353 000	1 420 000	1 800
140	240	39	140.1	239	15	12	2.1	161	227	226	162	435 000	2 180 000	1 600
150	190	31	150.1	189.5	12	9.5	1	160	184	183	160	181 000	798 000	1 800
150	205	42	150.1	204.5	18	12	1.5	162	198	197	163	349 000	1 420 000	1 700
150	250	39	150.1	249	15	12	2.1	171	237	236	172	459 000	2 380 000	1 500
160	200	31	160.1	199.5	12	9.5	1	170	194	193	170	189 000	855 000	1 700
160	270	39	160.1	269	15	12	3	183	256	255	184	519 000	2 850 000	1 400
170	230	45	170.1	229	19	13	1.5	183	221	220	184	406 000	1 730 000	1 500
170	280	39	170.1	279	15	12	3	193	266	265	194	543 000	3 070 000	1 300
180	240	45	180.1	239	19	13	1.5	193	231	230	194	426 000	1 870 000	1 400
180	310	39	180.1	308	15	12	3	204	294	293	205	619 000	3 710 000	1 200
190	255	48	190.1	254	20	14	2 4	205	245	244	206	470 000	2 080 000	1 300
190	320	39	190.1	318	15	12		214	304	303	215	647 000	3 980 000	1 200
200	265	48	200.15	264	20	14	2 4	215	255	254	216	465 000	2 080 000	1 300
200	340	39	200.15	338	15	12		227	323	322	228	710 000	4 580 000	1 100
220	290	50	220.15	289	22	14	2 4	236	280	278	237	557 000	2 530 000	1 300
220	360	52	220.15	358	20	16		246	343	342	247	943 000	5 520 000	1 000
240	315	54	240.15	314	24	15	2	256	304	302	257	695 000	3 250 000	1 100
240	380	52	240.15	378	20	16		266	363	362	267	977 000	5 910 000	1 000
260	340	55	260.15	339	25	15	2.1	278	328	326	279	739 000	3 510 000	1 000
260	420	80	260.15	418	30	25	5	289	402	400	291	1 430 000	7 490 000	900
280	440	80	280.15	438	30	25	5	309	422	420	311	1 420 000	7 490 000	800

COMBINED TYPE NEEDLE ROLLER BEARINGS

- Needle Roller Bearings with Thrust Ball Bearing
- Needle Roller Bearings with Thrust Roller Bearing
- Needle Roller Bearings with Angular Contact Ball Bearing
- Needle Roller Bearings with Three-point Contact Ball Bearing

Structure and Features

Combined Type Needle Roller Bearings are combinations of a radial bearing and a thrust bearing. Caged needle roller bearings are used as radial bearings and thrust ball bearings or thrust roller bearings are used as thrust bearings. They are compact and very economical, and can be subjected to radial loads and axial loads simultaneously.

They are widely used for machine tools, textile machinery, and industrial machinery.

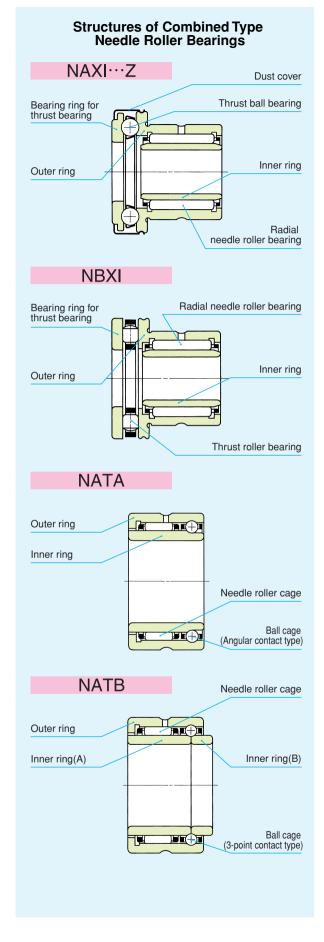
Types

In IXI Combined Type Needle Roller Bearings, the types shown in Table 1 are available.

Table 1.1 Type of bearing

Туре	Combin thrust ba		Combined with thrust roller bearing		
	Without inner ring	With inner ring	Without inner ring	With inner ring	
	NAX	NAXI	NBX	NBXI	
With dust cover	NAX…Z	NAXI…Z	NBX ··· Z	NBXIZ	

Table 1.2 Type of bearing


Туре	Combined with angular contact ball bearing	Combined with three-point contact ball bearing
Model code	NATA	NATB

Needle Roller Bearings with Thrust Ball Bearing

In this series, needle roller bearings are combined with thrust ball bearings to receive thrust loads.

In bearings with a dust cover, the dust cover is formed from a thin steel plate and fixed to a groove cut on the outer cylindrical surface of the outer ring collar. The cover forms a labyrinth with the thrust raceway ring, and is therefore effective in preventing leakage of grease and penetration of dust and dirt.

In the case of bearings without an inner ring, the tolerances of roller set bore diameter $F_{\rm w}$ are shown in Table 14 on page 36. Therefore, the required radial internal clearances can be selected by combining the bearings with shafts that have been heat-treated and finished by grinding as shown in Table 23 on page 45 and Table 26 on page 47.

284

NAX NBX NATA NATB

Needle Roller Bearings with Thrust Roller Bearing

In this series, needle roller bearings are combined with thrust roller bearings to receive thrust loads.

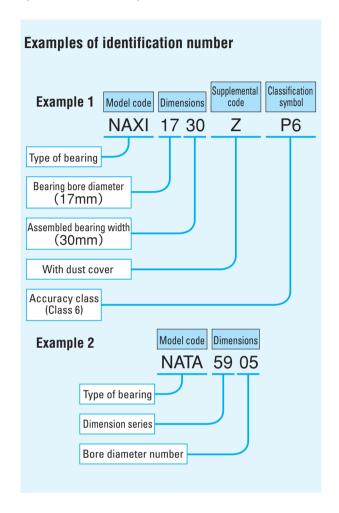
Their axial load ratings are greater than those of bearings that are combined with thrust ball bearings. Also, elastic deformation of the rolling contact surfaces under load is minimal. Furthermore, the thrust bearing section is finished to high accuracy, and therefore high rotational accuracy is obtained in the case of both vertical and horizontal shafts.

Like the needle roller bearings with thrust ball bearing, this series also includes bearings with a dust cover and bearings with an inner ring.

Needle Roller Bearings with Angular Contact Ball Bearing

In this series, caged needle roller bearings are combined with angular contact ball bearings to receive thrust loads. These bearings conform to the international dimension series #59, which is based on the ISO Standard. They can withstand heavy radial loads and unidirectional axial loads simultaneously.

When the axial load exceeds 25% of the radial load, the radial load will be induced in the angular contact ball bearing, and bearing life will be affected. The relationship between the two loads must therefore be taken into careful consideration.


Needle Roller Bearings with Three-point Contact Ball Bearing

These bearings can withstand heavy radial loads and bi-directional axial loads at the same time during high-speed rotation.

Since the non-interchangeable inner rings are separated at the center of the ball raceway surface, they must be firmly tightened against the shaft in the axial direction. The axial clearance of this bearing is $0.1 \sim 0.3$ mm, and like NATA59, the axial load should not exceed 25% of the radial load.

Identification Number

The identification number of Combined Type Needle Roller Bearings consists of a model code, dimensions, any supplemental codes and a classification symbol. Some examples are shown below.

Accuracy

Dimensional accuracy and rotational accuracy of Combined Type Needle Roller Bearings are based on Table 2 below and Tables 12 and 13 on page 34. Thickness variations of thrust rings of NAX(I) and NBX(I) are based on Table 2.4 on page 272. Bore diameter of the small width inner ring of NATB59

is made for a transition fit with k5 tolerance shaft.

Table 2 Tolerances

	Type of bearing	Dimension	Dimension symbol	Tolerance
	NAX(I)(¹) NBX(I)(¹)	Bore dia. of bearing ring for thrust bearing	d_{i}	E7
		Assembled bearing width	L	0 - 0.25
		Bearing height of thrust bearing	Н	0 - 0.20
	NATB59	Width of inner ring	В	0 - 0.3

Note(1) Also applicable to bearings with dust cover

Clearance

Combined Type Needle Roller Bearings are manufactured to have the radial internal clearance CN shown in Table 18 on page 40.

Fit

The recommended fits for Combined Type Needle Roller Bearings are shown in Table 3.

Table 3 Recommended fits

	Item			
	Type of bearing	Shaft		Housing bore
		Without inner ring	With inner ring	Tiousing bore
	NAX(I)(1) NBX(I)(1)	h5, k5	k5	K6, M6
	NATA59 NATB59		k5(²)	M6(²)

Notes(1) The housing bore for the thrust bearing must be machined to be more than 0.5 mm larger than the outside diameters D_1 and D_2 to ensure that it does not incur radial loads.

(2) If the fit is made tighter than specified in this table, radial loads will act upon the thrust bearing, limiting its function.

Lubrication

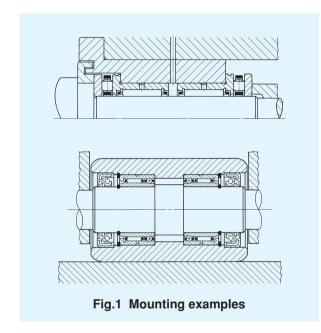
Grease is not prepacked in Combined Type Needle Roller Bearings, so perform proper lubrication for use. Operating without lubrication will increase the wear of the rolling contact surfaces and shorten the bearing life.

Oil Hole

The outer ring of Combined Type Needle Roller Bearings has an oil groove and an oil hole. When outer rings with multiple oil holes or inner rings with oil hole(s) are required, please contact IMO .

Rating Life

unit: mm


In Combined Type Needle Roller Bearings, caged needle roller bearings are subjected to radial loads while thrust bearings receive axial loads. Therefore, it is necessary to calculate their lives respectively (page 20).

Mounting

Fig.1 shows mounting examples of Combined Type Needle Roller Bearings. When applying preload to the NAX and NBX models, it is recommended that thrust raceway rings are not tightened directly with nuts, but are tightened using springs as shown in Fig. 2.

Mounting two NATA models symmetrically allows them to be subjected to two-way axial loads. When mounting these models, an axial clearance of 0.2 \sim 0.3 mm should be provided in the angular contact ball bearings so that radial loads are not applied to the angular contact ball bearings.

Dimensions related to mounting should be based on the table of dimensions.

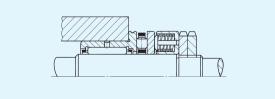
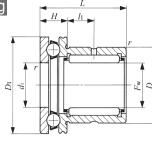


Fig.2 Mounting example when applying preload

NAX NBX NATA NATB

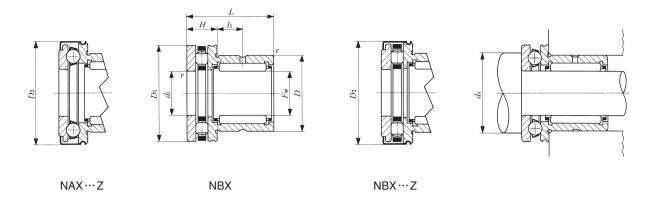

COMBINED TYPE NEEDLE ROLLER BEARINGS

Needle Roller Bearings with Thrust Ball Bearing Needle Roller Bearings with Thrust Roller Bearing Without Inner Ring

Without Inner Ring

NAX

Shaft dia. 10 - 70mm


Shaft			Id	entificati	on number			
dia.		Mass (Ref.) g	With dust cover	Mass (Ref.) g		Mass (Ref.)	With dust cover	Mass (Ref.)
10	NAX 1023	38.5	NAX 1023Z	40	_	_	_	_
12	NAX 1223	43.5	NAX 1223Z	45.5		_	_	
15	NAX 1523	47.5 —	NAX 1523Z	48.5 —	 NBX 1523	 54	 NBX 1523Z	 55
17	NAX 1725	54 —	NAX 1725Z	56 —	 NBX 1725	— 61	 NBX 1725Z	 63
20	NAX 2030	85.5 —	NAX 2030Z	89 —	 NBX 2030	94	 NBX 2030Z	— 97.5
25	NAX 2530	131	NAX 2530Z	135	 NBX 2530	 143	— NBX 2530Z	— 147
30	NAX 3030	145 —	NAX 3030Z	151 —	NBX 3030	 160	 NBX 3030Z	 166
35	NAX 3530	169	NAX 3530Z	176 —	 NBX 3530	 186	 NBX 3530Z	 193
40	NAX 4032	219	NAX 4032Z	227 —	 NBX 4032		 NBX 4032Z	248
45	NAX 4532	264	NAX 4532Z	273 —	 NBX 4532		— NBX 4532Z	302
50	NAX 5035	287	NAX 5035Z	297	 NBX 5035	 315	 NBX 5035Z	325
60	NAX 6040	417	NAX 6040Z	454	 NBX 6040	<u> </u>	 NBX 6040Z	 538
70	NAX 7040	555	NAX 7040Z	606	_	_		_

Minimum allowable value of chamfer dimension rNotes(1)

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 70% of this value is allowable in the NAX series, and a maximum of 25% of this value is allowable in the NBX series.

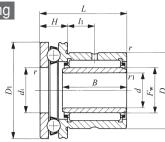
Remarks1. The outer ring has an oil groove and an oil hole.

2. Grease is not prepacked. Perform proper lubrication.

		E	Bounda	ry din mm	nensio	ons			Standard mounting dimension d_{a}		ic load rating		load rating	Allowable rotational speed(2)
$F_{ m w}$	D	D_1	D_2	L	Н	l_1	$r_{\rm s min}^{(1)}$	d_{i}	Min.	Radial	Axial	Radial	Axial	opeca()
VV		1				1	5 111111	W 1	mm	N	N	N	N	rpm
10	19	24	25	23	9	6.5	0.3	10	18	8 230	10 000	9 190	11 100	9 500
12	21	26	27	23	9	6.5	0.3	12	20	9 250	9 670	11 200	11 100	9 000
15	24	28	29	23	9	6.5	0.3	15	23	12 300	9 930	14 900	12 200	8 500
15	24	28	29	23	9	6.5	0.3	15	26	12 300	10 200	14 900	23 900	14 000
17 17	26 26	30 30	31 31	25 25	9	8	0.3 0.3	17 17	25 28	12 900 12 900	10 800 11 400	16 300 16 300	14 500 28 600	8 500 13 000
20	30	35	36	30	10	10.5	0.3	20	29	17 600	14 200	25 400	19 700	7 500
20	30	35	36	30	10	10.5	0.3	20	33	17 600	19 000	25 400	48 700	11 000
25	37	42	43	30	11	9.5	0.6	25	35	20 000	19 600	32 100	29 700	7 000
25	37	42	43	30	11	9.5	0.6	25	40	20 000	22 700	32 100	60 700	9 000
30	42	47	48	30	11	9.5	0.6	30	40	25 100	20 400	40 100	33 600	6 500
30	42	47	48	30	11	9.5	0.6	30	45	25 100	27 400	40 100	81 000	8 000
35	47	52	53	30	12	9	0.6	35	45	26 900	21 200	46 200	37 600	6 000
35	47	52	53	30	12		0.6	35	50	26 900	29 100	46 200	91 100	7 000
40	52	60	61	32	13	10	0.6	40	52	29 400	26 900	54 100	50 000	5 500
40	52	60	61	32	13	10	0.6	40	57	29 400	41 700	54 100	133 000	6 000
45	58	65	66.5	32	14	9	0.6	45	57	31 000	27 900	60 200	55 100	5 000
45	58	65	66.5	32	14	9	0.6	45	62	31 000	40 800	60 200	133 000	5 500
50	62	70	71.5	35	14	10	0.6	50	62	42 200	28 800	83 400	60 100	4 500
50	62	70	71.5	35	14	10	0.6	50	67	42 200	43 300	83 400	148 000	5 000
60	72	85	86.5	40	17	12	1	60	75	47 500	41 400	103 000	89 700	4 000
60	72	85	86.5	40	17	12		60	82	47 500	64 600	103 000	224 000	4 000
70	85	95	96.5	40	18	11	1	70	85	55 500	43 100	120 000	101 000	3 500

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

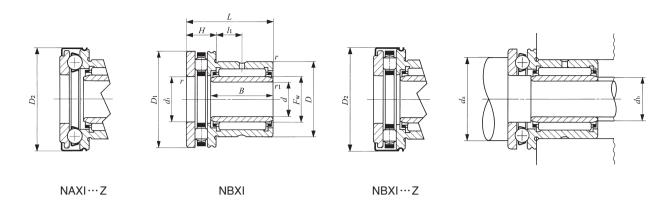
NAX NBX NATA NATB


COMBINED TYPE NEEDLE ROLLER BEARINGS

Needle Roller Bearings with Thrust Ball Bearing Needle Roller Bearings with Thrust Roller Bearing With Inner Ring

NAXI

Shaft dia. 7 – 60mm

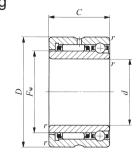

Shaft				lde	ntification numb	per					
dia.		Mass (Ref.) g	With dust cover	Mass (Ref.) g		Mass (Ref.) g	With dust cover	Mass (Ref.) g	d	D	D_1
7	NAXI 723	43.5	NAXI 723Z	45		_			7	19	24
9	NAXI 923	49.5	NAXI 923Z	51.5	_	_	_	_	9	21	26
12	NAXI 1223	55.5 —	NAXI 1223Z	56.5 —	— NBXI 1223	— 62	— NBXI 1223Z	— 63	12 12	24 24	28 28
14	NAXI 1425	63.5	NAXI 1425Z	65.5 —	 NBXI 1425	— 70.5	— NBXI 1425Z	— 72.5	14 14	26 26	30 30
17	NAXI 1730	99	NAXI 1730Z	103	— NBXI 1730	 108	 NBXI 1730Z	— 111	17 17	30 30	35 35
20	NAXI 2030	159	NAXI 2030Z	163	NBXI 2030	— 171	NBXI 2030Z	 175	20 20	37 37	42 42
25	NAXI 2530	179	NAXI 2530Z	185	NBXI 2530	 194	 NBXI 2530Z	200	25 25	42 42	47 47
30	NAXI 3030	208	NAXI 3030Z	215	NBXI 3030	 225	NBXI 3030Z	232	30 30	47 47	52 52
35	NAXI 3532	265	NAXI 3532Z	273 —	— NBXI 3532	 286	— NBXI 3532Z	 294	35 35	52 52	60 60
40	NAXI 4032	315	NAXI 4032Z	324	NBXI 4032	344	— NBXI 4032Z	353	40 40	58 58	65 65
45	NAXI 4535	358	NAXI 4535Z	368	 NBXI 4535	386	— NBXI 4535Z	 396	45 45	62 62	70 70
50	NAXI 5040	582	NAXI 5040Z	619 —	NBXI 5040	666	 NBXI 5040Z		50 50	72 72	85 85
60	NAXI 6040	750	NAXI 6040Z	801	_	_	_		60	85	95

Notes(1)

Minimum allowable value of chamfer dimension r or r_1 Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 70% of this value is allowable in the NAXI series, and a maximum of 25% of this value is allowable in the NBXI series.

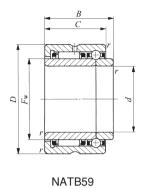
Remarks1. The outer ring has an oil groove and an oil hole.

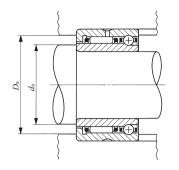
2. Grease is not prepacked. Perform proper lubrication.

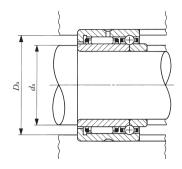

		Boun	ıdar	y dime mm	ensio	ns			dimer	mounting nsions m	Basic dynam	ic load rating		load rating	Allowable rotational	Assembled inner ring
D_2	L	B	H	l_1	$r_{\rm s min}^{(1)}$	(1)	F	$d_{\rm i}$	$d_{\rm a}$	d_{b}	Radial	Axial	Radial	Axial	speed(2)	
D_2	L	D	11	ı	's min	'Is min	1 W	<i>u</i> ₁	Min.		N	N	N	N	rpm	
25	23	16	9	6.5	0.3	0.2	10	10	18	9	8 230	10 000	9 190	11 100	9 500	LRT 71016
27	23	16	9	6.5	0.3	0.3	12	12	20	11	9 250	9 670	11 200	11 100	9 000	LRT 91216
29 29	23 23	16.5 16.5	9		0.3 0.3		15 15	15 15	23 26	14 14	12 300 12 300	9 930 10 200	14 900 14 900	12 200 23 900	8 500 14 000	
31 31	25 25	17 17	9	8	0.3 0.3		17 17	17 17	25 28	16 16	12 900 12 900	10 800 11 400	16 300 16 300	14 500 28 600	8 500 13 000	LRT 141717 LRT 141717
36 36	30 30	20.5 20.5			0.3 0.3		20 20	20 20	29 33	19 19	17 600 17 600	14 200 19 000	25 400 25 400	19 700 48 700	7 500 11 000	LRT 172020 LRT 172020
43 43	30 30		11 11	9.5 9.5	0.6 0.6		25 25	25 25	35 40	24 24	20 000 20 000	19 600 22 700	32 100 32 100	29 700 60 700	7 000 9 000	LRT 202520 LRT 202520
48 48	30 30	20.5 20.5	11 11	9.5 9.5	0.6 0.6		30 30	30 30	40 45	29 29	25 100 25 100	20 400 27 400	40 100 40 100	33 600 81 000	6 500 8 000	
53 53	30 30		12 12	9 9	0.6 0.6	0.3 0.3	35 35	35 35	45 50	34 34	26 900 26 900	21 200 29 100	46 200 46 200	37 600 91 100	6 000 7 000	LRT 303520 LRT 303520
61 61	32 32	20 20	13 13	10 10	0.6 0.6		40 40	40 40	52 57	39 39	29 400 29 400	26 900 41 700	54 100 54 100	50 000 133 000	5 500 6 000	LRT 354020 LRT 354020
66.5 66.5	32 32		14 14	9 9		0.3 0.3	45 45	45 45	57 62	44 44	31 000 31 000	27 900 40 800	60 200 60 200	55 100 133 000	5 000 5 500	LRT 404520 LRT 404520
71.5 71.5	35 35		14 14	10 10	0.6 0.6		50 50	50 50	62 67	49 49	42 200 42 200	28 800 43 300	83 400 83 400	60 100 148 000	4 500 5 000	LRT 455025 LRT 455025
86.5 86.5		25.5 25.5		12 12	1 1	1 1	60 60	60 60	75 82	59 59	47 500 47 500	41 400 64 600	103 000 103 000	89 700 224 000	4 000 4 000	LRT 506025 LRT 506025
96.5	40	25.5	18	11	1	1	70	70	85	68	55 500	43 100	120 000	101 000	3 500	LRT 607025

COMBINED TYPE NEEDLE ROLLER BEARINGS

Needle Roller Bearings with Angular Contact Ball Bearing Needle Roller Bearings with Three-point Contact Ball Bearing




NATA59


Shaft dia. 15 — 70mm

Shaft		Identificati	on number			В		y dimen mm	sions	
dia. mm	Angular contact type	Mass (Ref.) g	Three-point contact type	Mass (Ref.) g	d	D	C	В	$r_{\rm s min}(^1)$	F_{w}
15	NATA 5902	50.5	NATB 5902	53	15	28	18	20	0.3	20
17	NATA 5903	55.5	NATB 5903	58.5	17	30	18	20	0.3	22
20	NATA 5904	111	NATB 5904	115	20	37	23	25	0.3	25
25	NATA 5905	131	NATB 5905	136	25	42	23	25	0.3	30
30	NATA 5906	151	NATB 5906	157	30	47	23	25	0.3	35
35	NATA 5907	250	NATB 5907	260	35	55	27	30	0.6	42
40	NATA 5908	355	NATB 5908	375	40	62	30	34	0.6	48
45	NATA 5909	410	NATB 5909	435	45	68	30	34	0.6	55
50	NATA 5910	420	NATB 5910	445	50	72	30	34	0.6	58
55	NATA 5911	585	NATB 5911	615	55	80	34	38	1	63
60	NATA 5912	625	NATB 5912	660	60	85	34	38	1	68
65	NATA 5913	665	NATB 5913	710	65	90	34	38	1	75
70	NATA 5914	1 070	NATB 5914	1 130	70	100	40	45	1	80

⁽²⁾ Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

	ting dimensions m	· .	ic load rating		load rating	Allowable rotational	
d_{a}	D_{a}	Radial	Axial	Radial	Axial	speed(2)	
Min.	Max.	N	N	N	N	rpm	
17	26	7 710	1 900	10 200	2 920	20 000	
19	28	8 220	2 050	11 500	3 340	18 000	
22	35	14 300	3 810	18 400	6 110	16 000	
27	40	15 800	4 300	22 100	7 520	13 000	
32	45	17 700	4 550	26 800	8 460	11 000	
39	51	24 000	4 890	42 100	9 870	9 500	
44	58	30 600	5 350	60 400	11 800	8 500	
49	64	32 600	5 450	68 500	12 700	7 000	
54	68	33 600	5 660	72 500	13 600	7 000	
60	75	39 500	10 400	74 400	24 700	6 500	
65	80	41 800	10 700	82 200	26 700	6 000	
70	85	43 800	11 000	90 200	28 700	5 500	
75	95	56 400	13 500	127 000	35 000	5 000	

NBX NATA NATB

Remarks1. The outer ring has an oil groove and an oil hole.

^{2.} Grease is not prepacked. Perform proper lubrication.

- ●Inner Rings for Shell Type Needle Roller Bearings
- ●Inner Rings for General Usage

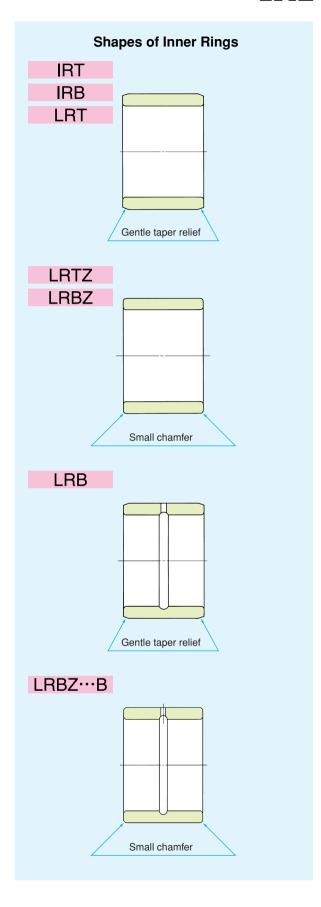
Structure and Features

grinding to a high degree of accuracy. In the case of needle roller bearings, normally, the shafts are heattreated and finished by grinding, and used as the raceway surfaces. However, when it is impossible to make shaft surfaces according to the specified surface hardness or surface roughness, inner rings are used.

Inner rings include those for Shell Type Needle Roller Bearings and those for general use and are available in a variety of dimensions. When shafts move axially or seals are used adjacent to bearings, wide inner rings can be selected.

Inner rings can also be used economically as bushings without requiring any additional machining.

For Inner Rings, the types shown in Table 1 are available.

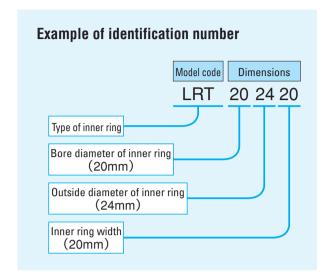

Table 1.1 Inner Rings for Shell Type Needle Roller Bearings

Sei	ries	Model codes of assembled bearings
Metric series	IRT	TA…Z, TLA…Z TAM, TLAM, YT, YTL
Inch series	IRB	BA···Z, BHA···Z BAM, BHAM, YB, YBH

Remark For Inner Rings for Shell Type Needle Roller Bearings with Seal, please consult IXI .

Table 1.2 Inner Rings for General Usage

S	eries	Model codes of assembled bearings
Metric series	LRT	RNA 49, RNA 69 RNA 48, TAF, TR RNAF, NAX, NBX
	LRTZ	RNA 49 ··· UU, RNA 69 ··· UU GTR
	LRB	BR
Inch series	LRBZB	BR···UU
	LRBZ	GBR, GBRUU



294

IRT IRB LRT LRB

Identification number

The identification number of Inner Rings consists of a model code and dimensions. An example is shown below.

Accuracy

Dimensional accuracy of Inner Rings is based on Table 2. Inner Rings for Shell Type Needle Roller Bearings are manufactured so that exact radial internal clearances can be obtained when assembled with Shell Type Needle Roller Bearings. Inner Rings for General Usage produce CN clearance when used in the assembled bearings shown in Table 1.2. LRB and LRBZ···· B models produce the radial internal clearances shown in Table 4 on page 144.

When clearances other than CN clearance or accuracy other than Class 0 are required, please consult $\mathbb{IK} \ \square \ .$

Table 2 Tolerances for inner ring

Model code	Tolerance
IRT LRT、LRTZ LRBZ	JIS Class 0 (See the table 12, page 34)
IRB	Based on Table 3
LRB LRBZ…B	Based on Table 4
Domark Talaranasa of a	utoido diameter of inner ring are

Remark Tolerances of outside diameter of inner ring are based on Table 5.

Table 3 Tolerances of IRB

Nominal insi of inno m	er ring	Single mean	mp plane bore deviation	Deviati single in	Bs ion of a nner ring dth	$K_{ m ia}$ Radial runout of assembled bearing inner ring
Over	Incl.	High	Low	High	Low	Max.
2.5	10	0	- 13	0	- 250	10
10	18	0	- 13	0	- 250	10
18	30	0	- 13	0	- 250	13
30	50	0	- 13	0	- 250	15
50	0	— 13	0	- 250	20	

Table 4 Tolerances of LRB,LRBZ ··· B

				,			
	Nominal insi of inno m	Single mean	Δd mp Single plane mean bore ameter deviation ΔB s Deviation of a single inner ring width			$K_{ m ia}$ Radial runout of assembled bearing inner ring	
	Over	Incl.	High	Low	High	Low	Max.
ĺ	_	19.050	0	- 10	0	- 130	10
	19.050	30.162	0	- 13	0	- 130	13
	30.162	50.800	0	- 13	0	- 130	15
	50.800	82.550	0	- 15	0	- 130	20
	82.550	120.650	0	- 20	0	- 130	25

Table 5 Tolerances of outside diameter of inner ring

Model code	Tolerance
IRT	g5
IRB	0∼−13
LRT, LRTZ, LF	RBZ Based on Table 6
LRB, LRBZ···	B Based on Table 7

Table 7 Tolerances of outside diameters of LRB and LRBZ····B unit: μ m

of inne	side diameter er ring m	Tolerance							
Over	Incl.	High	Low						
_	18.034	- 13	- 23						
18.034	25.908	— 18	- 30						
25.908	30.226	- 23	- 36						
30.226	35.052	- 23	- 38						
35.052	50.038	– 25	- 41						
50.038	80.010	- 28	- 46						
80.010	100.076	- 32	- 56						
100.076	102.108	- 37	– 66						

unit: μ m

The recommended fits between Inner Rings and shafts are shown in Table 22 on page 45.

Oil Hole

The number of oil holes is shown in Table 8.

When Inner Rings with an oil hole are especially required for a model without an oil hole, attach an "OH" to the end of the identification number when ordering.

Example: LRT 202420 OH

For Inner Rings with multiple oil holes, please consult $\operatorname{TIM}_{\mathbb{R}}$.

Table 8 Number of oil holes

I	Bearing typ	e	Bore diameter of inner ring d mm	Number of oil holes
For Shell Type Needle Roller	Metric series	IRT		0
Bearings	Inch series	IRB		0
	Metric series	LRT		0
	Menic Series	LRTZ	0	
For General		LRB	<i>d</i> ≤ 76.200	1
Usage	Inch series	LND	76.200 < <i>d</i>	2
	IIICII SCIICS	LRBZ	В	1
		LRBZ		0

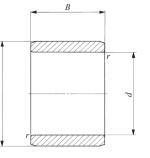
Remark Inner rings with an oil hole are provided with an oil groove.

Table 6 Tolerances of outside diameters for LRT, LRTZ and LRBZ (When the clearance is CN clearance)

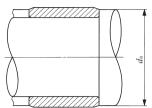
unit:	μ	n
-------	---	---

IRB

LRT LRB


	TOICIAI					,				0.00.00.		. 010414															unit: μ m
	d							1	7										F_{\dots}							1	d
Bore di	ameter of						Outside (diameter o	of inner ring	g mm							Outside	diameter	of inner ri	ng mm						Bore dia	ameter of
inner r	ing mm	3 < 1	$F \leq 6$	6 < F	⁷ ≤ 10	10 < 1	F ≤ 18	18 <	$F \leq 30$	30 < .	$F \leq 50$	50 < 1	$F \leq 80$	80 < F	⁷ ≤ 120	120 < <i>I</i>	F ≤ 180	180 < <i>I</i>	$F \leq 250$	250 < I	F ≤ 315	315 < F	7 ≤ 400	400 < F	7 ≤ 500	inner rin	ng mm
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Over	Incl.
_	24	- 10	– 27	-7	- 23	<u>-4</u>	- 18	0	- 12																	_	24
24	30							0	- 12	+5	- 4															24	30
24 30	40									0	- 9															30	40
40 50 65	50									-5	- 19	0	-11													40	50
50	65											— 10	-21													50	65
65	80											<u></u> 10	- 26	- 4	<u> </u>											65	80
80	100													- 14	- 27											80	100
100	120													- 14	- 32	- 7	- 22									100	120
120	140															- 17	− 37									120	140
140	160															- 27	- 52									140	160
160	180																	- 25	- 46							160	180
180	200																	<u> </u>	- 66							180	200
200	225																	- 55	- 86							200	225
225	250																			<u> </u>	– 87					225	250
250	280																			<u> </u>	<u> </u>					250	280
280	315																					- 68	<u> 107</u>			280	315
315	355																					- 83	- 127	400	470	315	355
355	400																					<u> </u>	<u>- 182</u>				400
400	450																							− 142			450
450	500																							− 152	-222	450	500

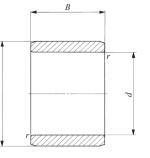
Inner Rings for Shell Type Needle Roller Bearings



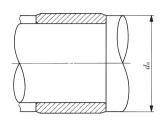
Shaft dia. 7 – 17mm

		Mass	Bou	ndar	y dime	nsions	Standard	d mounting					
Shaft		(Ref.)			mm			n mm					
dia.	Identification number		1		D	(1)		$d_{\rm a}$	TA…Z	TLA ··· Z	YT		
mm		g	d	F	В	$r_{\rm s min}$	IVIIn.	Max.	(TAM)	(TLAM)	YTL		
	IRT 710	3.2	7	10	10.5	0.3	9	9.7	TA 1010Z	TLA 1010Z	_		
7	IRT 712	3.9	7	10	12.5	0.3	9	9.7	TA 1012Z	TLA 1012Z			
	IRT 715	4.8	7	10	15.5	0.3	9	9.7	TA 1015Z	TLA 1015Z			
	IRT 810	5.1	8	12	10.5	0.3	10	11		TLA 1210Z	YTL 1210		
8	IRT 812	6	8	12	12.5	0.3	10	11	TA 1212Z	TLA 1212Z	YT 1212		
	IRT 815	7.5	8	12	15.5	0.3	10	11	TA 1215Z		_		
	IRT 1012	5.2	10	13	12.5	0.3	12	12.7		TLA 1312Z			
	IRT 1012-2	7.2	10	14	12.5	0.3	12	13		TLA 1412Z			
	IRT 1016-2	9.6	10	14	16.5	0.3	12	13	TA 1416Z	TLA 1416Z			
	IRT 1020-2	11.9	10	14	20.5	0.3	12	13	TA 1420Z				
10	IRT 1010-1	7.9	10	15	10.5	0.3	12	14	TA 1510Z				
	IRT 1012-1	9.4	10	15	12.5	0.3	12	14	TA 1512Z	TLA 1512Z			
	IRT 1015-1	11.7	10	15	15.5	0.3	12	14	TA 1515Z				
	IRT 1020-1	15.5	10	15	20.5	0.3	12	14	TA 1520Z				
	IRT 1025-1	19.3	10	15	25.5	0.3	12	14	TA 1525Z				
	IRT 1212	6.1	12	15	12.5	0.3	14	14.5	TA 1512Z	TLA 1512Z			
	IRT 1216	8.1	12	15	16.5	0.3	14	14.5		TLA 1516Z			
	IRT 1222	11	12	15	22.5	0.3	14	14.5		TLA 1522Z			
	IRT 1212-1	8.5	12	16	12.5	0.3	14	15		TLA 1612Z			
12	IRT 1216-1	11.2	12	16	16.5	0.3	14	15	TA 1616Z	TLA 1616Z			
	IRT 1220-1	13.9	12	16	20.5	0.3	14	15	TA 1620Z				
	IRT 1222-1	15.2	12	16	22.5	0.3	14	15	TA 43453	TLA 1622Z			
	IRT 1215-2	13.6	12	17	15.5	0.3	14	16	TA 1715Z		YT 1715		
	IRT 1220-2 IRT 1225-2	18	12	17	20.5	0.3	14	16	TA 1720Z		VT 4705		
		22.5	12	17	25.5	0.3	14	16	TA 1725Z		YT 1725		
15	IRT 1512	7.5	15	18	12.5	0.3	17	17.5		TLA 1812Z			
.0	IRT 1513	8.1	15	18	13.5	0.3	17	17.5	TA 1813Z		_		
		ı	1	1	1	1	I	1 1		I .			

	d _a


Shaft		Mass (Ref.)	Bou		y dime mm	nsions	Standard dimension	I mounting on mm	Assembled bearings					
dia. mm	Identification number	q	g $d \mid F \mid B \mid r_{\text{s min}} \mid \text{Min.} \mid \text{Max.} \mid TA \cdots Z$ (TAM)		TLA…Z (TLAM)	YT YTL								
	IDT 4545									, ,				
	IRT 1515	9.3	15	18	15.5	0.3	17	17.5	TA 1815Z					
	IRT 1516	9.9	15	18	16.5	0.3	17	17.5		TLA 1816Z	_			
	IRT 1517	10.5	15	18	17.5	0.3	17	17.5	TA 1817Z					
	IRT 1519	11.7	15	18	19.5	0.3	17	17.5	TA 1819Z					
	IRT 1520	12.3	15	18	20.5	0.3	17	17.5	TA 1820Z					
45	IRT 1525	15.2	15	18	25.5	0.3	17	17.5	TA 1825Z					
15	IRT 1516-1	13.6	15	19	16.5	0.3	17	18	TA 1916Z					
	IRT 1520-1	16.8	15	19	20.5	0.3	17	18	TA 1920Z					
	IRT 1515-2 IRT 1520-2	16.4	15	20	15.5	0.3	17	19	TA 2015Z	—	YT 2015			
	IRT 1520-2	21.5	15	20	20.5	0.3	17	19	TA 2020Z	TLA 2020Z	YT 202820			
	IDT 1505 0	27	1.5	20	25.5	0.2	17	10	TA 202820Z		VT 0005			
	IRT 1525-2	27	15	20	25.5	0.3	17	19	TA 2025Z	TI 4 00007	YT 2025			
	IRT 1530-2	32	15	20	30.5	0.3	17	19	TA 2030Z	TLA 2030Z				
	IRT 1716	11.1	17	20	16.5	0.3	19	19.5		TLA 2016Z	_			
	IRT 1720	13.7	17	20	20.5	0.3	19	19.5	TA 2020Z	TLA 2020Z	YT 202820			
									TA 202820Z					
	IRT 1730	20.5	17	20	30.5	0.3	19	19.5	TA 2030Z	TLA 2030Z	_			
	IRT 1716-1	15.1	17	21	16.5	0.3	19	20	TA 2116Z		YT 2116			
	IRT 1720-1	18.8	17	21	20.5	0.3	19	20	TA 2120Z		YT 2120			
17	IRT 1710-2	12.4	17	22	10.5	0.3	19	21	TA 2210Z	_	_			
	IRT 1715-2	18.3	17	22	15.5	0.3	19	21	TA 2215Z	_	_			
	IRT 1716-2	19.4	17	22	16.5	0.3	19	21	TA 223016Z	TLA 2216Z	YT 223016			
	IRT 1720-2	24	17	22	20.5	0.3	19	21	TA 2220Z	TLA 2220Z	YT 223020			
									TA 223020Z					
	IRT 1725-2	30	17	22		0.3	19	21	TA 2225Z	_	_			
	IRT 1730-2	36	17	22	30.5	0.3	19	21	TA 2230Z	_	_			

Inner Rings for Shell Type Needle Roller Bearings



Shaft dia. 20 — 45mm

Mass Boundary dimensions Standard mounting Assembled bearing											
Shaft		Mass (Ref.)	Bou		/ dime mm	nsions	Standard dimension	d mounting on mm	A	ssembled bearing	js
dia.	Identification number	g	d	F	В	$r_{\rm s min}^{(1)}$		d _a Max.	TA…Z (TAM)	TLA…Z (TLAM)	YT YTL
	IRT 2016	17.5	20	24	16.5	0.3	22	23	TA 243216Z		YT 243216
	IRT 2020	22	20	24	20.5	0.3	22	23	TA 2420Z	_	YT 243220
									TA 243220Z		
	IRT 2028	30.5	20	24	28.5	0.3	22	23	TA 2428Z		YT 2428
20	IRT 2010-1 IRT 2015-1	14.3 21	20	25 25	10.5 15.5	0.3	22	24 24	TA 2510Z TA 2515Z	_	YT 2510 YT 2515
20	IRT 2015-1	28	20	25	20.5	0.3	22	24	TA 2515Z	TLA 2520Z	YT 2515
	IRT 2025-1	34.5	20	25	25.5	0.3	22	24	TA 2525Z	— — —	YT 2525
	IRT 2026-1	36	20	25	26.5	0.3	22	24	_	TLA 2526Z	YTL 2526
	IRT 2030-1	41.5	20	25	30.5	0.3	22	24	TA 2530Z		
	IRT 2038-1	52.5	20	25	38.5	0.3	22	24	_	TLAW 2538Z	
	IRT 2216	19.1	22	26	16.5	0.3	24	25	TA 2616Z		YT 2616
22	IRT 2220	24	22	26	20.5	0.3	24	25	TA 2620Z	_	YT 2620
22	IRT 2220-1	37	22	28	20.5	0.3	24	27	TA 2820Z	TLA 2820Z	YT 2820
	IRT 2230-1	55.5	22	28	30.5	0.3	24	27	TA 2830Z	_	
	IRT 2520	26.5	25	29	20.5	0.3	27	28	TA 2920Z		YT 2920
	IRT 2530	40	25	29	30.5	0.3	27	28	TA 2930Z		
	IRT 2515-1	25.5	25	30	15.5	0.3	27	29	TA 3015Z		
25	IRT 2520-1 IRT 2525-1	34 42.5	25	30	20.5 25.5	0.3	27	29	TA 3020Z TA 3025Z	TLA 3020Z	
	IRT 2525-1	42.5	25 25	30	26.5	0.3	27 27	29 29	IA 3025Z	TLA 3026Z	
	IRT 2530-1	50.5	25	30	30.5	0.3	27	29	TA 3030Z	— — — —	
	IRT 2538-1	64	25	30	38.5	0.3	27	29	_	TLAW 3038Z	_
	IRT 2820	29.5	28	32	20.5	0.3	30	31	TA 3220Z		YT 3220
28	IRT 2830	44	28	32	30.5	0.3	30	31	TA 3230Z	_	_
	IRT 3012	24.5	30	35	12.5	0.6	34	34.5	TA 3512Z	TLA 3512Z	_
30	IRT 3015	30.5	30	35	15.5	0.6	34	34.5	TA 3515Z		

Shaft		Mass (Ref.)	Bou		y dime mm	nsions	Standard dimension	mounting on mm	Assembled bearings						
dia. mm	Identification number	g	d	F	В	$r_{\rm s min}^{(1)}$	Min.	$l_{ m a}$ Max.		A···Z (AM)	TLA…Z (TLAM)	YT YTL			
30	IRT 3020 IRT 3025 IRT 3030	40 50 60	30 30 30	35 35 35	20.5 25.5 30.5	0.6 0.6 0.6	34 34 34	34.5 34.5 34.5	TA TA TA	3520Z 3525Z 3530Z	TLA 3520Z	_ _ _			
32	IRT 3220 IRT 3230 IRT 3215-1 IRT 3220-1 IRT 3225-1 IRT 3230-1 IRT 3245-1	42.5 63.5 39.5 52 64.5 77.5	32 32 32 32 32 32 32 32	37 38 38 38 38 38	20.5 30.5 15.5 20.5 25.5 30.5 45.5	0.6 0.6 0.6 0.6 0.6 0.6	36 36 36 36 36 36 36	36.5 36.5 37 37 37 37 37	TA TA TA TA TA TA	3720Z 3730Z 3815Z 3820Z 3825Z 3830Z 3845Z	 	YT 3720 — — — — — —			
35	IRT 3515 IRT 3520 IRT 3525 IRT 3530 IRT 3540	35 46.5 58 69 91.5	35 35 35 35 35	40 40 40 40 40	15.5 20.5 25.5 30.5 40.5	0.6 0.6 0.6 0.6 0.6	39 39 39 39 39	39.5 39.5 39.5 39.5 39.5	TA TA TA TA TA	4015Z 4020Z 4025Z 4030Z 4040Z	TLA 4020Z — — —	YT 4015 YT 4025			
40	IRT 4020 IRT 4025 IRT 4030 IRT 4040	52.5 65.5 78.5 104	40 40 40 40	45 45 45 45	20.5 25.5 30.5 40.5	0.6 0.6 0.6 0.6	44 44 44 44	45.5 45.5 45.5 45.5	TA TA TA	4520Z 4525Z 4530Z 4540Z	TLA 4520Z — — —	YT 4520 YT 4525 —			
	IRT 4512 IRT 4515 IRT 4520	36 44.5 59	45 45 45	50 50 50	12.5 15.5 20.5	0.6 0.6 0.6	49 49 49	49.5 49.5 49.5	TA TA TA	5012Z 5015Z 5020Z	 	_ _ _			

45 50 25.5 0.6 49 49.5 **TA 5025Z**

45 50 45.5 0.6 49 49.5 **TAW 5045Z**

49 | 49.5 **TA 5030Z**

49 49.5 **TA 5040Z**

Note(1) Minimum allowable value of chamfer dimension r Remark No oil hole is provided.

73

116

131

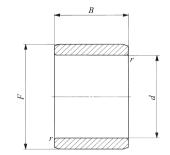
87.5 | 45 | 50 | 30.5 | 0.6

45 50 40.5 0.6

IRT 4525

IRT 4530

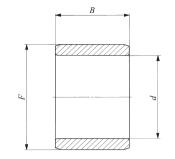
IRT 4540

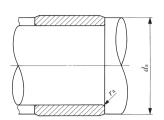

IRT 4545

45

TLA 5025Z

Inner Rings for Shell Type Needle Roller Bearings


IRT


Shaft dia. 50 — 60mm

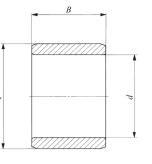
Shaft		Mass (Ref.)	Bou		y dime mm	nsions	l .	mounting on mm						
dia. mm	Identification number	g	d	F	В	$r_{\rm s min}^{(1)}$		$l_{ m a}$ Max.	l	A…Z AM)	TLA…Z (TLAM)	YT YTL		
	IRT 5020-1 IRT 5025-1 IRT 5030-1 IRT 5040-1	65 81 96.5 128	50 50 50 50	55 55 55 55	20.5 25.5 30.5 40.5	0.6 0.6 0.6 0.6	54 54 54 54	54.5 54.5 54.5 54.5	TA TA	5520Z 5525Z 5530Z 5540Z	TLA 5520Z TLA 5525Z	— — —		
50	IRT 5045-1 IRT 5050-1 IRT 5025 IRT 5030 IRT 5040	144 160 169 205 270	50 50 50 50 50	55 55	45.5 50.5 25.5 30.5 40.5	0.6 0.6 1.5 1.5	54 54 58 58 58	54.5 54.5 54.5 59 59	TAW	5545Z 5550Z 6025Z 6030Z 6040Z	_ _ _ _ _	_ _ _ _		
52	IRT 5045 IRT 5050 IRT 5212	300 335 86	50 50 52	60 60 62	45.5 50.5 12.5	1.5 1.5	58 58 60	59 59 60.5	l	6045Z 6050Z 6212Z	_ 	_ 		
55	IRT 5525 IRT 5530 IRT 5545 IRT 5550	185 220 330 365	55 55 55 55	65 65 65	25.5 30.5 45.5 50.5	1.5 1.5 1.5 1.5 1.5	63 63 63 63	63.5 63.5 63.5 63.5	TA TA TAW	6525Z 6530Z 6545Z 6550Z	_ _ _ _	 		
60	IRT 6025 IRT 6030 IRT 6040 IRT 6050	200 240 320 395	60 60 60		25.5 30.5 40.5 50.5	1.5 1.5 1.5 1.5	68 68 68 68	68.5 68.5 68.5 68.5	TA TA	7025Z 7030Z 7040Z 7050Z	_ _ _ _	- - - -		

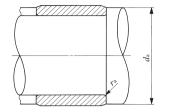
Inner Rings for Shell Type Needle Roller Bearings Inch Series

IRB

Shaft dia. 7.938 — 15.875mm

Shaft			Mass (Ref.)		ary dimensions	5		ard moi		Asse	mbled bearing	ngs
dia. mm (inch)		fication mber	g	d	F	В	d Min.	a Max.	r _{as max} Max.	BA…Z (BAM)	BHA…Z (BHAM)	YB YBH
7.938 (5/16)	IRB	58	8	7.938 (5/16)	12.700 (1/2)	13.08	11.3	11.7	0.3	BA 88Z	BHA 88Z	YB 88
9.525	IRB IRB	68 68-1	8.9 12.6	9.525 (³ / ₈) 9.525 (³ / ₈)	14.288 (%) 15.875 (5/8)	13.08 13.08	12.8 12.8	13.2 14	0.3 0.3	BA 98Z BA 108Z	BHA 98Z BHA 108Z	YB 98 YB 108 YBH 108
(3/8)	IRB IRB	612 612-1	13.2 18.8	9.525 (³ / ₈) 9.525 (³ / ₈)	14.288 (½) 15.875 (½)	19.43 19.43	12.8 12.8	13.2 14	0.3 0.3	BA 912Z BA 1012Z	BHA 1012Z	YB 912 YB 1012
11.112	IRB IRB	78 712	10.1 15	11.112 (½) 11.112 (½)	15.875 (5/8) 15.875 (5/8)	13.08 19.43	14.4	14.8 14.8	0.3	BA 108Z BA 1012Z	BHA 108Z	YB 108 YBH 108
(½ ₁₆)	IRB IRB	714 716	17.4 19.9	11.112 (7/6) 11.112 (7/6) 11.112 (7/6)	15.875 (5/8) 15.875 (5/8)	22.60 25.78	14.4 14.4 14.4	14.8 14.8	0.3 0.3	BA 1014Z BA 1016Z	BHA 1016Z	YB 1012 —
	IRB IRB	86 88	8.5 11.2	12.700 (½) 12.700 (½)	17.462 (1½) 17.462 (1½)	9.90 13.08	16.9 16.9	16.9 16.9	0.3 0.3	BA 116Z BA 118Z	_	_
12.700 (½)	IRB IRB IRB	812 88-1 810-1	16.7 15.8 19.6	12.700 ($\frac{1}{2}$) 12.700 ($\frac{1}{2}$) 12.700 ($\frac{1}{2}$)	17.462 (1½6) 19.050 (¾) 19.050 (¾)	19.43 13.08 16.25	16.9 16.9 16.9	16.9 17.5 17.5	0.3 0.6 0.6	BA 1112Z BA 128Z BA 1210Z		YB 1112 YB 128 YB 1210
-	IRB IRB IRB	812-1 814-1 816-1	23.5 27.5 31	12.700 ($\frac{1}{2}$) 12.700 ($\frac{1}{2}$) 12.700 ($\frac{1}{2}$)	19.050 (¾) 19.050 (¾) 19.050 (¾)	19.43 22.60 25.78	16.9 16.9 16.9	17.5 17.5 17.5	0.6 0.6 0.6	BA 1212Z BA 1214Z BA 1216Z		YB 1212
14.288 (9/16)	IRB IRB IRB IRB IRB	98 910 912 914 916	17.3 21.5 26 30 34.5	14.288 (%) 14.288 (%) 14.288 (%) 14.288 (%) 14.288 (%)	20.638 (13/6) 20.638 (13/6) 20.638 (13/6) 20.638 (13/6) 20.638 (13/6)	13.08 16.25 19.43 22.60 25.78	19 19 19 19 19	19.6 19.6 19.6 19.6 19.6	0.6 0.6 0.6 0.6 0.6	BA 138Z BA 1310Z BA 1312Z BA 1314Z BA 1316Z	BHA 1312Z	YB 138 YBH 1310 YBH 1312
	IRB	920	43	14.288 (16)	20.638 (7/6)	32.13	19	19.6	0.6	BA 1316Z BA 1320Z	_	_
15.875 (⁵ / ₈)	IRB IRB IRB 1	106 108 1012	14.5 18.9 28	15.875 ($\frac{5}{8}$) 15.875 ($\frac{5}{8}$) 15.875 ($\frac{5}{8}$)	22.225 (½) 22.225 (½) 22.225 (½)	9.90 13.08 19.43	20.7 20.7 20.7	21.2 21.2 21.2	0.6 0.6 0.6	BA 146Z BA 148Z BA 1412Z	BHA 1412Z	YB 148 YB 1412


Note(1) Maximum allowable fillet corner radius of shaft Remark No oil hole is provided.


303

Shaft dia. 15.875 — 63.500mm

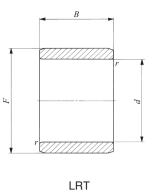
Shaft	Identification	Mass (Ref.)		ary dimensions nm(inch)	3		ard mo sions	٠ ١	Asse	mbled bearin	ngs
dia. mm (inch)	number	g	d	F	В		l _a Max.	r _{as max}	BA…Z (BAM)	BHA···Z (BHAM)	YB YBH
15.875 (5/8)	IRB 1014 IRB 1016 IRB 1022	33 37.5 51.5	15.875 ($\frac{5}{8}$) 15.875 ($\frac{5}{8}$) 15.875 ($\frac{5}{8}$)	22.225 (½) 22.225 (½) 22.225 (½)	22.60 25.78 35.30	20.7 20.7 20.7	21.2 21.2 21.2	0.6 0.6 0.6	BA 1414Z BA 1416Z BA 1422Z	BHA 1416Z	YB 1416
17.462 (11/ ₁₆)	IRB 1110 IRB 1116	25.5 40.5	17.462 (½) 17.462 (½)	23.812 (½) 23.812 (½)	16.25 25.78	22.3 22.3	22.8 22.8	0.6 0.6	BA 1510Z BA 1516Z		_ _
19.050		33	19.050 (¾) 19.050 (¾)	25.400 (1) 25.400 (1)	13.08	23.9	24.4	0.6	BA 168Z BA 1612Z	BHA 168Z BHA 1612Z	YB 168 YBH 168 YB 1612 YBH 1612
(3/4)	IRB 1214 IRB 1216 IRB 1220	38.5 43.5 54.5	19.050 (¾) 19.050 (¾) 19.050 (¾)	25.400(1) 25.400(1) 25.400(1)	22.60 25.78 32.13	23.9 23.9 23.9	24.4 24.4 24.4	0.6 0.6 0.6	BA 1614Z BA 1616Z BA 1620Z	BHA 1616Z	YB 1616 YBH 1616
20.638 (13/ ₁₆)	IRB 1316	34	20.638 (13/16)	25.400 (1)	25.78	24.9	24.9	0.6	BA 1616Z	BHA 1616Z	YB 1616 YBH 1616
22.225 (7/8)	IRB 148 IRB 1412 IRB 1416 IRB 1420	25 37.5 50 62.5	22.225 (½8) 22.225 (½8) 22.225 (½8) 22.225 (½8)	28.575 (1 ½) 28.575 (1 ½) 28.575 (1 ½) 28.575 (1 ½)	13.08 19.43 25.78 32.13	27 27 27 27	27.5 27.5 27.5 27.5 27.5	0.6 0.6 0.6 0.6	BA 188Z BA 1812Z BA 1816Z BA 1820Z	BHA 1812Z BHA 1816Z BHA 1820Z	YB 188 YB 1812 YB 1816
25.400 (1)	IRB 168 IRB 1610 IRB 1612 IRB 1616 IRB 1620 IRB 168-1 IRB 1610-1 IRB 1612-1	28.5 35.5 42.5 56 70 36.5 45.5 54.5	25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1)	31.750 (1 ½) 31.750 (1 ½) 31.750 (1 ½) 31.750 (1 ½) 31.750 (1 ½) 33.338 (1 ½) 33.338 (1 ½) 33.338 (1 ½)	13.08 16.25 19.43 25.78 32.13 13.08 16.25 19.43	30 30 30 30 30 30 30 30 30	30.7 30.7 30.7 30.7 30.7 32.1 32.1 32.1	0.6 0.6 0.6 0.6 0.6 0.6 0.6	BA 208Z BA 2010Z BA 2012Z BA 2016Z BA 2020Z BA 218Z BA 2110Z BA 2112Z	BHA 2016Z — — — — — — — — — —	YB 2010 YB 2012 YB 2016 ————————————————————————————————————

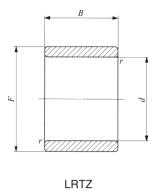
Note(1) Maximum allowable fillet corner radius of shaft Remark No oil hole is provided.

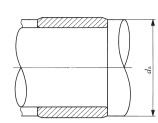
IRB

Shaft		Mass (Ref.)		ary dimensions nm(inch)			ard moi	-	Asse	mbled bearin	gs
dia.	Identification number	, , ,				d		$r_{\rm as\ max}^{(1)}$	BA…Z	BHA…Z	YB
mm (inch)		g	d	F	В		Max.		(BAM)	(BHAM)	YBH
28.575	IRB 188	31.5	28.575 (1 ½)	34.925 (1 ³ / ₈)	13.08	33.2	33.9	0.6	BA 228Z		YB 228
$(1\frac{1}{8})$	IRB 1812 IRB 1816	47 62.5	28.575 (1 ½) 28.575 (1 ½)	34.925 (1 ³ / ₈) 34.925 (1 ³ / ₈)	19.43 25.78	33.2 33.2	33.9 33.9	0.6 0.6	BA 2212Z BA 2216Z	BHA 2212Z BHA 2216Z	YB 2212
. , 0,	IRB 1820	78	28.575 (1 ½)	34.925 (1 ³ / ₈)	32.13	33.2	33.9	0.6	BA 2220Z		YB 2220
31.750	IRB 2010	43	31.750 (1 1/4)	38.100(1½)	16.25	37	37.1	0.6	BA 2410Z	_	
$(1\frac{1}{4})$	IRB 2014 IRB 2016	60 68.5	31.750 (1 ½) 31.750 (1 ½)	38.100 (1 ½) 38.100 (1 ½)	22.60 25.78	37 37	37.1 37.1	0.6 0.6	BA 2414Z BA 2416Z	_	YB 2414 YB 2416
. , ,	IRB 2020	85.5	31.750 (1 1/4)	38.100 (1 ½)	32.13	37	37.1	0.6	BA 2420Z	_	YB 2420
34.925	IRB 2210	47	34.925 (1 ³ / ₈)	41.275 (1 ½)	16.25	40.2	40.2	0.6	BA 2610Z		YB 2610
$\frac{(1\frac{3}{8})}{36.512}$	IRB 2220	93.5	34.925 (1 ³ / ₈)	41.275 (1 ½)	32.13	40.2	40.2	0.6	BA 2620Z	_	_
$(1\frac{7}{16})$	IRB 2316	99	36.512 (1 ½)	44.450 (1 ³ ⁄ ₄)	25.78	42.5	43.2	0.6	BA 2816Z	_	_
	IRB 2412	62	38.100 (1 ½)	44.450 (1 ³ / ₄)	19.43	43.3	43.4	0.6	BA 2812Z	_	
38.100	IRB 2416 IRB 2424	81 121	38.100 (1 ½) 38.100 (1 ½)	44.450 (1 ³ ⁄ ₄) 44.450 (1 ³ ⁄ ₄)	25.78 38.48	43.3 43.3	43.4 43.4	0.6 0.6	BA 2816Z BA 2824Z	BHA 2824Z	YB 2816
$(1\frac{1}{2})$	IRB 248-1	64	38.100 (1 ½)	47.625 (1 ½)	13.08	44.5	45.5	1	BA 308Z		
44.000	IRB 2410-1	79.5	38.100 (1 ½)	47.625 (1 ½)	16.25	44.5	45.5	1	BA 3010Z		
41.275 (1 ⁵ / ₈)	IRB 2616 IRB 2628	136 235	41.275 (1 ⁵ / ₈) 41.275 (1 ⁵ / ₈)	50.800 (2) 50.800 (2)	25.78 44.83	47.5 47.5	48.5 48.5	1	BA 3216Z BAW 3228Z	_	_
42.862			41.275(1/8)	30.800 (2)							
$(1\frac{11}{16})$	IRB 2720	146	42.862 (1 ¹¹ / ₁₆)	50.800 (2)	32.13	48.5	49.5	0.6	BA 3220Z	_	
47.625	IRB 3016	100	47.625 (1 ½)	53.975 (2 ½)	25.78	52.9	52.9	0.6	BA 3416Z	_	_
(1%)	IRB 3024	149	47.625 (1 ½)	53.975 (2 ½)	38.48	52.9	52.9	0.6	BA 3424Z	_	_
57.150 (2½)	IRB 3616	183	57.150 (2 ½)	66.675 (2 ½)	25.78	63.5	64.5	1	BA 4216Z	<u> </u>	_
63.500	IRB 4016	131	63.500 (2 ½)	69.850 (2 ³ ⁄ ₄)	25.78	68.7	68.8	0.6	BA 4416Z	_	_
$(2\frac{1}{2})$	IRB 4020	164	63.500 (2 ½)	69.850 (2 ³ ⁄ ₄)	32.13	68.7	68.8	0.6	BA 4420Z	_	_

Note(1) Maximum allowable fillet corner radius of shaft Remark No oil hole is provided.


IRT IRB LRT

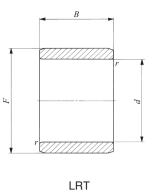


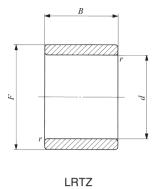


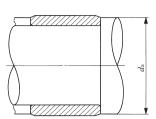
Shaft dia. 5 - 20mm

Shaft			Mass (Ref.)	Boun		dimen m	sions	Standard n		Assembled bearings
dia.	Identification	on number	(1.0.1)		 I	 I	(1)			
mm			g	d	F	В	$r_{\rm s \ min}$			
	LRT 5710	_	1.4	5	7	10	0.15	6.2	_	RNA 495
5	LRT 5812	_	2.8	5	8	12	0.2	6.6		TAF 81512
	LRT 5816	_	3.8	5	8	16	0.2	6.6	7.7	TAF 81516
	LRT 6810	_	1.7	6	8	10	0.15	7.2	7.7	RNA 496
6	LRT 6912	_	3.2	6	9	12	0.2	7.6		TAF 91612
· ·	LRT 6916	_	4.3	6	9	16	0.2	7.6		TAF 91616
	LRT 61010	-	3.9	6	10	10	0.3	8	9.7	RNAF 101710
	LRT 7910	_	1.9	7	9	10	0.15	8.2	8.7	RNA 497
7	LRT 71012	_	3.6	7	10	12	0.2	8.6	9.7	TAF 101712
′	LRT 71012-1	_	3.6	7	10	12	0.3	9		RNAF 102012
	LRT 71016		4.9	7	10	16	0.2	8.6	9.7	TAF 101716 NAX 1023
8	LRT 81011	_	2.4	8	10	11	0.2	9.6	9.9	RNA 498
	LRT 91211	_	3.1	9	12	11	0.3	11	11.5	RNA 499
9	LRT 91212	-	4.5	9	12	12	0.3	11	11.5	TAF 121912 RNAF 122212
	LRT 91216		6	9	12	16	0.3	11	11.5	TAF 121916 NAX 1223
	LRT 101412	_	7	10	14	12	0.3	12	13	RNAF 142612
	LRT 101413	_	7.5	10	14	13	0.3	12	13	RNA 4900 RNAF 142213
10	_	LRTZ 101414	8.2	10	14	14	0.3	12	13	RNA 4900 UU
	LRT 101416	_	9	10	14	16	0.3	12	13	TAF 142216
	LRT 101420	_	11.5	10	14	20	0.3	12	13	TAF 142220 RNAFW142220
	LRT 121516	_	8	12	15	16.5	0.3	14	14.5	NAX 1523 NBX 1523
	LRT 121612	<u> </u>	8.5	12	16	12	0.3	14	15	RNAF 162812
12	LRT 121613	_	8.5	12	16	13	0.3	14	15	RNA 4901 RNAF 162413
12	_	LRTZ 121614	9.6	12	16	14	0.3	14	15	RNA 4901 UU
	LRT 121616	_	10.5	12	16	16	0.3	14	15	TAF 162416
	LRT 121620	_	13.5	12	16	20	0.3	14	15	TAF 162420 RNAFW162420

			Mass	5				Ctandard m	ountina	Assembled bearings
Shaft			(Ref.)	Boun		dimen m	sions	Standard m dimension		Assembled bearings
dia.	Identification	on number				I	(1)	d_{z}		
				d	F	В	$r_{\rm s~min}$			
mm			g				~			
12	LRT 121622	_	14.5	12	16	22	0.3	14	15	RNA 6901
12	_	LRTZ 121623	15.5	12	16	23	0.3	14	15	RNA 6901 UU
14	LRT 141717	_	9.5	14	17	17	0.3	16	16.5	NAX 1725 NBX 1725
	LRT 151916		12.5	15	19	16	0.3	17	18	TAF 192716
	LRT 151920	_	16	15	19	20	0.3	17	18	TAF 192720
	LRT 152012	_	12	15	20	12	0.3	17	19	RNAF 203212
	LRT 152013	_	13.5	15	20	13	0.3	17	19	RNA 4902 RNAF 202813
15	_	LRTZ 152014	14.5	15	20	14	0.3	17	19	RNA 4902 UU
13	LRT 152020	_	21.5	15	20	20.5	0.3	17	19	TR 203320
	_	LRTZ 152020	21.5	15	20	20.5		17	19	GTR 203320
	LRT 152023	<u> </u>	24	15	20	23	0.3	17	19	RNA 6902
		LRTZ 152024	25	15	20	24	0.3	17	19	RNA 6902 UU
	LRT 152026	_	28	15	20	26	0.3	17	19	RNAFW 202826
	LRT 172020	<u>—</u>	13.5	17	20	20.5	0.3	19	19.5	NAX 2030 NBX 2030
	LRT 172116	<u> </u>	14.5	17	21	16	0.3	19	20	TAF 212916
	LRT 172120	_	18	17	21	20	0.3	19	20	TAF 212920
	LRT 172213	<u> </u>	15.5	17	22	13	0.3	19	21	RNA 4903 RNAF 223013
	_	LRTZ 172214	16.5	17	22	14	0.3	19	21	RNA 4903 UU
17	LRT 172216	<u> </u>	19	17	22	16	0.3	19	21	RNAF 223516
-	LRT 172223	_	26.5	17	22	23	0.3	19	21	RNA 6903
		LRTZ 172224	28	17	22	24	0.3	19	21	RNA 6903 UU
	LRT 172225	_	30	17	22	25.5	0.3	19	21	TR 223425
		LRTZ 172225	30	17	22	25.5	0.3	19	21	GTR 223425
	LRT 172226	-	31	17	22	26	0.3	19	21	RNAFW 223026
	LRT 172232		38	17	22	32	0.3	19	21	RNAFW 223532
20	LRT 202416	—	16.5	20	24	16	0.3	22	23	TAF 243216
20	LRT 202420	_	20.5	20	24	20	0.3	22	23	TAF 243220


Inner Rings for General Usage





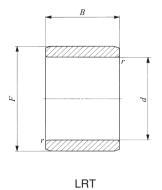
Shaft dia. 20 — 32mm

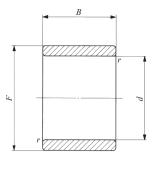
Shaft			Mass (Ref.)	Boun		dimen ım	sions	Standard n		Assembled bearings
dia. mm	ldentificati	on number	g	d	F	В	$r_{ m s~min}^{(1)}$	d _a Min.		
	LRT 202516	_	22	20	25	16	0.3	22	24	RNAF 253716
	LRT 202517	_	23	20	25	17	0.3	22	24	RNA 4904 RNAF 253517
	_	LRTZ 202518	24	20	25	18	0.3	22	24	RNA 4904 UU
	LRT 202520	_	28	20	25	20.5	0.3	22	24	TR 253820 NAX 2530
										NBX 2530
00	_	LRTZ 202520	28	20	25	20.5	0.3	22	24	GTR 253820
20	LRT 202525		35	20	25	25.5	0.3	22	24	TR 253825
	_	LRTZ 202525	35	20	25	25.5	0.3	22	24	GTR 253825
	LRT 202526		36	20	25	26	0.3	22	24	RNAFW 253526
	LRT 202530	_	40.5	20	25	30	0.3	22	24	RNA 6904
	_	LRTZ 202531	41.5	20	25	31	0.3	22	24	RNA 6904 UU
	LRT 202532	_	44	20	25	32	0.3	22	24	RNAFW 253732
	LRT 222616	_	17.5	22	26	16	0.3	24	25	TAF 263416
	LRT 222620	_	24	22	26	20	0.3	24	25	TAF 263420
	LRT 222817	_	30.5	22	28	17	0.3	24	27	RNA 49/22
22	_	LRTZ 222818	32	22	28	18	0.3	24	27	RNA 49/22 UU
	LRT 222830	_	55	22	28	30	0.3	24	27	RNA 69/22
	_	LRTZ 222831	55	22	28	31	0.3	24	27	RNA 69/22 UU
	LRT 252920	_	25	25	29	20	0.3	27	28	TAF 293820
	LRT 252930	_	38	25	29	30	0.3	27	28	TAF 293830
	LRT 253016	_	28	25	30	16	0.3	27	29	RNAF 304216
	LRT 253017	_	28.5	25	30	17	0.3	27	29	RNA 4905 RNAF 304017
	_	LRTZ 253018	29.5	25	30	18	0.3	27	29	RNA 4905 UU
25	LRT 253020	_	34	25	30	20.5	0.3	27	29	NAX 3030 NBX 3030
	LRT 253025	_	42	25	30	25.5	0.3	27	29	TR 304425
	_	LRTZ 253025	42	25	30	25.5	0.3	27	29	GTR 304425
	LRT 253026	_	44.5	25	30	26	0.3	27	29	RNAFW 304026
	LRT 253030	_	49	25	30	30	0.3	27	29	RNA 6905

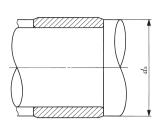
Shaft			Mass (Ref.)	Boun		dimen m	sions	Standard dimension	mounting n mm	Assembled bearings
dia.	Identification	on number				I	(1)	d	l _a	
mm			g	d	F	В	$r_{\rm s min}$			
0.5	_	LRTZ 253031	51	25	30	31	0.3	27	29	RNA 6905 UU
25	LRT 253032	_	54	25	30	32	0.3	27	29	RNAFW 304232
	LRT 283217	_	24.5	28	32	17	0.3	30	31	RNA 49/28
	_	LRTZ 283218	25.5	28	32	18	0.3	30	31	RNA 49/28 UU
28	LRT 283220	_	28.5	28	32	20	0.3	30	31	TAF 324220
20	LRT 283230	_	43	28	32	30	0.3	30	31	RNA 69/28 TAF 324230
	_	LRTZ 283230	43	28	32	30.5	0.3	30	31	GTR 324530
	_	LRTZ 283231	44	28	32	31	0.3	30	31	RNA 69/28 UU
	LRT 303516	_	31.5	30	35	16	0.3	32	34	RNAF 354716
	LRT 303517	_	33.5	30	35	17	0.3	32	34	RNA 4906 RNAF 354517
	_	LRTZ 303518	35	30	35	18	0.3	32	34	RNA 4906 UU
	LRT 303520	_	38.5	30	35	20	0.3	32	34	TAF 354520 NAX 3530
										NBX 3530
30	LRT 303526	_	52	30	35	26	0.3	32	34	RNAFW 354526
	LRT 303530	_	59	30	35	30	0.3	32	34	RNA 6906 TAF 354530
	LRT 303530-1	_	59	30	35	30.5	0.3	32	34	TR 354830
	_	LRTZ 303530	59	30	35	30.5	0.3	32	34	GTR 354830
	_	LRTZ 303531	61	30	35	31	0.3	32	34	RNA 6906 UU
	LRT 303532	_	64	30	35	32	0.3	32	34	RNAFW 354732
	LRT 323720	_	43.5	32	37	20	0.3	34	36	TAF 374720
	LRT 323730	_	63	32	37	30	0.3	34	36	TAF 374730
	LRT 323830	_	77	32	38	30.5		36	37	TR 385230
32	_	LRTZ 323830	77	32	38	30.5	0.6	36	37	GTR 385230
32	LRT 324020	_	69	32	40	20	0.6	36	39	RNA 49/32
	_	LRTZ 324021	72.5	32	40	21	0.6	36	39	RNA 49/32 UU
	LRT 324036	_	123	32	40	36	0.6	36	39	RNA 69/32
	_	LRTZ 324037	130	32	40	37	0.6	36	39	RNA 69/32 UU

Note(1) Minimum allowable value of chamfer dimension r Remark No oil hole is provided.

IRT IRB LRT LRB


Inner Rings for General Usage




Shaft dia. 35 – 50mm

Shaft			Mass (Ref.)	Boun		dimen ım	sions	Standard n	nounting mm	Assembled bearings
dia.	Identificati	on number				1	(1)	d	0	
mm			g	d	F	В	$r_{\rm s min}$			
	LRT 354017	_	39	35	40	17	0.3	37	39	RNAF 405017
	LRT 354020	_	46	35	40	20	0.3	37	39	TAF 405020 RNAF 405520
										NAX 4032 NBX 4032
	_	LRTZ 354020	46	35	40	20.5	0.6	39	39.5	GTR 405520
	LRT 354030	_	67	35	40	30	0.3	37	39	TAF 405030
	LRT 354034	_	78	35	40	34	0.3	37	39	RNAFW 405034
35	LRT 354040	_	95	35	40	40	0.3	37	39	RNAFW 405540
	LRT 354220	_	65	35	42	20	0.6	39	41	RNA 4907
	_	LRTZ 354221	67	35	42	21	0.6	39	41	RNA 4907 UU
	LRT 354230		97	35	42	30.5	0.6	39	41	TR 425630
	_	LRTZ 354230	100	35	42	30.5	0.6	39	41	GTR 425630
	LRT 354236	_	120	35	42	36	0.6	39	41	RNA 6907
	_	LRTZ 354237	120	35	42	37	0.6	39	41	RNA 6907 UU
	LRT 384320	_	47.5	38	43	20	0.3	40	42	TAF 435320
38	LRT 384330	_	72	38	43	30	0.3	40	42	TAF 435330
	LRT 404517	_	44.5	40	45	17	0.3	42	44	RNAF 455517
	LRT 404520		51	40	45	20	0.3	42	44	TAF 455520 RNAF 456220
										NAX 4532 NBX 4532
	LRT 404530	_	77	40	45	30	0.3	42	44	TAF 455530
	LRT 404530-1	_	77	40	45	30.5	0.6	44	44.5	TR 455930
40	_	LRTZ 404530	77	40	45	30.5	0.6	44	44.5	GTR 455930
40	LRT 404534	_	88	40	45	34	0.3	42	44	RNAFW 455534
	LRT 404540	_	105	40	45	40	0.3	42	44	RNAFW 456240
	LRT 404822	_	93	40	48	22	0.6	44	47	RNA 4908
	_	LRTZ 404823	95	40	48	23	0.6	44	47	RNA 4908 UU
	LRT 404840	_	165	40	48	40	0.6	44	47	RNA 6908
	_	LRTZ 404841	170	40	48	41	0.6	44	47	RNA 6908 UU

LRTZ

01 (Mass (Ref.)	Boun		dimen	sions	Standard m		Assembled bearings
Shaft dia.	Identification	on number	(nei.)		m	m		_		
uia.	identinoda	on nambor		d	F	В	r (1)			
mm			g	и	1	D	r _{s min}	IVIIII.	IVIAX.	
	LRT 424720	<u> </u>	54	42	47	20	0.3	44	46	TAF 475720
42	LRT 424730	<u>—</u>	81	42	47	30	0.3	44	46	TAF 475730
42	LRT 424830	_	100	42	48	30.5	0.6	46	47	TR 486230
	_	LRTZ 424830	100	42	48	30.5	0.6	46	47	GTR 486230
	LRT 455020	_	58	45	50	20	0.3	47	49	RNAF 506220
	LRT 455025	<u>—</u>	71	45	50	25	0.3	47	49	TAF 506225 NAX 5035
										NBX 5035
	LRT 455030	_	90	45	50	30.5	0.6	49	49.5	TR 506430
	_	LRTZ 455030	90	45	50	30.5	0.6	49	49.5	GTR 506430
	LRT 455035	-	95	45	50	35	0.3	47	49	TAF 506235
45	LRT 455040	_	115	45	50	40	0.3	47	49	RNAFW 506240
	LRT 455222		88	45	52	22	0.6	49	51	RNA 4909
	_	LRTZ 455223	93	45	52	23	0.6	49	51	RNA 4909 UU
	LRT 455240	_	165	45	52	40	0.6	49	51	RNA 6909
	_	LRTZ 455241	170	45	52	41	0.6	49	51	RNA 6909 UU
	LRT 455520	_	120	45	55	20	1	50	54	RNAF 557220
	LRT 455540	<u> </u>	245	45	55	40	1	50	54	RNAFW 557240
	LRT 505520	_	63	50	55	20	0.3	52	54	RNAF 556820
	LRT 505525	<u> </u>	77	50	55	25	0.3	52	54	TAF 556825
	LRT 505535	_	110	50	55	35	0.3	52	54	TAF 556835
	LRT 505540	_	130	50	55	40	0.3	52	54	RNAFW 556840
	LRT 505822	_	116	50	58	22	0.6	54	57	RNA 4910
50	_	LRTZ 505823	118	50	58	23	0.6	54	57	RNA 4910 UU
	LRT 505840	_	210	50	58	40	0.6	54	57	RNA 6910
	_	LRTZ 505841	215	50	58	41	0.6	54	57	RNA 6910 UU

50 58 45.5 1

50 58 45.5 1

50 60 20 1

235

135

LRTZ 505845 235

55 57

55 57

55 59

TR 587745

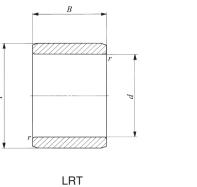
GTR 587745

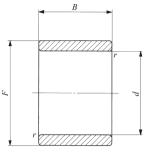
RNAF 607820

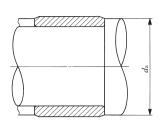
Note(1) Minimum allowable value of chamfer dimension r Remark No oil hole is provided.

LRT 505845

LRT 506020


Inner Rings for General Usage

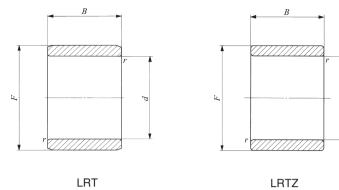


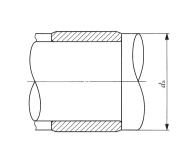

Shaft dia. 50 – 80mm

Shaft dia.	Identificati	on number	Mass (Ref.)	Boun		dimen ım		Standard n	mm	Assembled bearings
mm	identificati	on number	g	d	F	В	$r_{\rm s \ min}^{(1)}$	d_i Min.		
50	LRT 506025 LRT 506040	_ _	165 265	50 50	60 60	25.5 40	1 1	55 55	59 59	NAX 6040 NBX 6040 RNAFW 607840
	LRT 556025 LRT 556035 LRT 556238	 LRTZ 556238	88 120 190 190	55 55 55 55	60 60 62 62	25 35 38.5 38.5	0.3 0.3 1 1	57 57 60 60	59 59 60.5 60.5	TAF 607225 TAF 607235 TR 628138 GTR 628138
55	LRT 556325 LRT 556345 LRT 556530 LRT 556560	LRTZ 556326 LRTZ 556346	145 150 255 260 220 435	55 55 55 55 55 55	63 63 63 65 65	25 26 45 46 30 60	1 1 1 1.5 1.5	60 60 60 60 63 63	61 61 61 63.5 63.5	RNA 4911 RNA 4911 UU RNA 6911 RNA 6911 UU RNAF 658530 RNAFW 658560
60	LRT 606825 LRT 606825-1 ————————————————————————————————————	LRTZ 606826 LRTZ 606846 LRTZ 607045	150 150 160 210 275 280 195 240 355 360 480	60 60 60 60 60 60 60 60	68 68 68 68 68 70 70 70 70	25 25 26 35 45 46 25.5 30 45.5 45.5	0.6 1 1 0.6 1 1 1.5 1 1.5	64 65 65 64 65 65 65 65 65 65	66 66 66 66 66 68 68 68 68 68	TAF 688225 RNA 4912 RNA 4912 UU TAF 688235 RNA 6912 RNA 6912 UU NAX 7040 RNAF 709030 TR 708945 GTR 708945 RNAFW 709060
65	LRT 657225 LRT 657245 LRT 657335	LRTZ 657226 LRTZ 657246	145 150 255 265 235	65 65 65 65 65	72 72 72 72 72 73	25 26 45 46 35	1 1 1 1 1	70 70 70 70 70	70.5 70.5 70.5 70.5 70.5	RNA 4913 RNA 4913 UU RNA 6913 RNA 6913 UU TAF 739035

LRTZ

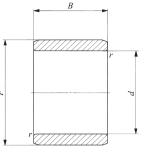
Shaft	Identificati	an number	Mass (Ref.)	Boun		dimen m	sions	Standard n dimension	mm	Assembled bearings
dia. mm	Identification	on number	g	d	F	В	$r_{\rm s \ min}^{(1)}$	d_i Min.		
65	LRT 657530 LRT 657560	_ _	260 520	65 65	75 75	30 60	1.5 1.5	73 73	73.5 73.5	RNAF 759530 RNAFW 759560
70	LRT 708025 LRT 708030 LRT 708030-1 — LRT 708035	 LRTZ 708031	225 275 275 275 310	70 70 70 70 70	80 80 80 80	25 30 30 31 35	1 1 1.5 1	75 75 78 75 75	78 78 78.5 78	TAF 809525 RNA 4914 RNAF 8010030 RNA 4914 UU TAF 809535
	LRT 708054 — LRT 708060	LRTZ 708055	490 500 560	70 70 70 70	80	54 55 60	1 1 1 1.5	75 75 75 78	78 78 78.5	RNA 6914 RNA 6914 UU RNAFW 8010060
	LRT 758345 LRT 758525 LRT 758530	LRTZ 758345 —	350 350 240 290	75 75 75 75	85	45.5 45.5 25 30	1 1 1	80 80 80	81 81 83 83	TR 8310845 GTR 8310845 TAF 8510525 RNA 4915
75	LRT 758530-1 LRT 758535 LRT 758554	LRTZ 758531 LRTZ 758555	290 300 335 520 530	75 75 75 75 75	85 85 85 85 85	30 31 35 54 55	1.5 1 1 1 1	83 80 80 80 80	83.5 83 83 83 83	RNAF 8510530 RNA 4915 UU TAF 8510535 RNA 6915 RNA 6915 UU
80	LRT 809025 LRT 809030 LRT 809030-1 — LRT 809035 LRT 809054	LRTZ 809031 LRTZ 809055	255 310 310 315 355 550 560	80 80 80 80 80 80	90 90	25 30 30 31 35 54 55	1 1.5 1 1 1	85 85 88 85 85 85 85	88 88.5 88 88 88 88	TAF 9011025 RNA 4916 RNAF 9011030 RNA 4916 UU TAF 9011035 RNA 6916 RNA 6916 UU

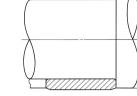

Inner Rings for General Usage



Shaft dia. 85 — 140mm

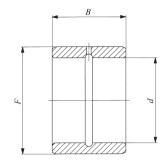
Shaft dia.	Idontificati	on number	Mass (Ref.)	Boun		dimen ım		Standard dimension	n mm	Assembled bearings
mm	identificati	on number	g	d	F	В	(1) <i>r</i> _{s min}			
	LRT 859350	_	440	85	93	50.5	1	90	91	TR 9311850
	_	LRTZ 859350	440	85	93	50.5	1	90	91	GTR 9311850
	LRT 859526	_	280	85	95	26	1	90	93	TAF 9511526
	LRT 859530	_	330	85	95		1.5	93	93.5	RNAF 9511530
	LRT 859536	_	390	85	95	36	1	90	93	TAF 9511536
85	LRT 859545	_	490	85	95	45.5	1.5	93	93.5	TR 9512045
	_	LRTZ 859545	490	85	95	45.5	1.5	93	93.5	GTR 9512045
	LRT 8510035	_	575	85	100	35	1.1	91.5	98	RNA 4917
	_	LRTZ 8510036	605	85	100	36	1.1	91.5	98	RNA 4917 UU
	LRT 8510063	_	1 040	85	100	63	1.1	91.5	98	RNA 6917
	_	LRTZ 8510064	1 060	85	100	64	1.1	91.5	98	RNA 6917 UU
	LRT 9010026	_	295	90	100	26	1	95	98	TAF 10012026
	LRT 9010030		355	90	100	30	1.5	98	98.5	RNAF 10012030
	LRT 9010036	_	415	90	100	36	1	95	98	TAF 10012036
	LRT 9010050	_	580	90		50.5	1.5	98	98.5	TR 10012550
90	_	LRTZ 9010050	580	90	100	50.5	1.5	98	98.5	GTR 10012550
	LRT 9010535	_	610	90	105	35	1.1	96.5	103	RNA 4918
	_	LRTZ 9010536	630	90	105	36	1.1	96.5	103	RNA 4918 UU
	LRT 9010563	_	1 100	90	105	63	1.1	96.5	103	RNA 6918
	_	LRTZ 9010564	1 120	90	105	64	1.1	96.5	103	RNA 6918 UU
	LRT 9510526	_	315	95	105	26	1	100	103	TAF 10512526
	LRT 9510536	_	430	95			1	100	103	TAF 10512536
	LRT 9511035	_	650	95	110		1.1	101.5	108	RNA 4919
95	_	LRTZ 9511036	660	95			1.1	101.5		RNA 4919 UU
	LRT 9511063		1 160	95	110		1.1	101.5		RNA 6919
	_	LRTZ 9511064	1 180	95			1.1	101.5		RNA 6919 UU
										-


Shaft		ion number	Mass (Ref.)	Boun		dimen m	sions	Standard dimension		Assembled bearings
dia. mm	паентнісат	ion number	g	d	F	В	$r_{\rm s \ min}^{(1)}$		Max.	
	LRT 10011030	_	380	100	110	30	1	105	108	TAF 11013030
	LRT 10011040	_	500	100	110		1	105	108	TAF 11013040
100	LRT 10011050	_	640	100		50.5		108	108.5	TR 11013550
	_	LRTZ 10011050	640	100		50.5		108	108.5	GTR 11013550
	LRT 10011540		770	100	115	40	1.1	106.5	113	RNA 4920
	_	LRTZ 10011541	780	100	115	41	1.1	106.5	113	RNA 4920 UU
105	LRT 10511550	 LRTZ 10511550	670 670	105 105		50.5 50.5	1.5 1.5	113 113	113.5 113.5	TR 11515350 GTR 11515350
	LRT 11012030		410	110	120	20	1	115	118	RNA 4822
110	LRT 11012540		840	110	125	40	1.1	116.5	123	RNA 4922
	—	LRTZ 11012541	870	110	125		1.1	116.5	123	RNA 4922 UU
	I DT 10010000	21112 11012041								
120	LRT 12013030	_	450	120	130		1	125	128	RNA 4824
120	LRT 12013545	 LRTZ 12013546	1 030 1 050	120 120	135 135	45 46	1.1 1.1	126.5 126.5	133 133	RNA 4924 RNA 4924 UU
	_	LN12 12013340								
125	LRT 12514060	_	1 460	125		60.5	1.5	133	138	TR 14017860
0	_	LRTZ 12514060	1 460	125	140	60.5	1.5	133	138	GTR 14017860
	LRT 13014535	_	860	130	145	35	1.1	136.5	143	RNA 4826
130	LRT 13015050	_	1 670	130	150	50	1.5	138	148	RNA 4926
	_	LRTZ 13015051	1 720	130	150	51	1.5	138	148	RNA 4926 UU
	LRT 13515060	_	1 560	135	150	60.5	1.5	143	148	TR 15018860
135		LRTZ 13515060	1 560	135		60.5		143	148	GTR 15018860
	I DT 14015505		930	140		35	1.1	146.5	153	RNA 4828
140	LRT 14015535 LRT 14016050		1 790	140	160		1.5	146.5	158	RNA 4928
170		LRTZ 14016051	1 830	140	160		1.5	148	158	RNA 4928 UU
		LITTZ 17010031	1 000	140	100	31	1.5	140	130	11147 4020 00


Inner Rings for General Usage

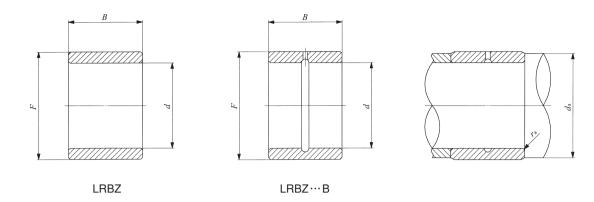
Shaft dia. 150 — 440mm

Shaft dia.	Identification number		Mass (Ref.)	Boun		dimen m		Standard mounting dimension mm		Assembled bearings
mm			g	d	F	В	$r_{\rm s \ min}^{(1)}$	d Min.	a Max.	
150	LRT 15016540 LRT 15017060	_ _	1 130 2 290	150 150	165 170	40 60	1.1 2	156.5 159	163 168	RNA 4830 RNA 4930
160	LRT 16017540 LRT 16018060	_ _	1 200 2 440	160 160	175 180	40 60	1.1 2	166.5 169	173 178	RNA 4832 RNA 4932
170	LRT 17018545 LRT 17019060		1 420 2 580	170 170	185 190	45 60	1.1 2	176.5 179	183 188	RNA 4834 RNA 4934
180	LRT 18019545 LRT 18020569		1 500 3 950	180 180	195 205	45 69	1.1 2	186.5 189	193 203	RNA 4836 RNA 4936
190	LRT 19021050 LRT 19021569	_ _	2 380 4 200	190 190	210 215	50 69	1.5 2	198 199	208 213	RNA 4838 RNA 4938
200	LRT 20022050 LRT 20022580	<u> </u>	2 520 5 000	200 200	220 225	50 80	1.5 2.1	208 211	218 223	RNA 4840 RNA 4940
220	LRT 22024050 LRT 22024580	<u> </u>	2 750 5 500	220 220	240 245	50 80	1.5 2.1	228 231	238 243	RNA 4844 RNA 4944
240	LRT 24026560 LRT 24026580		4 530 6 000	240 240	265 265	60 80	2 2.1	249 251	262 262	RNA 4848 RNA 4948
260	LRT 26028560 LRT 260290100	_ _	4 930 9 900	260 260	285 290	60 100	2 2.1	269 271	282 287	RNA 4852 RNA 4952
280	LRT 28030569 LRT 280310100	_ _	6 050 10 600	280 280	305 310	69 100	2 2.1	289 291	302 307	RNA 4856 RNA 4956
300	LRT 30033080 LRT 300340118		9 100 18 000	300 300	330 340	80 118	2.1 3	311 313	327 337	RNA 4860 RNA 4960
320	LRT 32035080 LRT 320360118	_ _	9 600 19 200	320 320	350 360	80 118	2.1	331 333	347 357	RNA 4864 RNA 4964


LRT

			N4	I_				Ct		A
Shaft		Mass (Ref.)	Boun		dimen m	sions	Standard dimension	mounting n	Assembled bearings	
dia.		Identification number			 I	 I	(¹)	d	,	
mm			g	d	F	В	$r_{\rm s min}$	Min.		
340	LRT 34037080	_	10 200	340	370	80	2.1	351	367	RNA 4868
340	LRT 340380118	_	20 300	340	380	118	3	353	377	RNA 4968
360	LRT 36039080		10 800	360	390	80	2.1	371	387	RNA 4872
300	LRT 360400118	_	21 500	360	400	118	3	373	397	RNA 4972
380	LRT 380415100	_	16 700	380	415	100	2.1	391	412	RNA 4876
300	LRT 380430140		33 900	380	430	140	4	396	427	RNA 4976
400	LRT 400450140	_	35 600	400	450	140	4	416	447	RNA 4980
420	LRT 420470140	_	37 300	420	470	140	4	436	467	RNA 4984
440	LRT 440490160	_	44 100	440	490	160	4	456	487	RNA 4988

Inner Rings for General Usage Inch Series



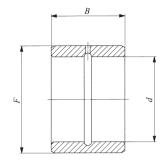
LRB

Shaft dia. 9.525 — 22.225mm

Shaft dia.	Identification number		Mass Boundary dimensions (Ref.) mm(inch)				Standard mounting dimensions mm		
mm (inch)	identinica	ation number	g	d	F	В	Min.	Max.	r _{as max}
9.525 (³ / ₈)	LRB 61012 — — —	LRBZ 61012 LRBZ 61016 LRBZ 61016 B	18.5 18.5 25 25	9.525 (3/8) 9.525 (3/8) 9.525 (3/8) 9.525 (3/8)	15.875($\frac{5}{8}$) 15.875($\frac{5}{8}$) 15.875($\frac{5}{8}$) 15.875($\frac{5}{8}$)	19.300 19.300 25.650 25.650	14 14 14 14	14.5 14.5 14.5 14.5	0.6 0.6 0.6 0.6
12.700 (½)	LRB 81212 LRB 81216 — —	LRBZ 81212 LRBZ 81216 LRBZ 81216 B	23.5 31 23.5 31 31	12.700 ($\frac{1}{2}$)	19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾)	19.300 25.650 19.300 25.650 25.650	17.5 17.5 17.5 17.5 17.5	18 18 18 18 18	1 1 0.6 0.6 0.6
15.875 (⁵ / ₈)	LRB 101412 LRB 101416 — —	LRBZ 101412 LRBZ 101416 LRBZ 101416 B	28 37.5 28 37.5 37.5	15.875 ($\frac{5}{8}$)	22.225(½) 22.225(½) 22.225(½) 22.225(½) 22.225(½)	19 300 25.650 19.300 25.650 25.650	21 21 21 21 21	21.2 21.2 21.2 21.2 21.2	1 1 0.6 0.6 0.6
19.050 (³ / ₄)	LRB 121612 LRB 121616 — —	LRBZ 121612 LRBZ 121616 LRBZ 121616 B	33 44 33 44 44	19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾)	25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1)	19.300 25.650 19.300 25.650 25.650	24 24 24 24 24	24.4 24.4 24.4 24.4 24.4	1 1 0.6 0.6 0.6
22.225 (½)	LRB 141816 LRB 141820 — — —	LRBZ 141816 LRBZ 141820 LRBZ 141820 B	50 62 50 62 62	22.225 (%) 22.225 (%) 22.225 (%) 22.225 (%) 22.225 (%)	28.575 (1 ½) 28.575 (1 ½) 28.575 (1 ½) 28.575 (1 ½) 28.575 (1 ½)	25.650 32.000 25.650 32.000 32.000	27 27 27 27 27 27	27.5 27.5 27.5 27.5 27.5 27.5	1 1 0.6 0.6 0.6

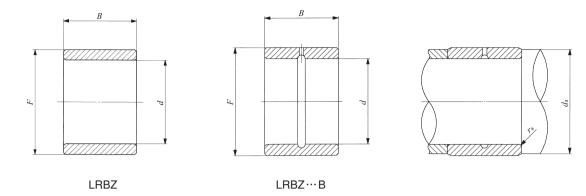
Note(1) Maximum allowable fillet corner radius of shaft
Remark LRBZ has no oil hole. LRB and LRBZ···B are provided with an oil groove and an oil hole.

Assembled	d bearings
BR 101812 GBR 101812 GBR 101816UU BR 101816UU	
BR 122012 BR 122016 GBR 122012 GBR 122016UU BR 122016UU	
BR 142212 BR 142216 GBR 142212 GBR 142216 BR 142216UU	GBR 142216UU
BR 162412 BR 162416 GBR 162412 GBR 162416 BR 162416UU	GBR 162416UU
BR 182616 BR 182620 GBR 182616 GBR 182620UU BR 182620UU	


IRT IRB LRT

LRB

Inner Rings for General Usage Inch Series

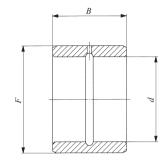


LRB

Shaft dia. 25.400 — 38.100mm

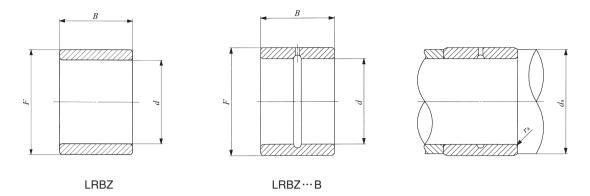
Shaft					dary dimension mm(inch)	าร	Standard mounting dimensions mm		
dia. mm (inch)	Identifica	ation number	g	d	F	В	d Min.	Max.	$r_{ m as\ max}$ Max.
25.400 (1)	LRB 162016 LRB 162020 — — —	LRBZ 162016 LRBZ 162020 LRBZ 162020 B	56 72 56 72 72	25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1)	31.750 (1 ½) 31.750 (1 ½) 31.750 (1 ½) 31.750 (1 ½) 31.750 (1 ½)	25.650 32.000 25.650 32.000 32.000	30.5 30.5 30.5 30.5 30.5	30.7 30.7 30.7 30.7 30.7	1 1 0.6 0.6 0.6
28.575 (1½)	LRB 182216 LRB 182220 — — —	LRBZ 182216 LRBZ 182220 LRBZ 182220 B	63 77 63 77 77	28.575 (1 ½) 28.575 (1 ½) 28.575 (1 ½) 28.575 (1 ½) 28.575 (1 ½)	$\begin{array}{c} \textbf{34.925} (1 \frac{3}{8}) \\ \textbf{34.925} (1 \frac{3}{8}) \\ \textbf{34.925} (1 \frac{3}{8}) \\ \textbf{34.925} (1 \frac{3}{8}) \\ \textbf{34.925} (1 \frac{3}{8}) \end{array}$	25.650 32.000 25.650 32.000 32.000	33.5 33.5 33.5 33.5 33.5	33.9 33.9 33.9 33.9 33.9	1 1 0.6 0.6 0.6
31.750 (1½)	LRB 202416 LRB 202420 — — —	LRBZ 202416 LRBZ 202420 LRBZ 202420 B	71 86 71 86 86	31.750 (1 ½) 31.750 (1 ½) 31.750 (1 ½) 31.750 (1 ½) 31.750 (1 ½)	38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½)	25.650 32.000 25.650 32.000 32.000	37 37 37 37 37	37.1 37.1 37.1 37.1 37.1	1.5 1.5 0.6 0.6 0.6
34.925 (1 ³ / ₈)	LRB 222616 LRB 222620 — —	LRBZ 222616 LRBZ 222620 LRBZ 222620 B	77 96 77 96 96	34.925 (1 3/8) 34.925 (1 3/8) 34.925 (1 3/8) 34.925 (1 3/8) 34.925 (1 3/8)	$\begin{array}{c} \textbf{41.275} \ (1\ \frac{5}{8}) \\ \textbf{41.275} \ (1\ \frac{5}{8}) \end{array}$	25.650 32.000 25.650 32.000 32.000	40.2 40.2 40.2 40.2 40.2	40.2 40.2 40.2 40.2 40.2	1.5 1.5 0.6 0.6 0.6
38.100 (1½)	LRB 242816 LRB 242820 LRB 243020 — — — —	LRBZ 242820 LRBZ 242820 B LRBZ 243020 LRBZ 243020 B	80 100 155 100 100 160	38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½)	44.450 (1 ¾ ₄) 44.450 (1 ¾ ₄) 47.625 (1 ¾ ₈) 44.450 (1 ¾ ₄) 44.450 (1 ¾ ₄) 47.625 (1 ¾ ₈) 47.625 (1 ½ ₈)	25.650 32.000 32.000 32.000 32.000 32.000 32.000	43.3 43.3 43.3 43.3 43.3 43.3	43.4 43.4 45 43.4 43.4 45 45	1.5 1.5 1.5 0.6 0.6 1

Note(1) Maximum allowable fillet corner radius of shaft
Remark LRBZ has no oil hole. LRB and LRBZ····B are provided with an oil groove and an oil hole.



	Assembled	d bearings	
BR GBR GBR	202816 202820 202816 202820UU		
BR BR GBR GBR	202820UU 223016 223020 223016 223020UU 223020UU		
BR GBR GBR	243316 243320 243316 243320 243320UU	GBR 243320UU	
BR GBR GBR	263516 263520 263516 263520 263520UU	GBR 263520UU	
BR BR	283716 283720 303920 283720	BR 283820 GBR 283820	GBR 283720UU
GBR	283720UU 303920 303920UU	GBR 303920UU	

Inner Rings for General Usage Inch Series



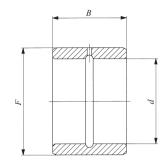
LRB

Shaft dia. 41.275 — 63.500mm

Shaft			Mass (Ref.)		dary dimension mm(inch)	ns	Standard mounting dimensions mm		
dia. mm (inch)	Identifica	ation number	g	d	F	В	Min.	Max.	r _{as max}
41.275 (1%)	LRB 263216 LRB 263220 — —	LRBZ 263216 LRBZ 263220 LRBZ 263220 B	135 170 135 170 170	41.275 (1 $\frac{5}{8}$)	50.800(2) 50.800(2) 50.800(2) 50.800(2) 50.800(2)	25.650 32.000 25.650 32.000 32.000	48 48 48 48 48	49 49 49 49	1.5 1.5 1 1
44.450 (1 ³ / ₄)	LRB 283624 LRB 283628	LRBZ 283624 LRBZ 283628 LRBZ 283628 B	300 345 300 345 345	44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾)	57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½)	38.350 44.700 38.350 44.700 44.700	52.5 52.5 52.5 52.5 52.5	55 55 55 55 55	1.5 1.5 1.5 1.5 1.5
50.800 (2)	LRB 324024 LRB 324028	LRBZ 324024 LRBZ 324028 LRBZ 324028 B	335 390 335 390 390	50.800(2) 50.800(2) 50.800(2) 50.800(2) 50.800(2)	63.500 (2½) 63.500 (2½) 63.500 (2½) 63.500 (2½) 63.500 (2½)	38.350 44.700 38.350 44.700 44.700	58 58 58 58 58	61 61 61 61 61	2 2 1.5 1.5 1.5
57.150 (2 ¹ ⁄ ₄)	LRB 364424 LRB 364428	LRBZ 364424 LRBZ 364428 LRBZ 364428 B	375 440 375 440 440	57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½)	69.850 (2¾) 69.850 (2¾) 69.850 (2¾) 69.850 (2¾) 69.850 (2¾)	38.350 44.700 38.350 44.700 44.700	65 65 65 65 65	67 67 67 67 67	2 2 1.5 1.5 1.5
63.500 (2½)	LRB 404824 LRB 404828 — — —	LRBZ 404824 LRBZ 404828 LRBZ 404828 B	410 480 410 480 480	63.500 (2½) 63.500 (2½) 63.500 (2½) 63.500 (2½) 63.500 (2½)	76.200(3) 76.200(3) 76.200(3) 76.200(3) 76.200(3)	38.350 44.700 38.350 44.700 44.700	71 71 71 71 71	73 73 73 73 73	2 2 1.5 1.5 1.5

Note(1) Maximum allowable fillet corner radius of shaft
Remark LRBZ has no oil hole. LRB and LRBZ···B are provided with an oil groove and an oil hole.

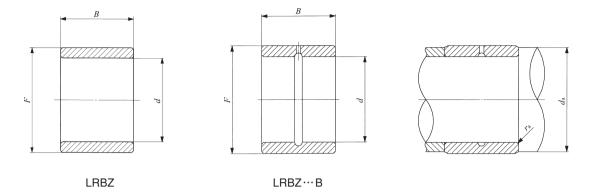
Assemble	d bearings
BR 324116 BR 324120 GBR 324116 GBR 324120 BR 324120UU	GBR 324120UU
BR 364824 BR 364828 GBR 364824 GBR 364828 BR 364828UU	GBR 364828UU
BR 405224 BR 405228 GBR 405224 GBR 405228 BR 405228UU	GBR 405228UU
BR 445624 BR 445628 GBR 445624 GBR 445628 BR 445628UU	GBR 445628UU
BR 486024 BR 486028 GBR 486024 GBR 486028 BR 486028UU	GBR 486028UU


KKI

INNER RINGS

Inner Rings for General Usage Inch Series

LRB


Shaft dia. 69.850 — 95.250mm

Shaft	Identification number		Mass (Ref.)		dary dimensior mm(inch)	าร	Standard mounting dimensions mm		
dia. mm (inch)	Identifica	ation number	g	d	F	В	Min.	Max.	$r_{\rm as\ max}$ Max.
69.850 (2 ³ / ₄)	LRB 445228 LRB 445232 — —	LRBZ 445228 LRBZ 445228 B LRBZ 445232	530 600 530 530 600	69.850 (2¾) 69.850 (2¾) 69.850 (2¾) 69.850 (2¾) 69.850 (2¾)	82.550 (3 ½) 82.550 (3 ½) 82.550 (3 ½) 82.550 (3 ½) 82.550 (3 ½)	51.050 44.700 44.700	77 77 77 77 77	79 79 79 79 79	2 2 1.5 1.5 1.5
76.200 (3)	LRB 485632 — —	LRBZ 485632 LRBZ 485632 B	640 640 640	76.200(3) 76.200(3) 76.200(3)	88.900 (3 ½) 88.900 (3 ½) 88.900 (3 ½)	51.050	83.5 83.5 83.5	86 86 86	2 1.5 1.5
82.550 (3 ¹ ⁄ ₄)	LRB 526032	LRBZ 526032 LRBZ 526032 B	690 690 690	82.550 (3 ½) 82.550 (3 ½) 82.550 (3 ½)	95.250 (3 ¾ ₄) 95.250 (3 ¾ ₄) 95.250 (3 ¾ ₄)	51.050	91 91 91	93 93 93	2.5 1.5 1.5
88.900 (3½)	LRB 566432	 LRBZ 566432	750 750	88.900 (3½) 88.900 (3½)	101.600(4) 101.600(4)	51.050 51.050	97 97	99 99	2.5 1.5
95.250 (3¾)	_	LRBZ 606832	800	95.250 (3¾)	107.950 (4 1/4)	51.050	103	105	1.5

Note(1) Maximum allowable fillet corner radius of shaft

Remark LRBZ has no oil hole. LRB with inner ring bore diameter d of 76.200 mm or less and LRBZ \cdots B are provided with an oil groove and an oil hole.

Other models are provided with an oil groove and two oil holes.

Assembled bearings		
BR 526828		

DI1 320020	
BR 526832	
GBR 526828	GBR 526828UU

GBR 526828 GBR 526828UU GBR 526828UU

BR 567232	
GBR 567232	GBR 567232UU
BR 567232UU	

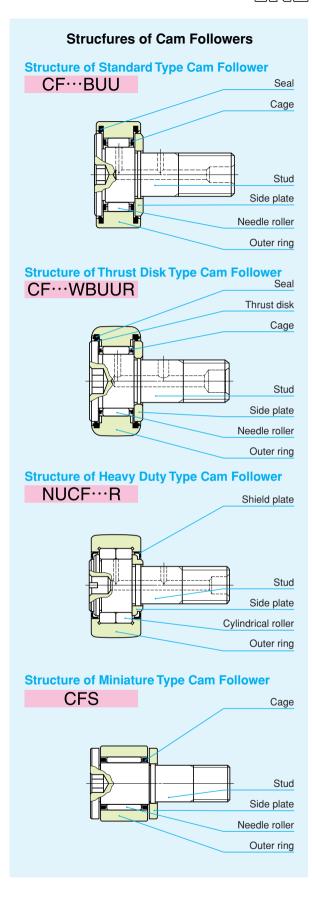
BR 607632 GBR 607632 GBR 607632UU BR 607632UU

BR 648032 GBR 648032 GBR 648032UU

GBR 688432 GBR 688432UU

- Standard Type Cam Followers
- **●** Solid Eccentric Stud Type Cam Followers
- **●** Eccentric Type Cam Followers
- Thrust Disk Type Cam Followers
- **●** Centralized Lubrication Type Cam Followers
- **■** Easy Mounting Type Cam Followers
- Heavy Duty Type Cam Followers
- Miniature Type Cam Followers
- Thrust Disk Type Miniature Cam Followers

Structure and Features


TIME Cam Followers are bearings with a stud incorporating needle rollers in a thick walled outer ring. These bearings are designed for outer ring rotation, and have superior rotational performance with a small coefficient of friction.

Also, they are designed to have minimal radial internal clearance to increase the loading zone, and thus reduce the effect of shock loads and ensure stable long life.

As studs already have threads or steps, they are easy to mount.

Cam Followers are follower bearings for cam mechanisms and linear motions and have high rigidity and high accuracy. They are, therefore, used widely for machine tools, industrial robots, electronic devices, and OA equipment.

Stainless steel made Cam Followers are superior in corrosion resistance and suitable for applications in environments where oil cannot be used or water splashed, and in clean rooms.

NUCF CFS CR


328

For Cam Followers, the types shown in Table 1 are available.

Table 1 Type of Cam Followers

Туре			With	cage	Full complement			
		туре			Crowned outer ring	Cylindrical outer ring	Crowned outer ring	Cylindrical outer ring
		High	With	Shield type	CF ··· B R	CF ··· B	CF ···VB R	CF ··· VB
		carbon	hexagon hole	Sealed type	CF ··· BUUR	CF ··· BUU	CF ··· VBUUR	CF ··· VBUU
	Standard Type	steel	With screwdriver	Shield type	CF ··· R	CF ···	CF ··· V R	CF ··· V
	Cam Follower	made	slot	Sealed type	CF ··· UUR	CF ··· UU	CFV UUR	CF ··· V UU
	0.	Stainless	With	Shield type	CF ···FB R	CF ···FB	_	_
		steel made	hexagon hole	Sealed type	CF ···FBUUR	CF ···FBUU	_	_
	0 1:15	High	With hexagon	Shield type	CFES··· B R	CFES··· B	_	_
	Solid Eccentric Stud Type Cam Follower	carbon	hole	Sealed type	CFES BUUR	CFES BUU		_
	CFES	steel	With screwdriver	Shield type	CFES··· R	CFES	_	_
		made	slot	Sealed type	CFES UUR	CFES UU	_	_
es	Facantiis Tuna	High	With hexagon	Shield type	CFE ··· B R	CFE ··· B	CFE ···VB R	CFE ··· VB
Metric CF series	Eccentric Type Cam Follower	carbon	hole	Sealed type	CFE ··· BUUR	CFE ··· BUU	CFE ··· VBUUR	CFE ··· VBUU
c CF	CFE	steel	With screwdriver	Shield type	CFE ··· R	CFE ···	CFE ··· V R	CFE ··· V
/letri		made	slot	Sealed type	CFE ··· UUR	CFE ··· UU	CFEV UUR	CFE ··· V UU
~	Thrust Disk Type	High carbon	With hexagon	Shield type	CF ···WB R	_	_	_
	Cam Follower	steel made hole Stainless With	hole	Sealed type	CF ···WBUUR	1	-	_
	CF ··· W		hexagon	Shield type	CF ···FWB R			_
				Sealed type	CF ···FWBUUR			_
	Centralized Lubrication Type Cam Follower CF-RU1, CF-FU1	High carbon steel made	With screwdriver slot	Sealed type	CF-RU1	CF-FU1	_	_
	Easy Mounting Type Cam Follower CF-SFU	High carbon steel made	With screwdriver slot	Sealed type	_	CF-SFU	_	_
	y Duty Type Cam verNUCF	High carbon steel made	screwdriver slot	Shield type	_	_	NUCF··· R	_
eries	Miniature Type Cam Follower	High carbon steel made	With hexagon	Shield type	_	CFS	_	CFS ··· V
CFS so	CFS	Stainless steel made	hole	Shield type	_	CFS ···F	_	CFS ···FV
Miniature CFS	Thrust Disk Type Miniature Cam Follower	High carbon steel made	With hexagon	Shield type	_	CFS ··· W	_	_
Ē	CFS···W	Stainless steel made	hole	Shield type	_	CFS ····FW	_	_
	Inch series	High	With hexagon	Shield type	CR ··· B R	CR ··· B	CR ···VB R	CR ···VB
	Cam Follower	carbon	hole	Sealed type	CR ··· BUUR	CR ··· BUU	CR ··· VBUUR	CR ··· VBUU
es	CR	steel made	With screwdriver	Shield type	CR ··· R	CR ···	CR ···V R	CR ···V
Inch series		illaud	slot	Sealed type	CR ··· UUR	CR ··· UU	CR ··· V UUR	CR ··· V UUR
Inch	Inch series	High	With hexagon	Shield type	_	_	_	CRH ··· VB
	Cam Follower	carbon	hole	Sealed type	_	_	_	CRH ··· VBUU
	CRH	steel	With screwdriver	Shield type	_	_	_	CRH ··· V
		made	slot	Sealed type	_	_	_	CRHV UU

These are the basic type bearings in TIGO Cam Follower series. Models with stud diameters ranging from 3 to 30 mm are prepared, and are suitable for a wide range of applications.

Standard Type Cam Followers

Solid Eccentric Stud Type Cam Followers

The stud of these bearings is eccentric to the center axis of the outer ring. Thus, the position of the outer ring in the radial direction in relation to the mating track surface can easily be adjusted by turning the stud, and the load distribution on a number of cam follower outer rings used on the same track surface can be made uniform.

These are eccentric cam followers with a one-piece stud that can be mounted in the same mounting holes as those for Standard Type Cam Followers.

Eccentricity is 0.25 mm \sim 0.6 mm.

Eccentric Type Cam Followers

In these bearings, an eccentric collar is assembled with the Cam Follower stud, enabling the outer ring to be positioned easily in the radial direction against the mating track surface.

Eccentricity is 0.4~1.5 mm.

Thrust Disk Type Cam Followers

These bearings have special resin thrust disk washers superior in wear and heat resistance between the sliding surfaces of outer ring shoulders, stud head and side plate. These disk washers reduce friction and wear due to axial loads caused by misalignment, etc.

Centralized Lubrication Type Cam Followers

These bearings have one or two pipe-threaded holes in the stud. Thus, this series is suitable when centralized lubrication is required.

Easy Mounting Type Cam Followers

These bearings have a stepped tapered portion on the stud. When mounting the Cam Follower, it is easy to fix its location by tightening a set screw to the stepped portion. Thus, this type is suitable when a large number of Cam Followers are used in a machine such as a pallet changer.

Heavy Duty Type Cam Followers

These bearings are full complement type bearings incorporating double rows of full complement cylindrical rollers in the outer ring, and can withstand large radial loads and some axial loads.

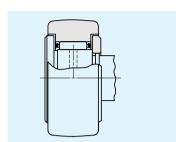
Miniature Type Cam Followers

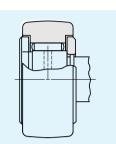
These are compactly designed bearings, incorporating very thin needle rollers in an outer ring with a small outside diameter. They are used in electronic devices, OA equipment, small index devices, etc.

Inch series Cam Followers

Two types, CR and CRH, are available in the Inch series Cam Followers. Black oxide film treatment is made on CRH models.

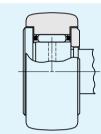
Internal Structures and Shapes

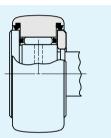

Various types are lined up in Cam Follower series, including the caged type, full complement type, shield type, sealed type, type with crowned outer ring, type with cylindrical outer ring, type with hexagonal hole,


Roller guide method

Cam Followers include the caged type and the full complement type. The caged type has a small coefficient of friction and is suitable for high speed rotations, while the full complement type is suitable for heavy loads at low speed rotations.

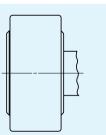
《With cage》


Seal structure


Cam Followers include the shield type and the sealed type. In the shield type, the narrow clearances between the outer ring and the stud flange and between the outer ring and the side plate form

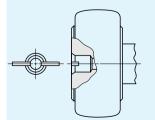
The sealed type incorporates seals in the narrow clearances to prevent the penetration of foreign parti-

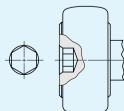
《Shield type》



Shape of outer ring outside surface

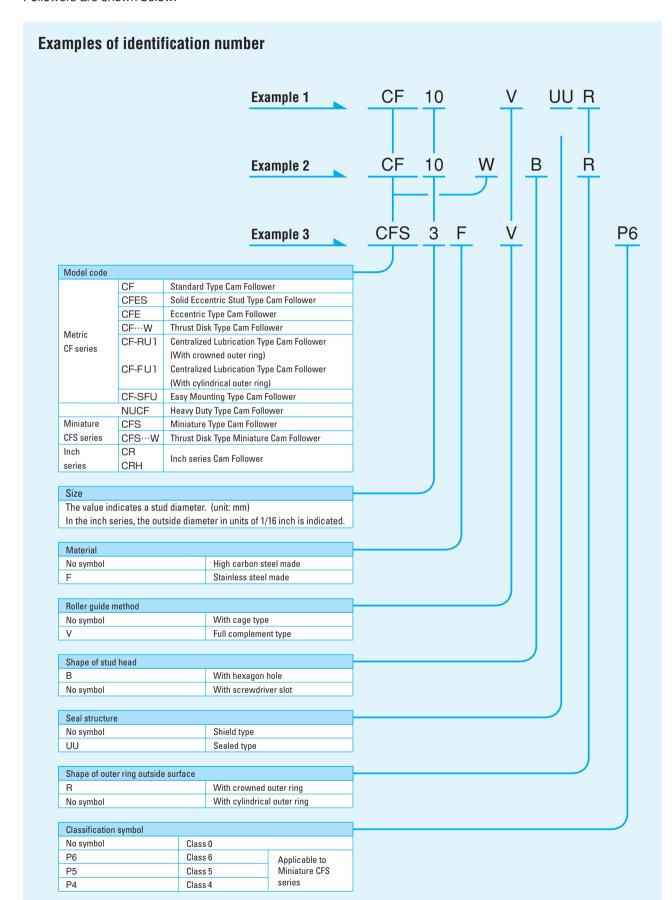
The outside surface of the outer ring of Cam Followers, which makes direct contact with the mating track surface, is either crowned or cylindrical. The crowned outer rings are effective in moderating the edge load due to mounting errors. The cylindrical outer rings have a large contact area with the mating track surface, and are suitable for applications in which the applied load is large or the track surface hardness is low.




Shape of stud head

Cam Followers are available in two stud head shape types, namely, the type with screwdriver slot and the type with hexagon hole for hexagon bar wrench.

(With screwdriver slot)



Identification number

Some examples of the identification number of Cam Followers are shown below.

330 331

The accuracy of Cam Followers is shown in Table 2, Table 3.1, and Table 3.2. Cam Followers with special accuracy are also available. When they are required, please contact \mathbb{R}

Table 2 Tolerances

Series	Metric CF	series (1)	Miniature CFS	Inch :	series
Dimensions and symbols	Crowned outer ring	Cylindrical outer ring	series	Crowned outer ring	Cylindrical outer ring
Outside dia. of outer ring ${\cal D}$	0~-50	See Table 3.1.	See Table 3.2.	0~-50	0~-25
Stud dia. d_1	h7		h6	+25	5~0
Width of outer ring ${\cal C}$	0~-120		0~-120	0~-130	

Note(1) Also applicable to Heavy Duty Type Cam Followers.

Table 3.1 Tolerances and allowable values of outer rings (Metric CF series cylindrical outer rings)

unit: μ

	O dia. of outer ring m		omp utside dia. deviation	$V_{D\mathrm{p}}$ Outside dia. variation in a single	$V_{D{ m mp}}$ Mean outside dia. variation	K_{ea} Radial runout of assembled bearing
Over	Incl.	High	Low	radial plane (Max.)	(Max.)	outer ring (Max.)
6	18	0	- 8	10	6	15
18	30	0	- 9	12	7	15
30	50	0	-11	14	8	20
50	80	0	-13	16	10	25
80	120	0	-15	19	11	35

Table 3.2 Tolerances and allowable values of outer rings (Miniature CFS series)

unit: μ m

$arDelta_{D\mathrm{mp}}$ Single plane mean outside dia. deviation							Radial rur	K nout of assem (Ma		outer ring	
Clas	ss 0	Cla	ss 6	Cla	ss 5	Cla	ss 4	Class 0	Class 6	Class 5	Class 4
High	Low	High	Low	High	Low	High	Low				
0	-8	0	-7	0	-5	0	-4	15	8	5	4

The radial internal clearances of Cam Followers are shown in Table 4.

Table 4 Radial internal clearance

unit: μ m

	Identification number (1)						
Metric CF series (²)	Heavy Duty Type Cam Followers NUCF	Miniature CFS series (3)	Inch series	Min.	Max.		
CF 3~CF 5	_	CFS2 ∼ CFS5	CR 8,CR 8-1,CRH 8-1,CRH 9	3	17		
CF 6	_	CFS6	CR10,CR10-1,CRH10-1,CRH11	5	20		
CF 8∼CF12-1	_	_	CR12~CR22,CRH12~CRH22	5	25		
CF16~CF20-1	_	_	CR24~CR36,CRH24~CRH36	10	30		
CF24~CF30-2	_	_	CRH40 ~ CRH44	10	40		
_	NUCF10 R~NUCF24 R	_	_	20	45		
_	NUCF24-1R ~ NUCF30-2R	_	_	25	50		
_	_	_	CRH64	15	50		

Notes(1) Also applicable to the full complement type, crowned outer ring type, sealed type, and type with hexagon hole.

(2) Only representative types are shown in the table, but this table is applicable to the entire metric CF series.

(3) Only representative types are shown in the table, but this table is applicable to the entire miniature CFS series.

Tables 5 and 6 show recommended tolerances of mounting holes for Cam Follower studs. Since the Cam Follower is supported in a cantilever position, the mounting hole diameter should be prepared without play between the stud and the hole especially when heavy shock loads are applied.

Table 5 Recommended fit

Туре	Tolerance class of mounting hole for stud
Metric CF series	H7
Heavy Duty Type	H7
Miniature CFS series	H6
Inch series	F7

Table 6 Dimensional tolerances of mounting hole

unit: μ m

	nal outside dia. of stud mm		F7 H6		H7		
0ver	Incl.	High	Low	High	Low	High	Low
_	3	+16	+ 6	+ 6	0	+10	0
3	6	+22	+10	+ 8	0	+12	0
6	10	+28	+13	+ 9	0	+15	0
10	18	+34	+16	+11	0	+18	0
18	30	+41	+20	+13	0	+21	0
30	40	+50	+25	+16	0	+25	0
40	50	, 30	+25	+10	J	120	J

The applicable load on Cam Followers is, in some cases, limited by the bending strength and shear strength of the stud and the strength of the outer ring instead of the load rating of the needle roller bearing. Therefore, the maximum allowable static load that is lmited by these strengths is specified.

Track Capacity

Track capacity is defined as a load which can be continuously applied on a Cam Follower placed on a steel track surface without causing any deformation or indentation on the track surface when the outer ring of

the Cam Follower makes contact with the mating track surface (plane). The track capacities shown in Tables 7.1 and 7.2 are applicable when the hardness of the mating track surface is 40HRC (Tensile strength 1250N/mm²). When the hardness of the mating track surface differs from 40HRC, the track capacity is obtained by multiplying the value by the track capacity factor shown in Table 8.

If lubrication between the outer ring and the mating track surface is insufficient, seizure and/or wear may occur depending on the application. Therefore, attention must be paid to lubrication and surface roughness of the mating track especially for high-speed rotations such as cam mechanisms.

Table 7.1 Track capacity

Table 7.11 Track capacity				unit: N
Туре	Identification number With crowned outer ring	Track capacity	Identification number With cylindrical outer ring	Track capacity
	CF 3 R	542	CF 3	1 360
	CF 4 R	712	CF 4	1 790
	CF 5 R	794	CF 5	2 210
	CF 6 R	1 040	CF 6	3 400
	CF 8 R	1 330	CF 8	4 040
	CF10 R	1 610	CF10	4 680
	CF10-1R	2 030	CF10-1	5 530
	CF12 R	2 470	CF12	7 010
Metric	CF12-1R	2 710	CF12-1	7 480
CF series (1)	CF16 R	3 060	CF16	11 200
	CF18 R	3 660	CF18	14 500
	CF20 R	5 190	CF20	23 200
	CF20-1R	4 530	CF20-1	21 000
	CF24 R	6 580	CF24	34 300
	CF24-1R	8 020	CF24-1	39 800
	CF30 R	9 220	CF30	52 700
	CF30-1R	9 990	CF30-1	56 000
	CF30-2R	10 800	CF30-2	59 300
	_	_	CFS2	220
	_	_	CFS2.5	298
Miniature	_	_	CFS3	485
CFS series (2)	_	_	CFS4	799
	_	_	CFS5	1 210
	_	_	CFS6	1 680

Notes(1) Only representative types are shown in the table, but this table is applicable to the entire metric CF series, and also to Heavy Duty Type Cam Followers.

Table 7.2 Track capacity

Туре	Identification number With crowned outer ring	Track capacity	Identification number With cylindrical outer ring	Track capacity	Identification number With cylindrical outer ring	Track capacity
	CR 8 R	770	CR 8	2 140	_	_
	CR 8-1R	770	CR 8-1	2 360	CRH 8-1	2 360
	_	_	_	_	CRH 9	2 650
	CR10 R	1 030	CR10	3 210	_	_
	CR10-1R	1 030	CR10-1	3 480	CRH10-1	3 480
	_	_	_	_	CRH11	3 830
	CR12 R	1 340	CR12	4 500	CRH12	4 500
	CR14 R	1 630	CR14	5 250	CRH14	5 250
	CR16 R	1 970	CR16	7 280	CRH16	7 280
Inch	CR18 R	2 300	CR18	7 710	CRH18	7 710
series (1)	CR20 R	2 680	CR20	10 700	CRH20	10 700
	CR22 R	3 050	CR22	11 800	CRH22	11 800
	CR24 R	3 410	CR24	15 400	CRH24	15 400
	CR26 R	3 820	CR26	16 700	CRH26	16 700
	CR28 R	4 210	CR28	21 000	CRH28	21 000
	CR30 R	4 610	CR30	22 500	CRH30	22 500
	CR32 R	5 050	CR32	30 900	CRH32	30 900
	CR36 R	5 900	CR36	34 700	CRH36	34 700
	_	_	_	_	CRH40	45 000
	_	_	_	_	CRH44	49 500
	_	_	_	_	CRH48	64 300
	_	_	_	_	CRH52	69 600
	-	_	_	_	CRH56	87 000
	_	_	_	_	CRH64	113 000
Note(1) Only representative types	aro chown in the to	able but this table	ic applicable to th	o ontiro inch corio		

Note(1) Only representative types are shown in the table, but this table is applicable to the entire inch series.

Table 8 Track capacity factor

Hardness	Tanada atau atla	Track capacity factor		
HRC	Tensile strength N/mm²	With crowned outer ring	With cylindrical outer ring	
20	760	0.22	0.37	
25	840	0.31	0.46	
30	950	0.45	0.58	
35	1 080	0.65	0.75	
38	1 180	0.85	0.89	
40	1 250	1.00	1.00	
42	1 340	1.23	1.15	
44	1 435	1.52	1.32	
46	1 530	1.85	1.51	
48	1 635	2.27	1.73	
50	1 760	2.80	1.99	
52	1 880	3.46	2.29	
54	2 015	4.21	2.61	
56	2 150	5.13	2.97	
58	2 290	6.26	3.39	

Allowable Rotational Speed

The allowable rotational speed of Cam Followers is affected by mounting and operating conditions. For reference, Table 9 shows d_1n values when only pure radial loads are applied. Cosidering that axial loads also act under actual operating conditions, the recommended d_1n value is 1/10 of the value shown in the table.

Table 9 d_1n values of Cam Followers (1)

Lubricant Type	Grease	Oil
Caged type	84 000	140 000
Full complement type	42 000	70 000
Heavy Duty Type Cam Follower	66 000	110 000

 $\begin{array}{ll} \mathsf{Note}(^{\scriptscriptstyle{1}}) & d_1 n \; \mathsf{value} = d_1 \times n \\ & \mathsf{where}, \quad d_1 \colon \mathsf{Stud} \; \mathsf{diameter} \quad \mathsf{mm} \\ & n \colon \mathsf{Rotational} \; \mathsf{speed} \; \mathsf{rpm} \end{array}$

CF NUCF CFS CR

⁽²⁾ Only representative types are shown in the table, but this table is applicable to the entire miniature CFS series.

Lubrication

Grease-prepacked Cam Followers are shown in Table 10. The lubricating grease prepacked in these bearings is ALVANIA GREASE 2 (SHELL).

For Cam Followers without prepacked grease, grease should be packed through the oil hole in the stud for use. If they are used without grease, wear of rolling contact surfaces may take place, leading to a short bearing life.

The position of the oil hole is shown in Table 11. Oil holes are not provided on CF3 and CF4 models, the models with a hexagon hole with stud diameter of 10 mm or less, the easy mounting type models, and the miniature CFS models. Re-greasing cannot be made for these models.

Grease should be supplied gently with a straight type grease gun as specified by JIS B 9808:1991, which is applied carefully to the nipple head from the front.

Table 10 Grease-prepacked Cam Followers

O: With prepacked grease	×: Without prepacked greas
--------------------------	----------------------------

		Туре		With	cage		
			Shiel	d type	Seale	d type	Full complement type
Series Size of stud dia.	d_1 (1) mm		With hexagon hole	With screwdriver slot	With hexagon hole	With screwdriver slot	
	CF3∼ 5			0			_
Metric CFES		6~10		×	, o		0
CF series	CF \//		×	_ ^			O
			_	_	_	0	_
Heavy Duty Type	Cam Followers	s NUCF	_	_	_	_	0
Miniature CFS series	CFS CFS ··· W		0	_	_	_	0
Inch	CR		0	0	0	0	0
series	CRH		_	_	_	_	0

 $Note(^1)$ For Eccentric Type Cam Followers (CFE), thread diameter G shown in the table of dimensions is applicable.

Toble 11 Desition of all hale

0.00.

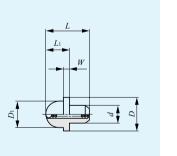
Table 11 Pos	ition of oil	hole					O: Oil hole is prepared
			Position of oil hole	① Stud head	② Stud outside	③ Stud	
Series Size of stud dia.	$d_1(^1)$ mm			neau	surface	end	
	CF	With hexagon	$d_1 \leq 10$	_	_	_	
	CFES	hole	$10 < d_1$	_	0	0	
	CFE CF··· W	With screwdriver	$d_1 < 5$	_	_	-	
Metric			$5 \le d_1 \le 10$	0	_	_	
CF series	OI VV	3101	$10 < d_1$	0	0	0	
	CE DUI	CF-FU1 (2)	$d_1 \le 12$	0	_	_	
	CF-NUT,	, CF-FUT(-)	12 < d ₁	0	0	0	
	CF-SFU			-	_	_	
Hoover Duty Typ	o Com Follow	vora NILICE	$d_1 \leq 10$	0	_	_	
Heavy Duty Typ	ie Calli Follow	reis NOCF	10 < d ₁	0	0	0	0⇒
Miniature CFS series	CFS ··· V	V		ı	_	_	
		With hexagon	$d_1 \le 6.35$	_	_	_	
	CR	hole	6.35 $< d_1$	_	0	0	
	On	With screwdriver	$d_1 \le 6.35$	0	_	_	
Inch		slot	6.35 $< d_1$	0	0	0	
series		With hexagon	$d_1 \le 7.938$	_	_	_	
	CRH	hole	7.938 < <i>d</i> ₁	-	0	0	
	ONH	With screwdriver	$d_1 \le 7.938$	0	_	_	
		slot	7.938 < <i>d</i> ₁	0	0	0	

 $Notes(^1)$ In case of Eccentric Type Cam Followers (CFE), thread diameter G shown in the table of dimensions is applicable in place of stud dia. and the oil hole on the outer surface of the stud cannot be used for lubrication.

(2) The stud head and stud end are provided with a tapped hole for piping.

Accessories

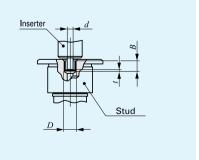
Cam Follower accessories are shown in Table 12. Grease nipple dimensions are shown in Table 13. Dimensions of plug for unused oil hole and dimensions of plug inserter are shown in Table 14.


Table 12 Accessories

O : Attached

Series Size of stud dia. d_1	mm		Accessories	Grease nipple	Plug	Nut	Spring washer
	CF	With hexagon hole	$d_1 \leq 10$	_	_	0	_
	CFES	with nexagon noie	10 < d ₁	0	0	0	_
Matria	CFW	With screwdriver slot	d ₁ <5	_	_	0	_
Metric CF series	OI VV	with screwariver slot	$5 \leq d_1$	0	0	0	_
0. 00.100	CFE			0	0	0	0
	CF-RU1,	CF-FU1		_	_	0	_
	CF-SFU			_	_	_	_
Heavy Duty Type C	am Followers	NUCF		0	0	0	_
Miniature CFS series	CFS CFS···W			_	-	0	_
		With hexagon hole	$d_1 \le 6.35$	_	_	0	_
	CR	with nexagon noie	6.35 $< d_1$	0	0	0	_
Inch series		With screwdriver slot	_	0	0	0	_
111011 361163	NA/C	With hexagon hole	$d_1 \le 7.938$	_	_	0	_
	CRH	vviui nexagon noie	7.938 < <i>d</i> ₁	0	0	0	_
		With screwdriver slot	_	0	0	0	_

Table 13 Dimensions of grease nipple


Code number	D	imensio	ns of gr	ease nip	ple m	m	Applicable Com Followers (1)	Γ		
Code Hulliber	d	D	D_1	L	L_1	W	Applicable Cam Followers (1)			
NPT4	4	7.5	6	10	5.5	1.5	CF 6∼CF10-1]		
NPT6	6	8	6	11	6	2	CF12~CF18			
NPT8	8	10	6	16	7	3	CF20~CF30-2			
NPB2	3.18	7.5	6	9	5.5	1.5	CF5,CR8~CR10-1,CRH8-1~CRH11			
NPB3	4.76	7.5	6	10	5.5	1.5	CR12~CR22, CRH12~CRH22			
NPB3-1	4.76	7.5	6	12.5	5.5	1.55	CR24~CR36, CRH24~CRH44			

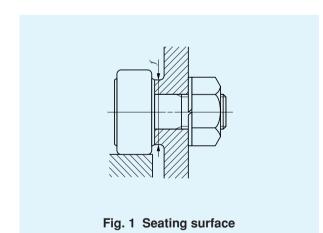
Note(1) Only representative types are shown in the table. This table is also applicable to Heavy Duty Type Cam Followers.

Table 14 Dimensions of plug

Code number		nension: ug mi		Dimension of inserter mm	Applicable Cam Followers (1)				
	D	t	В	$d_{-0.1}^{0}$					
UST4F	4	0.4	3.3	3	CF 6∼CF10-1				
UST6F	6	0.4	4	5	CF12~CF18				
UST8F	8	0.4	5.8	7	CF20~CF30-2				
USB2F	3.18	0.3	3.3	2.3	CF5, CR8 ~ CR10-1				
USB3F	4.76	0.4	4.3	3.7	CR12~CR36, CRH12~CRH44				

Note(1) Only representative types are shown in the table. This table is also applicable to Heavy Duty Type Cam Followers.

■ Operating Temperature Range


The operating temperature range for IMO Cam Followers is $-20\,^{\circ}\text{C} \sim +120\,^{\circ}\text{C}$. However, the maximum allowable temperature for the following types is different.

The maximum allowable temperature for the Metric CF series with a stud diameter d_1 of 4 mm or less and CFS2 is +110 °C, and +100 °C when they are continuously operated.

The maximum allowable temperature for the sealed type with a stud diameter d_1 of 5 mm or less is +80 °C.

Mounting

♠ Make the center axis of the mounting hole perpendicular to the moving direction of the Cam Follower and match the side shoulder accurately with the seating surface indicated by dimension *f* in the table of dimensions. (See Fig. 1.) Then, fix the Cam Follower with the nut. Do not hit the flange head of the Cam Follower directly with a hammer, etc. This may lead to a bearing failure such as irregular rotation or cracking.

The IMO mark on the flange head of the stud indicates the position of the oil hole on the raceway. Avoid locating the oil hole within the loading zone. This may lead to a short bearing life. (See Fig. 2.) The hole located in the middle part of the stud perpendicular to the stud center axis is used for greasing or locking.

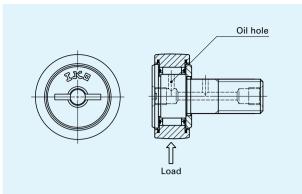


Fig. 2 Oil hole position and loading direction

- When tightening the nut, the tightening torque should not exceed the values shown in the table of dimensions. If the tightening torque is too large, it is possible that the threaded portion of the stud will be broken. When there is a possibility of loosening, a special nut such as a lock nut, spring washer, or self-locking nut should be used.
- In the case of Solid Eccentric Stud Type Cam Followers and Eccentric Type Cam Followers, the outer ring position can be adjusted appropriately by turning the stud with a screwdriver or hexagon bar wrench using the screwdriver slot or hexagon hole of the stud head. The stud is fixed with a nut and a spring washer, etc. The tightening torque should not exceed the values of maximum tightening torque shown in the table of dimensions.

When shock loads are applied and the adjusted eccentricity has to be ensured, it is recommended to make holes in the housing, stud and eccentric collar, and fix the stud with a dowel pin as shown in Fig. 3. However, when the stud diameter is less than 8 mm (Eccentric collar diameter 11 mm), it is difficult to make a hole in the stud because the stud is through-hardened.

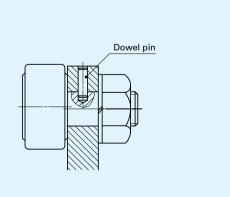


Fig. 3 Mounting example of Solid Eccentric Stud Type Cam Follower

6 In case of Eccentric Type Cam Followers (CFE), the length of the mounting hole should be more than 0.5 mm longer than the dimension B_3 (Eccentric collar width) shown in the table of dimensions. (See Fig. 4.)

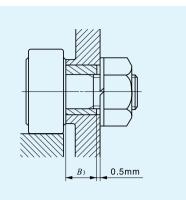


Fig. 4 Length of the mounting hole of Eccentric Type Cam Follower

For mounting Easy Mounting Type Cam Followers, it is recommended to fix the fixing screw from the upper side to the stepped portion of the stud. (See Fig. 5.)

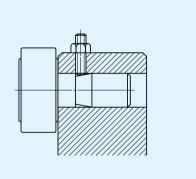
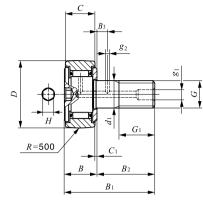
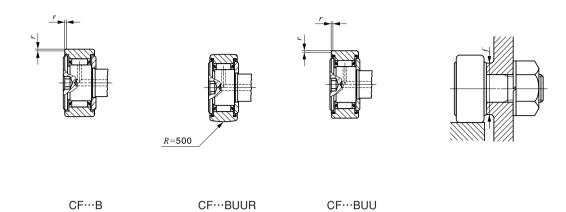



Fig. 5 Mounting example of Easy Mounting Type Cam Follower

Standard Type Cam Followers With Cage/With Hexagon Hole


Stu

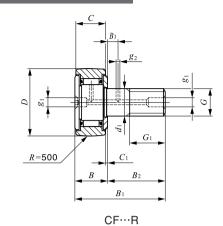
		B1
tud dia. 3-30 mm)	CF···BR
		-

Stud		ldentif	ication number		Mass (Ref.)			
dia. mm	Shield With crowned outer ring	type With cylindrical outer ring	Sealed With crowned outer ring	type With cylindrical outer ring	g	D	$C \mid d_1$	G
3	CF 3 BR	CF 3 B	CF 3 BUUR	CF 3 BUU	4.3	10	7 3	M 3×0.5
4	CF 4 BR	CF 4 B	CF 4 BUUR	CF 4 BUU	7.4	12	8 4	M 4×0.7
5	CF 5 BR	CF 5 B	CF 5 BUUR	CF 5 BUU	10.3	13	9 5	M 5×0.8
6	CF 6 BR	CF 6 B	CF 6 BUUR	CF 6 BUU	18.5	16	11 6	M 6×1
8	CF 8 BR CF 8 BRM	CF 8 B CF 8 BM	CF 8 BUUR CF 8 BUURM	CF 8 BUU CF 8 BUUM	28.5 28.5		11 8 11 8	M 8×1.25 M 8×1
10	CF 10 BR CF 10 BRM CF 10-1 BR CF 10-1 BRM	CF 10 B CF 10 BM CF 10-1 B CF 10-1 BM	CF 10 BUUR CF 10 BUURM CF 10-1 BUUR CF 10-1 BUURM	CF 10 BUU CF 10 BUUM CF 10-1 BUU CF 10-1 BUUM	45 45 60 60	22 26	12 10 12 10 12 10 12 10	M10×1.25 M10×1 M10×1.25 M10×1
12	CF 12 BR CF 12-1 BR	CF 12 B CF 12-1 B	CF 12 BUUR CF 12-1 BUUR	CF 12 BUU CF 12-1 BUU	95 105		14 12 14 12	M12×1.5 M12×1.5
16	CF 16 BR	CF 16 B	CF 16 BUUR	CF 16 BUU	170	35	18 16	M16×1.5
18	CF 18 BR	CF 18 B	CF 18 BUUR	CF 18 BUU	250	40	20 18	M18×1.5
20	CF 20 BR CF 20-1 BR	CF 20 B CF 20-1 B	CF 20 BUUR CF 20-1 BUUR	CF 20 BUU CF 20-1 BUU	460 385	_	24 20 24 20	M20×1.5 M20×1.5
24	CF 24 BR CF 24-1 BR	CF 24 B CF 24-1 B	CF 24 BUUR CF 24-1 BUUR	CF 24 BUU CF 24-1 BUU	815 1 140	_	29 24 29 24	M24×1.5 M24×1.5
30	CF 30 BR CF 30-1 BR CF 30-2 BR	CF 30 B CF 30-1 B CF 30-2 B	CF 30 BUUR CF 30-1 BUUR CF 30-2 BUUR	CF 30 BUU CF 30-1 BUU CF 30-2 BUU	1 870 2 030 2 220	85	35 30 35 30 35 30	M30×1.5 M30×1.5 M30×1.5

Note(1) Minimum allowable value of chamfer dimension r

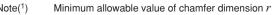
Remarks 1. Models with a stud diameter d_1 of 10 mm or less have no oil hole. Other models are provided with one oil hole each on the outside surface and end surface of the stud.

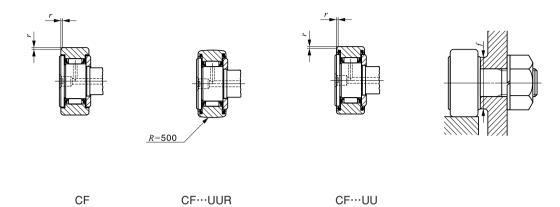
	Boundary	dimensions	mm							Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load
G_1	В	B_1	B_2	B_3	C_1	g_1	<i>g</i> ₂	Н	$r_{\rm smin}^{(1)}$	N //:	N-m	N	N N	N
5	8	17	9	_	0.5	_	_	2	0.2	6.8	0.34	1 500	1 020	384
6	9	20	11	_	0.5	_	_	2.5	0.3	8.3	0.78	2 070	1 590	834
7.5	10	23	13	_	0.5	_	_	3	0.3	9.3	1.6	2 520	2 140	1 260
8	12.2max	28.2max	16	_	0.6	_	_	3	0.3	11	2.7	3 660	3 650	1 950
10 10	12.2max 12.2max	32.2max 32.2max		_	0.6 0.6	_	_	4 4	0.3	13 13	6.5 7.1	4 250 4 250	4 740 4 740	4 620 4 620
12 12 12 12	13.2max 13.2max 13.2max 13.2max	36.2max 36.2max 36.2max 36.2max	23 23	_ _ _ _	0.6 0.6 0.6 0.6		_ _ _ _	4 4 4 4	0.3 0.3 0.3 0.3	16 16 16 16	13.8 14.7 13.8 14.7	5 430 5 430 5 430 5 430	6 890 6 890 6 890 6 890	6 890 6 890 6 890 6 890
13 13	15.2max 15.2max	40.2max 40.2max		6 6	0.6 0.6	6 6	3	6 6	0.6 0.6	21 21	21.9 21.9	7 910 7 910	9 790 9 790	9 790 9 790
17	19.6max	52.1max	32.5	8	8.0	6	3	6	0.6	26	58.5	12 000	18 300	18 300
19	21.6max	58.1max	36.5	8	0.8	6	3	8	1	29	86.2	14 800	25 200	25 200
21 21	25.6max 25.6max	66.1max 66.1max		9	0.8 0.8	8	4	8	1	34 34	119 119	20 700 20 700	34 600 34 600	34 600 34 600
25 25	30.6max 30.6max	80.1max 80.1max		11 11	8.0	8 8	4 4	12 12	1	40 40	215 215	30 500 30 500	52 600 52 600	52 000 52 000
32 32 32	37 max 37 max 37 max		63	15 15 15	1 1 1	8 8 8	4 4 4	17 17 17	1 1 1	49 49 49	438 438 438	45 400 45 400 45 400	85 100 85 100 85 100	85 100 85 100 85 100


^{2.} Shield type models with a stud diameter d_1 of 10mm or less and the sealed type models are provided with prepacked grease. Other models are not provided with prepacked grease. Perform proper lubrication for use.

KKI

CAM FOLLOWERS


Standard Type Cam Followers With Cage/With Screwdriver Slot


Stud dia. 3-30 mm

Stud					ld	entifi	catio	n num	ber				Mass (Ref.)				
dia.		;	Shield	type					Sealed	type							
mm	1	th crow			cyling		١ ١	With cr			,	ndrical	g	D	C	d_1	G
		uter ri			uter ri	ng	05	outer			outer r			40	-		
3	CF	3	R	CF	3		CF	3	UUR	CF	3	UU	4.3	10	7	3	M 3×0.5
4	CF	4	R	CF	4		CF	4	UUR	CF	4	UU	7.4	12	8	4	M 4×0.7
5	CF	5	R	CF	5		CF	5	UUR	CF	5	UU	10.3	13	9	5	M 5×0.8
6	CF	6	R	CF	6		CF	6	UUR	CF	6	UU	18.5	16	11	6	M 6×1
8	CF	8	R	CF	8		CF	8	UUR	CF	8	UU	28.5	19	11	8	M 8×1.25
	CF	8	RM	CF	8	M	CF	8	UURM	CF	8	UUM	28.5	19	11	8	M 8×1
	CF	10	R	CF	10		CF	10	UUR	CF	10	UU	45	22	12	10	M10×1.25
10	CF	10	RM	CF	10	M	CF	10	UURM	CF	10	UUM	45	22	12	10	M10×1
10		10-1		CF					UUR			UU	60	26	12	10	M10×1.25
	CF	10-1	RM	CF	10-	1 M	CF	10-1	UURM	CF	10-1	UUM	60	26	12	10	M10×1
12	CF	12	R	CF	12		CF	12	UUR	CF	12	UU	95	30	14	12	M12×1.5
12	CF	12-1	R	CF	12-	1	CF	12-1	UUR	CF	12-1	UU	105	32	14	12	M12×1.5
16	CF	16	R	CF	16		CF	16	UUR	CF	16	UU	170	35	18	16	M16×1.5
18	CF	18	R	CF	18		CF	18	UUR	CF	18	UU	250	40	20	18	M18×1.5
20	CF	20	R	CF	20		CF	20	UUR	CF	20	UU	460	52	24	20	M20×1.5
20	CF	20-1	R	CF	20-	1	CF	20-1	UUR	CF	20-1	UU	385	47	24	20	M20×1.5
24	CF	24	R	CF	24		CF	24	UUR	CF	24	UU	815	62	29	24	M24×1.5
24	CF	24-1	R	CF	24-	1	CF	24-1	UUR	CF	24-1	UU	1 140	72	29	24	M24×1.5
	CF	30	R	CF	30		CF	30	UUR	CF	30	UU	1 870	80	35	30	M30×1.5
30	_	30-1		CF			_		UUR	_		UU	2 030	85	35	30	M30×1.5
	CF	30-2	R	CF	30-	2	CF	30-2	UUR	CF	30-2	UU	2 220	90	35	30	M30×1.5

Remarks 1. Models with a stud diameter d_1 of 4 mm or less have no oil hole. Models with a stud diameter of more than 5 mm and up to 10 mm (marked *) are provided with an oil hole on the stud head only. Other models are provided with one oil hole each on the head, outside surface and end surface of the stud.

2. Shield type models with a stud diameter d_1 of 5 mm or less and the sealed type models are provided with prepacked grease. Other models are not provided with prepacked grease. Perform proper lubrication for use.

	Boundary	dimensions	mm						Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load
G_1	В	B_1	B_2	B_3	C_1	g_1	g_2	$r_{\rm smin}^{(1)}$	NAin	N-m	N	N N	N
5	8	17	9	_	0.5	_	_	0.2	6.8	0.34	1 500	1 020	384
6	9	20	11	_	0.5	_	_	0.3	8.3	0.78	2 070	1 590	834
7.5	10	23	13	_	0.5	*3.1	_	0.3	9.3	1.6	2 520	2 140	1 260
8	12.2max	28.2max	16	_	0.6	*4	_	0.3	11	2.7	3 660	3 650	1 950
10 10	12.2max 12.2max	32.2max 32.2max	20 20	_	0.6 0.6	*4 *4	_	0.3 0.3	13 13	6.5 7.1	4 250 4 250	4 740 4 740	4 620 4 620
12 12 12 12	13.2max 13.2max 13.2max 13.2max	36.2max 36.2max 36.2max 36.2max	23 23 23 23	 	0.6 0.6 0.6 0.6	*4 *4 *4 *4	_ _ _ _	0.3 0.3 0.3 0.3	16 16 16 16	13.8 14.7 13.8 14.7	5 430 5 430 5 430 5 430	6 890 6 890 6 890 6 890	6 890 6 890 6 890 6 890
13 13	15.2max 15.2max	40.2max 40.2max	25 25	6 6	0.6 0.6	6 6	3	0.6 0.6	21 21	21.9 21.9	7 910 7 910	9 790 9 790	9 790 9 790
17	19.6max	52.1max	32.5	8	0.8	6	3	0.6	26	58.5	12 000	18 300	18 300
19	21.6max	58.1max	36.5	8	0.8	6	3	1	29	86.2	14 800	25 200	25 200
21 21	25.6max 25.6max	66.1max 66.1max	40.5 40.5	9	0.8	8	4	1	34 34	119 119	20 700 20 700	34 600 34 600	34 600 34 600
25 25	30.6max 30.6max	80.1max 80.1max	49.5 49.5	11 11	0.8 0.8	8	4	1	40 40	215 215	30 500 30 500	52 600 52 600	52 000 52 000
32 32 32	37 max 37 max 37 max	100 max 100 max 100 max	63 63 63	15 15 15	1 1 1	8 8 8	4 4 4	1 1 1	49 49 49	438 438 438	45 400 45 400 45 400	85 100 85 100 85 100	85 100 85 100 85 100

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch NUCF CFS

Maximum

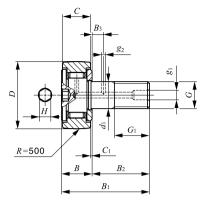
allowable static load

Ν

1 950

4 620

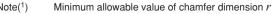
4 620

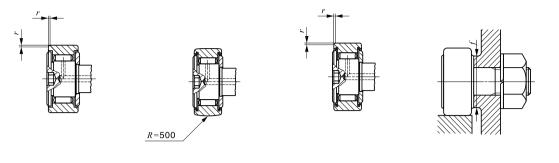

8 650

8 650

CAM FOLLOWERS

Standard Type Cam Followers Full Complement Type/With Hexagon Hole




Stud dia. 6-30 mm

\sim	F.	٠.	۱/	R	R

Stud		Identific		Mass (Ref.)				
dia. mm	Shield With crowned outer ring	l type With cylindrical outer ring	Sealed With crowned outer ring	type With cylindrical outer ring	g	D	C	d_1
6	CF 6 VBR	CF 6 VB	CF 6 VBUUR	CF 6 VBUU	19	16	11	6
8	CF 8 VBR CF 8 VBRM	CF 8 VB CF 8 VBM	CF 8 VBUUR CF 8 VBUURM	CF 8 VBUU CF 8 VBUUM	29 29	19 19	11 11	8
10	CF 10 VBR CF 10 VBRM CF 10-1 VBR CF 10-1 VBRM	CF 10-1 VB	CF 10 VBUUR CF 10 VBUURM CF 10-1 VBUUR CF 10-1 VBUURM	CF 10-1 VBUU	46 46 61 61	22 22 26 26	12 12 12 12	10 10 10 10
12	CF 12 VBR CF 12-1 VBR	CF 12 VB CF 12-1 VB	CF 12 VBUUR CF 12-1 VBUUR	CF 12 VBUU CF 12-1 VBUU	97 107	30 32	14 14	12 12
16	CF 16 VBR	CF 16 VB	CF 16 VBUUR	CF 16 VBUU	173	35	18	16
18	CF 18 VBR	CF 18 VB	CF 18 VBUUR	CF 18 VBUU	255	40	20	18
20	CF 20 VBR CF 20-1 VBR	CF 20 VB CF 20-1 VB	CF 20 VBUUR CF 20-1 VBUUR	CF 20 VBUU CF 20-1 VBUU	465 390	52 47	24 24	20 20
24	CF 24 VBR CF 24-1 VBR	CF 24 VB CF 24-1 VB	CF 24 VBUUR CF 24-1 VBUUR	CF 24 VBUU CF 24-1 VBUU	820 1 140	62 72	29 29	24 24
30	CF 30 VBR CF 30-1 VBR CF 30-2 VBR	CF 30 VB CF 30-1 VB CF 30-2 VB	CF 30 VBUUR CF 30-1 VBUUR CF 30-2 VBUUR	CF 30 VBUU CF 30-1 VBUU CF 30-2 VBUU	1 870 2 030 2 220	80 85 90	35 35 35	30 30 30

Remarks1. Models with a stud diameter d_1 of 10 mm or less have no oil hole. Other models are provided with one oil hole each on the outside surface and end surface of the stud.

CF...VBUU

16

16

34

13.8

14.7

119

9 570

9 570

33 200

14 500

14 500

	Bounda	ıry di	mensio	ns mn	n							Mounting dimension	Maximum tightening	Basic dynamic load rating	Basic static load rating	
	G	$ G_1 $	В	B_1	B_2	B_3	C_1	g_1	$ g_2 $	Н	$r_{ m smin}^{(1)}$	f Min.	torque	C	C_0	
	Ü	- 1	max	max	2	3	- 1	81	82		5111111	mm	N-m	N	N	
M	6×1	8	12.2	28.2	16		0.6	_	_	3	0.3	11	2.7	6 980	8 500	
M	8×1.25	10	12.2	32.2	20	_	0.6		_	4	0.3	13	6.5	8 170	11 200	
M	8×1	10	12.2	32.2	20		0.6	_	_	4	0.3	13	7.1	8 170	11 200	

0.6

0.6

66.1 40.5 9 0.8 8

CF...VBUUR

CF...VB

36.2 23

36.2 23

M10×1.25 12 13.2

M20×1.5 21 25.6

12 | 13.2

 $M10 \times 1$

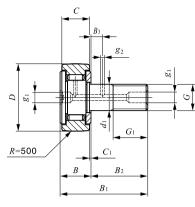
M10×1.25 12 13.2 36.2 23 0.6 4 0.3 16 13.8 9 570 14 500 8 650 $M10 \times 1$ 12 | 13.2 36.2 23 0.6 4 0.3 16 14.7 9 570 14 500 8 650 13 500 40.2 25 3 6 0.6 19 700 | 13 200 $M12 \times 1.5$ 13 15.2 6 0.6 6 21 21.9 3 13 500 19 700 | 13 200 $M12 \times 1.5$ 13 | 15.2 40.2 25 6 0.6 6 6 0.6 21 21.9 $M16 \times 1.5$ 17 | 19.6 52.1 32.5 8 0.8 6 3 6 0.6 26 58.5 20 700 37 600 23 200 3 8 1 29 25 300 M18×1.5 19 21.6 58.1 36.5 8 0.8 6 86.2 51 300 31 100 $M20 \times 1.5$ 21 25.6 66.1 40.5 9 0.8 8 34 33 200

4 0.3

4 0.3

25 30.6 80.1 49.5 11 0.8 8 4 | 12 | 1 46 600 92 000 | 52 000 M24×1.5 40 215 25 30.6 80.1 49.5 11 0.8 8 4 12 1 40 215 46 600 92 000 52 000 M24×1.5 67 700 | 144 000 | 85 900 $M30 \times 1.5$ 32 37 100 63 15 1 8 4 | 17 | 1 49 438 67 700 | 144 000 | 85 900 $M30 \times 1.5$ 32 37 100 63 15 1 8 4 | 17 | 1 49 438 32 37 100 63 15 1 8 4 17 1 49 438 67 700 144 000 85 900 M30×1.5

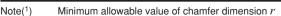
4


64 500 37 500 64 500 37 500 92 000 52 000 92 000 52 000 144 000 85 900 144 000 85 900

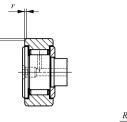
NUCF

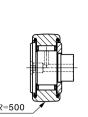
^{2.} Provided with prepacked grease.

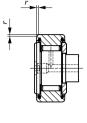
Standard Type Cam Followers Full Complement Type/With Screwdriver Slot

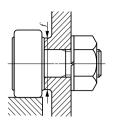


Stud dia. 6-30 mm


\sim	ᆮ		١/	


Stud		ldentific		Mass (Ref.)				
dia. mm	Shield With crowned outer ring	type With cylindrical outer ring	Sealed With crowned outer ring	type With cylindrical outer ring	g	D	C	d_1
6	CF 6 VR	CF 6 V	CF 6 VUUR	CF 6 VUU	19	16	11	6
8	CF 8 VR CF 8 VRM	CF 8 V CF 8 VM	CF 8 VUUR CF 8 VUURM	CF 8 VUU CF 8 VUUM	29 29	19 19	11 11	8
10	CF 10 VR CF 10 VRM CF 10-1 VR CF 10-1 VRM	CF 10 V CF 10 VM CF 10-1 V CF 10-1 VM	CF 10 VUUR CF 10 VUURM CF 10-1 VUUR CF 10-1 VUURM	CF 10 VUU CF 10 VUUM CF 10-1 VUU CF 10-1 VUUM	46 46 61 61	22 22 26 26	12 12 12 12	10 10 10 10
12	CF 12 VR CF 12-1 VR	CF 12 V CF 12-1 V	CF 12 VUUR CF 12-1 VUUR	CF 12 VUU CF 12-1 VUU	97 107	30 32	14 14	12 12
16	CF 16 VR	CF 16 V	CF 16 VUUR	CF 16 VUU	173	35	18	16
18	CF 18 VR	CF 18 V	CF 18 VUUR	CF 18 VUU	255	40	20	18
20	CF 20 VR CF 20-1 VR	CF 20 V CF 20-1 V	CF 20 VUUR CF 20-1 VUUR	CF 20 VUU CF 20-1 VUU	465 390	52 47	24 24	20 20
24	CF 24 VR CF 24-1 VR	CF 24 V CF 24-1 V	CF 24 VUUR CF 24-1 VUUR	CF 24 VUU CF 24-1 VUU	820 1 140	62 72	29 29	24 24
30	CF 30 VR CF 30-1 VR CF 30-2 VR	CF 30 V CF 30-1 V CF 30-2 V	CF 30 VUUR CF 30-1 VUUR CF 30-2 VUUR	CF 30 VUU CF 30-1 VUU CF 30-2 VUU	1 870 2 030 2 220	80 85 90	35 35 35	30 30 30




Remarks1. Models with a stud diameter d_1 of 10 mm or less (marked *) are provided with an oil hole on the stud head only. Other models are provided with one oil hole each on the head, outside surface and end surface of the stud.

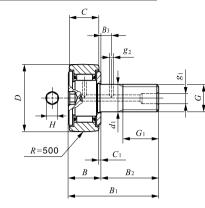
2. Provided with prepacked grease.

CF...V

CF...VUUR

CF...VUU

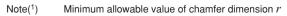
													1	
Bounda	ary di	mensio	ons mr	n						Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating	Maximum allowable static load
G	G_1	B max	B_1 max	B_2	B_3	C_1	g_1	g_2	$r_{\rm smin}^{(1)}$	f Min. mm	N-m	C N	$oxed{C_0}$ N	N
M 6×1	8	12.2	28.2	16	_	0.6	*4	_	0.3	11	2.7	6 980	8 500	1 950
M 8×1.25 M 8×1	10 10	12.2 12.2	32.2 32.2		_	0.6 0.6	*4 *4	_	0.3	13 13	6.5 7.1	8 170 8 170	11 200 11 200	4 620 4 620
M10×1.25 M10×1 M10×1.25 M10×1	12 12 12 12	13.2 13.2 13.2 13.2	36.2 36.2 36.2 36.2	23 23		0.6 0.6 0.6 0.6	*4 *4 *4 *4		0.3 0.3 0.3 0.3	16 16 16 16	13.8 14.7 13.8 14.7	9 570 9 570 9 570 9 570	14 500 14 500 14 500 14 500	8 650 8 650 8 650 8 650
M12×1.5 M12×1.5	13 13	15.2 15.2	40.2 40.2		6 6	0.6 0.6	6 6	3	0.6	21 21	21.9 21.9	13 500 13 500	19 700 19 700	13 200 13 200
M16×1.5	17	19.6	52.1	32.5	8	0.8	6	3	0.6	26	58.5	20 700	37 600	23 200
M18×1.5	19	21.6	58.1	36.5	8	0.8	6	3	1	29	86.2	25 300	51 300	31 100
M20×1.5 M20×1.5	21 21	25.6 25.6	66.1 66.1		9	0.8 0.8	8 8	4	1	34 34	119 119	33 200 33 200	64 500 64 500	37 500 37 500
M24×1.5 M24×1.5	25 25	30.6 30.6	80.1 80.1		11 11	0.8 0.8	8	4	1	40 40	215 215	46 600 46 600	92 000 92 000	52 000 52 000
M30×1.5 M30×1.5 M30×1.5	32 32 32	37 37 37	100 100 100	63 63 63	15 15 15	1 1 1	8 8	4 4 4	1 1 1	49 49 49	438 438 438	67 700 67 700 67 700	144 000 144 000 144 000	85 900 85 900 85 900

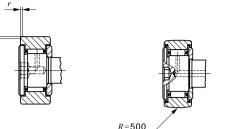

NUCF CFS

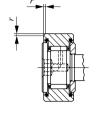
KKI

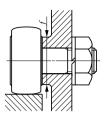
CAM FOLLOWERS

Stainless Steel Made Cam Followers With Cage/With Hexagon Hole




Stud dia. 3-20mm


C	F.,	٠F	RI


		Idontif	iontin	n number		Mass					
		identii	icatioi	ii iiuiiibei		(Ref.)					
		With cylindrical outer ring	W	/ith crowned outer ring	With cylindrical outer ring	g	D	C	d_1	G	G_1
CF	3 FBR	CF 3 FB	CF	3 FBUUR	CF 3 FBUU	4.3	10	7	3	M 3×0.5	5
CF	4 FBR	CF 4 FB	CF	4 FBUUR	CF 4 FBUU	7.4	12	8	4	M 4×0.7	6
CF	5 FBR	CF 5 FB	CF	5 FBUUR	CF 5 FBUU	10.3	13	9	5	M 5×0.8	7.5
CF	6 FBR	_	CF	6 FBUUR	_	18.5	16	11	6	M 6×1	8
CF	8 FBR		CF	8 FBUUR		28.5	19	11	8	M 8×1.25	10
CF 1	10 FBR	_	CF	10 FBUUR		45	22	12	10	M10×1.25	12
CF 1	12 FBR	_	CF	12 FBUUR	_	95	30	14	12	M12×1.5	13
CF 1	16 FBR	_	CF	16 FBUUR	_	170	35	18	16	M16×1.5	17
CF 1	18 FBR	_	CF	18 FBUUR	_	250	40	20	18	M18×1.5	19
CF 2	20 FBR	_	CF :	20 FBUUR	_	460	52	24	20	M20×1.5	21
	CF CF CF CF	With crowned outer ring CF 3 FBR CF 4 FBR CF 5 FBR CF 6 FBR	Shield type With crowned outer ring CF 3 FBR CF 3 FB CF 4 FBR CF 4 FB CF 5 FBR CF 5 FB CF 6 FBR — CF 10 FBR — CF 12 FBR — CF 16 FBR — CF 18 FBR —	Shield type With crowned outer ring CF 3 FBR CF 3 FB CF CF 4 FBR CF 4 FB CF CF 5 FBR CF 5 FB CF CF 6 FBR — CF CF 10 FBR — CF CF 12 FBR — CF CF 16 FBR — CF CF 16 FBR — CF	With crowned outer ring CF 3 FBR CF 3 FB CF 3 FBUUR CF 4 FBR CF 4 FB CF 4 FBUUR CF 5 FBR CF 5 FB CF 5 FBUUR CF 6 FBR — CF 6 FBUUR CF 10 FBR — CF 10 FBUUR CF 12 FBR — CF 16 FBUUR CF 16 FBR — CF 16 FBUUR CF 16 FBR — CF 16 FBUUR CF 17 FBR — CF 18 FBUUR CF 18 FBR — CF 18 FBUUR	Shield type With crowned outer ring CF 3 FBR CF 3 FB CF 3 FBUUR CF 3 FBUU CF 4 FBR CF 4 FB CF 4 FBUUR CF 4 FBUU CF 5 FBR CF 5 FB CF 5 FBUUR CF 5 FBUU CF 6 FBR — CF 6 FBUUR — CF 10 FBR — CF 10 FBUUR — CF 12 FBR — CF 16 FBUUR — CF 16 FBR — CF 16 FBUUR — CF 16 FBR — CF 16 FBUUR — CF 18 FBR — CF 18 FBUUR —	Shield type With crowned outer ring Graph outer ring With crowned outer ring Graph	Shield type With crowned outer ring With cylindrical outer ring With cylindrical outer ring Sealed type With cylindrical outer ring With cylindrical outer ring Sealed type With cylindrical outer ring With cylindrical outer ring Sealed type December 2012 Sealed type	Shield type With crowned outer ring With cylindrical outer ring P	Shield type With crowned outer ring With cylindrical outer ring 9	Shield type With crowned outer ring P

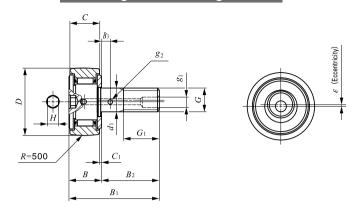
Remarks1. Models with a stud diameter d_1 of 10 mm or less have no oil hole. Other models are provided with one oil hole each on the outside surface and end surface of the stud.

 $\mathsf{CF} {\cdots} \mathsf{FB}$

CF···FBUUR

CF···FBUU

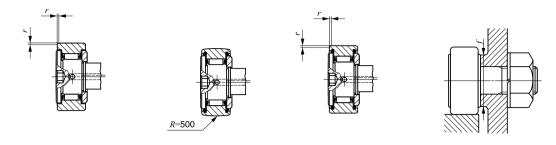
Boundary dimensions mm									Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating	Maximum allowable static load
В	B_1	B_2	B_3	C_1	g_1	g_2			<i>)</i> Min. mm	N-m	C N	C_0 N	N
8	17	9	_	0.5	_	_	2	0.2	6.8	0.34	1 200	813	384
9	20	11	_	0.5	_	_	2.5	0.3	8.3	0.78	1 650	1 270	834
10	23	13	_	0.5	_	_	3	0.3	9.3	1.6	1 930	1 730	1 260
12.2 max	28.2 max	16		0.6	_		3		11	2.7	2 930	2 920	1 950
12.2 max	32.2 max	20		0.6			4		13	6.5	3 400	3 790	3 790
13.2 max	36.2 max	23		0.6			5		16	13.8	4 340	5 510	5 510
15.2 max	40.2 max	25	6	0.6	6	3	6		21	21.9	6 330	7 830	7 830
19.6 max	52.1 max	32.5	8	0.8	6	3	6		26	58.5	9 620	14 700	14 700
21.6 max	58.1 max	36.5	8	0.8	6	3	8		29	86.2	11 800	20 200	20 200
25.6 max	66.1 max	40.5	9	0.8	8	4	8		34	119	16 500	27 700	27 700


^{2.} Shield type models with a stud diameter d_1 of 10 mm or less and the sealed type models are provided with prepacked grease. Other models are not provided with prepacked grease. Perform proper lubrication for use.

IIKC

CAM FOLLOWERS

Solid Eccentric Stud Type Cam Followers With Cage/With Hexagon Hole


Stud dia. 6—18 mm

CFES···BR

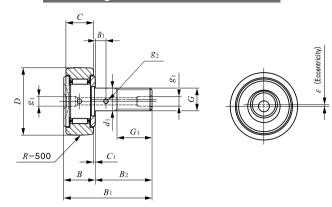
Stud					lde	entif	ication n	umbei	r				Mass (Ref.)			
dia.		5	Shield						Sealed							
no no		crowne		With cy		al		th crow			cylind		a	D	C	d_1
mm	out	ter ring		oute	er ring			outer ri	ng	01	ıter rin	g	g			
6	CFES	6	BR	CFES	6	В	CFES	6	BUUR	CFES	6	BUU	18.5	16	11	6
8	CFES	8	BR	CFES	8	В	CFES	8	BUUR	CFES	8	BUU	28.5	19	11	8
10	CFES	10	BR	CFES	10	В	CFES	10	BUUR	CFES	10	BUU	45	22	12	10
10	CFES					В			BUUR				60	26	12	10
40	CFES	12	BR	CFES	12	В	CFES	12	BUUR	CFES	12	BUU	95	30	14	12
12				CFES					BUUR				105	32	14	12
16	CFES	16	BR	CFES	16	В	CFES	16	BUUR	CFES	16	BUU	170	35	18	16
18	CFES	18	BR	CFES	18	В	CFES	18	BUUR	CFES	18	BUU	250	40	20	18

Note(1) Minimun	n allowable value	of chamfer	dimension i	r
-----------------	-------------------	------------	-------------	---

Remarks1. Models with a stud diameter d_1 of 10 mm or less have no oil hole. Other models are provided with one oil hole each on the outside surface and end surface of the stud.

OFFO D	OFFO DUUD	OFFO BUIL
CFES···B	CFESBUUR	CFES···BUU

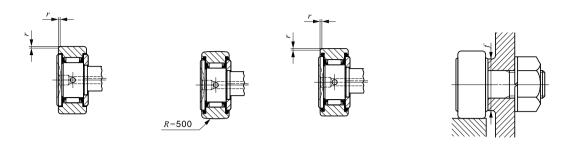
Bounda	ary d	imensi	ons r	mm	I					(¹)	Eccentricity ${m \mathcal E}$	Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load
G	G_1	B max	B_1 max	B_2	B_3	C_1	g_1	g_2	Н	$r_{\rm smin}$	ε	Min. mm	N-m	N	N	N
M 6×1	8	12.2	28.2	16		0.6			3	0.3	0.25	11	2.7	3 660	3 650	1 980
M 8×1.25	10	12.2	32.2	20	—	0.6			4	0.3	0.25	13	6.5	4 250	4 740	4 670
M10×1.25 M10×1.25	12 12	13.2 13.2			_	0.6 0.6				0.3 0.3		16 16	13.8 13.8	5 430 5 430	6 890 6 890	6 890 6 890
M12×1.5 M12×1.5	13 13				6	0.6 0.6		3 3	6 6	0.6 0.6		21 21	21.9 21.9	7 910 7 910	9 790 9 790	9 790 9 790
M16×1.5	17	19.6	52.1	32.5	8	0.8	6	3	6	0.6	0.5	26	58.5	12 000	18 300	18 300
M18×1.5	19	21.6	58.1	36.5	8	0.8	6	3	8	1	0.6	29	86.2	14 800	25 200	25 200


^{2.} Shield type models with a stud diameter d_1 of 10 mm or less and the sealed type models are provided with prepacked grease. Other models are not provided with prepacked grease. Perform proper lubrication for use.

II)KI

CAM FOLLOWERS

Solid Eccentric Stud Type Cam Followers With Cage/With Screwdriver Slot

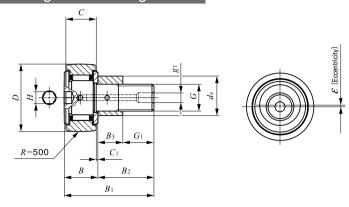

Stud dia. 6—18 mm

CFES···R

Stud		ldentif	ication number		Mass (Ref.)			
dia.	Shield		Sealed					
ma ma	With crowned	With cylindrical	With crowned	With cylindrical		D	C	d_1
mm	outer ring	outer ring	outer ring	outer ring	g			
6	CFES 6 R	CFES 6	CFES 6 UUR	CFES 6 UU	18.5	16	11	6
8	CFES 8 R	CFES 8	CFES 8 UUR	CFES 8 UU	28.5	19	11	8
10	CFES 10 R	CFES 10	CFES 10 UUR	CFES 10 UU	45	22	12	10
10	CFES 10-1 R	CFES 10-1	CFES 10-1 UUR	CFES 10-1 UU	60	26	12	10
10	CFES 12 R	CFES 12	CFES 12 UUR	CFES 12 UU	95	30	14	12
12	CFES 12-1 R	CFES 12-1	CFES 12-1 UUR	CFES 12-1 UU	105	32	14	12
16	CFES 16 R	CFES 16	CFES 16 UUR	CFES 16 UU	170	35	18	16
18	CFES 18 R	CFES 18	CFES 18 UUR	CFES 18 UU	250	40	20	18

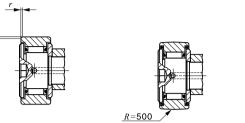
Note(1) Mini	mum allowable	value of	chamfer	dimension	i
--------------	---------------	----------	---------	-----------	---

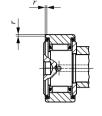
Remarks1. Models with a stud diameter d_1 of 10 mm or less (marked *) are provided with an oil hole on the stud head only. Other models are provided with one oil hole each on the head, outside surface and end surface of the stud.

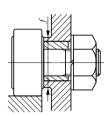

Bounda	ary d	imensi	ons r	mm						Eccentricity	Mounting dimension	Maximum tightening	Basic dynamic load rating	Basic static load rating	Maximum allowable
	I	I	I	I	ı	I	I	ı	(1)		f	torque	C	C_0	static load
G	G_1	В	B_1	B_2	B_3	C_1	g_1	$ g_2 $	$r_{\rm smin}^{(1)}$	ε	Min.				
	•	max	max	_		-	0.1	-	011111		mm	N-m	N	N	N
M 6×1	8	12.2	28.2	16	_	0.6	*4	_	0.3	0.25	11	2.7	3 660	3 650	1 980
M 8×1.25	10	12.2	32.2	20	_	0.6	*4	_	0.3	0.25	13	6.5	4 250	4 740	4 670
M10×1.25	12	13.2	36.2	23		0.6	*4	_	0.3	0.3	16	13.8	5 430	6 890	6 890
M10×1.25	12	13.2	36.2	23		0.6	*4		0.3	0.3	16	13.8	5 430	6 890	6 890
M12×1.5	13	15.2	40.2	25	6	0.6	6	3	0.6	0.4	21	21.9	7 910	9 790	9 790
M12×1.5	13	15.2	40.2	25	6	0.6	6	3	0.6	0.4	21	21.9	7 910	9 790	9 790
M16×1.5	17	19.6	52.1	32.5	8	8.0	6	3	0.6	0.5	26	58.5	12 000	18 300	18 300
M18×1.5	19	21.6	58.1	36.5	8	0.8	6	3	1	0.6	29	86.2	14 800	25 200	25 200

^{2.} Sealed type models are provided with prepacked grease. Other models are not provided with prepacked grease. Perform proper lubrication for use.

Eccentric Type Cam Followers With Cage/With Hexagon Hole


Outside diameter of eccentric collar 9-41 mm


CFE···BR


Outside diameter of					ld	entif	ication r	numbe	er				Mass (Ref.)			
eccentric collar mm	1	crown ter ring		With	cylindric ter ring		Sealed type With crowned With cylindrical outer ring outer ring						g	D	C	$d_{\rm e}$
9	CFE	6	BR	CFE	6	В	CFE	6	BUUR	CFE	6	BUU	20.5	16	11	9
11	CFE	8	BR	CFE	8	В	CFE	8	BUUR	CFE	8	BUU	32	19	11	11
13	CFE 1		BR BR	CFE CFE		B B	CFE CFE		BUUR BUUR	CFE CFE		BUU BUU	49.5 65	22 26	12 12	13 13
16	CFE 1		BR BR	CFE CFE		B B	CFE CFE		BUUR BUUR	CFE CFE		BUU BUU	105 115	30 32	14 14	16 16
22	CFE 1	16	BR	CFE	16	В	CFE	16	BUUR	CFE	16	BUU	190	35	18	22
24	CFE 1	18	BR	CFE	18	В	CFE	18	BUUR	CFE	18	BUU	280	40	20	24
27	CFE 2		BR BR	CFE CFE		B B	CFE CFE		BUUR BUUR	CFE CFE	_	BUU BUU	500 425	52 47	24 24	27 27
33	CFE 2		BR BR	CFE CFE		B B	CFE CFE		BUUR BUUR	CFE CFE		BUU BUU	895 1 220	62 72	29 29	33 33
41	CFE 3	30 30-1	BR BR	CFE CFE CFE	30 30-1	B B	CFE CFE	30 30-1	BUUR BUUR BUUR	CFE CFE	30 30-1	BUU BUU BUU	2 030 2 190 2 380	80 85 90	35 35 35	41 41 41

Note(1) Minimum allowable value of chamfer dimension	n <i>i</i>
--	------------

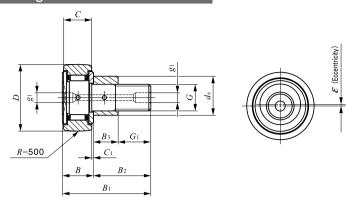
Remarks 1. Models with a stud thread diameter G of 10 mm or less have no oil hole. Other models are provided with one oil hole each on the outside surface and end surface of the stud.

CFE···B

CFE···BUUR

CFE···BUU

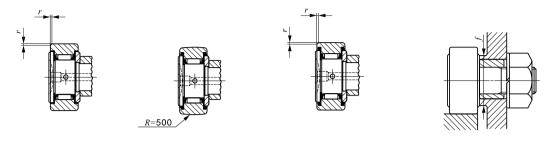
Bound	ary din	nensio	ns mr	n			Eccentricity	Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating	Maximum allowable static load			
G	B_3	B max	B_1 max	B_2	C_1	g_1	G_1	H	$r_{ m smin}$	ω Ecce	f Min. mm	N-m	C N	<i>C</i> ₀	N
M 6×1	7.5	12.2	28.2	16	0.6	_	8.5	3	0.3	0.4	11	2.7	3 660	3 650	1 950
M 8×1.25	9.5	12.2	32.2	20	0.6	_	10.5	4	0.3	0.4	13	6.5	4 250	4 740	4 620
M10×1.25 M10×1.25	1	13.2 13.2	36.2 36.2		0.6 0.6	_	12.5 12.5	4	0.3 0.3		16 16	13.8 13.8	5 430 5 430	6 890 6 890	6 890 6 890
M12×1.5 M12×1.5	11.5 11.5	15.2 15.2	40.2 40.2		0.6 0.6	6	13.5 13.5	6 6		8.0 8.0	21 21	21.9 21.9	7 910 7 910	9 790 9 790	9 790 9 790
M16×1.5	15.5	19.6	52.1	32.5	8.0	6	17	6	0.6	8.0	26	58.5	12 000	18 300	18 300
M18×1.5	17.5	21.6	58.1	36.5	0.8	6	19	8	1	8.0	29	86.2	14 800	25 200	25 200
M20×1.5 M20×1.5	19.5 19.5	25.6 25.6		40.5 40.5	0.8 0.8	8	21 21	8	1	8.0 8.0	34 34	119 119	20 700 20 700	34 600 34 600	34 600 34 600
M24×1.5 M24×1.5	25.5 25.5	30.6 30.6	80.1 80.1	49.5 49.5	0.8 0.8	8	24 24	12 12	1	8.0 8.0	40 40	215 215	30 500 30 500	52 600 52 600	52 000 52 000
M30×1.5 M30×1.5 M30×1.5	32.5 32.5 32.5	37 37 37	100 100 100	63 63 63	1 1 1	8 8 8	30.5 30.5 30.5	17 17 17	1 1 1 1	1.5 1.5 1.5	49 49 49	438 438 438	45 400 45 400 45 400	85 100 85 100 85 100	85 100 85 100 85 100


1mm=0.03937inch

NUCF CFS

^{2.} Shield type models with a stud thread diameter G of 10 mm or less and the sealed type models are provided with prepacked grease. Other models are not provided with prepacked grease. Perform proper lubrication for use.

Eccentric Type Cam Followers With Cage/With Screwdriver Slot

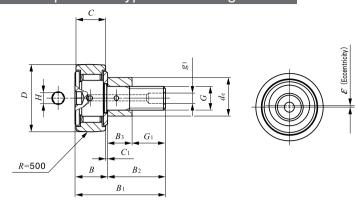

Outside diameter of eccentric collar 9-41 mm

CFE···R

		Mass (Ref.)		ication number	ldentif		Outside diameter of
C	D	g	l type With cylindrical outer ring	Sealed With crowned outer ring	type With cylindrical outer ring	Shield With crowned outer ring	eccentric collar mm
11	16	20.5	CFE 6 UU	CFE 6 UUR	CFE 6	CFE 6 R	9
11	19	32	CFE 8 UU	CFE 8 UUR	CFE 8	CFE 8 R	11
	22 26	49.5 65	CFE 10 UU CFE 10-1 UU	CFE 10 UUR CFE 10-1 UUR	CFE 10 CFE 10-1	CFE 10 R CFE 10-1 R	13
	30 32	105 115	CFE 12 UU CFE 12-1 UU	CFE 12 UUR CFE 12-1 UUR	CFE 12 CFE 12-1	CFE 12 R CFE 12-1 R	16
18	35	190	CFE 16 UU	CFE 16 UUR	CFE 16	CFE 16 R	22
20	40	280	CFE 18 UU	CFE 18 UUR	CFE 18	CFE 18 R	24
	52 47	500 425	CFE 20 UU CFE 20-1 UU	CFE 20 UUR CFE 20-1 UUR	CFE 20 CFE 20-1	CFE 20 R CFE 20-1 R	27
	62 72	895 1 220	CFE 24 UU CFE 24-1 UU	CFE 24 UUR CFE 24-1 UUR	CFE 24 CFE 24-1	CFE 24 R CFE 24-1 R	33
35	80 85 90	2 030 2 190 2 380	CFE 30 UU CFE 30-1 UU CFE 30-2 UU	CFE 30 UUR CFE 30-1 UUR CFE 30-2 UUR	CFE 30 CFE 30-1 CFE 30-2	CFE 30 R CFE 30-1 R CFE 30-2 R	41
10 52 17 62 72 80 85	4 5 4 6 7 8	280 500 425 895 1 220 2 030 2 190	CFE 18 UU CFE 20 UU CFE 20-1 UU CFE 24 UU CFE 24-1 UU CFE 30 UU CFE 30-1 UU	CFE 18 UUR CFE 20 UUR CFE 20-1 UUR CFE 24 UUR CFE 24-1 UUR CFE 30 UUR CFE 30-1 UUR	CFE 18 CFE 20 CFE 20-1 CFE 24 CFE 24-1 CFE 30 CFE 30-1	CFE 18 R CFE 20 R CFE 20-1 R CFE 24 R CFE 24-1 R CFE 30 R CFE 30-1 R	24 27 33

Note(1) Minimum allowable value of chamfer dimension
--

Remarks 1. Models with a stud thread diameter G of 10 mm or less (marked *) are provided with an oil hole on the stud head only. Other models are provided with one oil hole each on the head, outside surface and end surface of the stud.

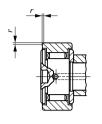

CFE	CFEUUR	CFEUU

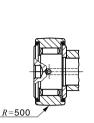
Bounda	ary din	nensio	ns mr	m					Eccentricity	Mounting dimension	Maximum tightening	Basic dynamic load rating	Basic static load rating	Maximum allowable
		ı		1	ı	ı	ı	l ds	centi	f	torque	C	C_0	static load
G	B_3	В	B_1	B_2	C_1	g_1	G_1	$r_{ m smin}^{(1)}$	ß	Min.				
	3	max	max	2	- 1	81	- 1	5111111	ε	mm	N-m	N	N	N
M 6×1	7.5	12.2	28.2	16	0.6	*4	8.5	0.3	0.4	11	2.7	3 660	3 650	1 950
M 8×1.25	9.5	12.2	32.2	20	0.6	*4	10.5	0.3	0.4	13	6.5	4 250	4 740	4 620
M10×1.25	10.5	13.2	36.2	23	0.6	*4	12.5	0.3	0.4	16	13.8	5 430	6 890	6 890
M10×1.25	10.5	13.2	36.2	23	0.6	*4	12.5	0.3	0.4	16	13.8	5 430	6 890	6 890
M12×1.5	11.5	15.2	40.2	25	0.6	6	13.5	0.6	0.8	21	21.9	7 910	9 790	9 790
	11.5	15.2	40.2		0.6	6	13.5	0.6		21	21.9	7 910	9 790	9 790
M16×1.5	15.5	19.6	52.1	32.5	0.8	6	17	0.6	0.8	26	58.5	12 000	18 300	18 300
M18×1.5	17.5	21.6	58.1	36.5	8.0	6	19	1	0.8	29	86.2	14 800	25 200	25 200
M20×1.5	19.5	25.6	66.1	40.5	0.8	8	21	1	0.8	34	119	20 700	34 600	34 600
	19.5	25.6	66.1	40.5	8.0	8	21	1	8.0	34	119	20 700	34 600	34 600
M24×1.5	25.5	30.6	80.1	49.5	0.8	8	24	1	0.8	40	215	30 500	52 600	52 000
M24×1.5	25.5	30.6	80.1	49.5	8.0	8	24	1	8.0	40	215	30 500	52 600	52 000
M30×1.5	32.5	37	100	63	1	8	30.5	1	1.5	49	438	45 400	85 100	85 100
M30×1.5	32.5	37	100	63	1	8	30.5	1	1.5	49	438	45 400	85 100	85 100
M30×1.5	32.5	37	100	63	1	8	30.5	1	1.5	49	438	45 400	85 100	85 100

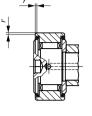
^{2.} Sealed type models are provided with prepacked grease. Other models are not provided with prepacked grease. Perform proper lubrication for use.

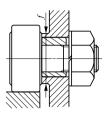
Eccentric Type Cam Followers Full Complement Type/With Hexagon Hole

Outside diameter of eccentric collar 9—41 mm


CFE...VBR

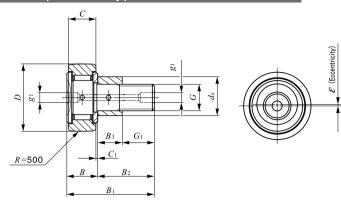

<u> </u>			ictoi	 	-		- I a		+ 1111111			0				
Outside diameter of eccentric					lo	dentif	ication	numb					Mass (Ref.)			
collar		h crow		With	cylindri uter ring		,	With cro		d type With cylindrical outer ring			g	D	C	$d_{\rm e}$
9	CFE	6	VBR	CFE	6	VB	CFE	6	VBUUR	CFE	6	VBUU	21	16	11	9
11	CFE	8	VBR	CFE	8	VB	CFE	8	VBUUR	CFE	8	VBUU	32.5	19	11	11
13	CFE CFE		VBR VBR			VB VB			VBUUR VBUUR			VBUU VBUU	50.5 66	22 26	12 12	13 13
16	CFE CFE		VBR VBR			VB VB	_		VBUUR VBUUR			VBUU VBUU	107 117	30 32	14 14	16 16
22	CFE	16	VBR	CFE	16	VB	CFE	16	VBUUR	CFE	16	VBUU	193	35	18	22
24	CFE	18	VBR	CFE	18	VB	CFE	18	VBUUR	CFE	18	VBUU	285	40	20	24
27	CFE CFE		VBR VBR			VB VB			VBUUR VBUUR			VBUU VBUU	505 430	52 47	24 24	27 27
33	CFE CFE		VBR VBR	_		VB VB	_		VBUUR VBUUR			VBUU VBUU	900 1 220	62 72	29 29	33 33
41	1	30-1	VBR VBR VBR	CFE	30-1		CFE	30-1	VBUUR VBUUR VBUUR	CFE	30-1		2 030 2 190 2 380	80 85 90	35 35 35	41 41 41


Minimum allowable value of chamfer dimension r


Remarks 1. Models with a stud thread diameter G of 10 mm or less have no oil hole. Other models are provided with one oil hole each on the outside surface and end surface of the stud.

2. Provided with prepacked grease.

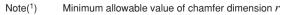
CFE...VB

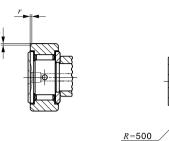

CFE...VBUUR

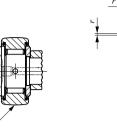
CFE...VBUU

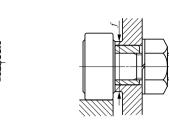
Boundary dimensions mm											Mounting dimension	Maximum tightening	Basic dynamic load rating	Basic static load rating	Maximum allowable
G	B_3	В	B_1	B_2	C_1	g_1	G_1	H	(1) V _{smin}	. Eccentricity	f Min.	torque	C	C_0	static load
M 6×1	7.5	12.2	28.2	16	0.6		8.5	3	0.2	<i>ε</i>	mm 11	N-m 2.7	N 6 980	N 8 500	N 1 950
	9.5	12.2	32.2		0.6		10.5	4			13				
M 8×1.25												6.5	8 170	11 200	4 620
M10×1.25 M10×1.25	10.5 10.5	13.2 13.2	36.2 36.2		0.6	_	12.5 12.5	4	0.3		16 16	13.8 13.8	9 570 9 570	14 500 14 500	8 650 8 650
M12×1.5 M12×1.5	11.5 11.5	15.2 15.2	40.2 40.2		0.6	6	13.5 13.5	6		8.0 8.0	21 21	21.9 21.9	13 500 13 500	19 700 19 700	13 200 13 200
M16×1.5	15.5	19.6		32.5	0.8	6	17	6		0.8	26	58.5	20 700	37 600	23 200
M18×1.5	17.5	21.6	58.1	36.5	0.8	6	19	8	1	0.8	29	86.2	25 300	51 300	31 100
M20×1.5 M20×1.5	19.5 19.5	25.6 25.6		40.5 40.5	0.8	8	21 21	8 8	1 1	0.8 0.8	34 34	119 119	33 200 33 200	64 500 64 500	37 500 37 500
M24×1.5 M24×1.5	25.5 25.5	30.6 30.6	80.1 80.1	49.5 49.5	0.8 0.8	8	24 24	12 12	1 1	0.8 0.8	40 40	215 215	46 600 46 600	92 000 92 000	52 000 52 000
M30×1.5 M30×1.5 M30×1.5	32.5 32.5 32.5	37 37 37	100 100 100	63 63 63	1 1 1	8 8 8	30.5 30.5 30.5	17 17 17	1 1 1	1.5 1.5 1.5	49 49 49	438 438 438	67 700	144 000 144 000 144 000	85 900 85 900 85 900

Eccentric Type Cam Followers Full Complement Type/With Screwdriver Slot




Outside diameter of eccentric collar 9 — 41 mm


CFE...VR


Outside diameter		Identific		Mass (Ref.)				
of eccentric collar	Shield With crowned outer ring	d type With cylindrical outer ring	Seale With crowned outer ring	d type With cylindrical outer ring	g	D	C	$d_{\rm e}$
9	CFE 6 VR	CFE 6 V	CFE 6 VUUR	CFE 6 VUU	21	16	11	9
11	CFE 8 VR	CFE 8 V	CFE 8 VUUR	CFE 8 VUU	32.5	19	11	11
13	CFE 10 VR CFE 10-1 VR	CFE 10 V CFE 10-1 V	CFE 10 VUUR CFE 10-1 VUUR	CFE 10 VUU CFE 10-1 VUU	50.5 66	22 26	12 12	13 13
16	CFE 12 VR CFE 12-1 VR	CFE 12 V CFE 12-1 V	CFE 12 VUUR CFE 12-1 VUUR	CFE 12 VUU CFE 12-1 VUU	107 117	30 32	14 14	16 16
22	CFE 16 VR	CFE 16 V	CFE 16 VUUR	CFE 16 VUU	193	35	18	22
24	CFE 18 VR	CFE 18 V	CFE 18 VUUR	CFE 18 VUU	285	40	20	24
27	CFE 20 VR CFE 20-1 VR	CFE 20 V CFE 20-1 V	CFE 20 VUUR CFE 20-1 VUUR	CFE 20 VUU CFE 20-1 VUU	505 430	52 47	24 24	27 27
33	CFE 24 VR CFE 24-1 VR	CFE 24 V CFE 24-1 V	CFE 24 VUUR CFE 24-1 VUUR	CFE 24 VUU CFE 24-1 VUU	900 1 220	62 72	29 29	33 33
41	CFE 30 VR CFE 30-1 VR CFE 30-2 VR	CFE 30 V CFE 30-1 V CFE 30-2 V	CFE 30 VUUR CFE 30-1 VUUR CFE 30-2 VUUR	CFE 30 VUU CFE 30-1 VUU CFE 30-2 VUU	2 030 2 190 2 380	80 85 90	35 35 35	41 41 41

Remarks 1. Models with a stud thread diameter G of 10 mm or less (marked \star) are provided with an oil hole on the stud head only. Other models are provided with one oil hole each on the head, outside surface and end surface of the stud.

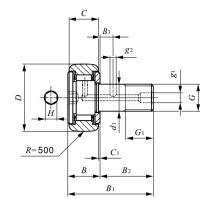
CFE...V

CFE...VUUR

CFE...VUU

	Bound	dary dii	mensio	ns m	m			Eccentricity	Mounting dimension	Maximum tightening torque	Basic dynamic load rating	load rating	Maximum allowable static load	
G	B_3	B max	B_1 max	B_2	C_1	g_1	G_1	$r_{\rm s \ min}^{(1)}$	arepsilon	Min. mm	N-m	C N	C ₀	N
M 6×1	7.5	12.2	28.2	16	0.6	*4	8.5	0.3	0.4	11	2.7	6 980	8 500	1 950
M 8×1.25	9.5	12.2	32.2	20	0.6	*4	10.5	0.3	0.4	13	6.5	8 170	11 200	4 620
M10 × 1.25 M10 × 1.25			36.2 36.2		0.6 0.6	*4 *4	12.5 12.5		0.4 0.4	16 16	13.8 13.8	9 570 9 570	14 500 14 500	8 650 8 650
M12 × 1.5 M12 × 1.5	11.5 11.5		40.2 40.2		0.6 0.6	6	13.5 13.5		0.8	21 21	21.9 21.9	13 500 13 500		13 200 13 200
$M16 \times 1.5$	15.5	19.6	52.1	32.5	8.0	6	17	0.6	8.0	26	58.5	20 700	37 600	23 200
M18 × 1.5	17.5	21.6	58.1	36.5	8.0	6	19	1	8.0	29	86.2	25 300	51 300	31 100
M20 × 1.5 M20 × 1.5	19.5 19.5	25.6 25.6	66.1 66.1	40.5 40.5	0.8 0.8	8	21 21	1 1	0.8 0.8	34 34	119 119	33 200 33 200		37 500 37 500
M24 × 1.5 M24 × 1.5	25.5 25.5		80.1 80.1		0.8 0.8	8	24 24	1 1	0.8	40 40	215 215	46 600 46 600		52 000 52 000
M30 × 1.5 M30 × 1.5 M30 × 1.5	32.5 32.5 32.5	37	100 100 100	63 63 63	1 1 1	8 8 8	30.5 30.5 30.5	1	1.5 1.5 1.5	49 49 49	438 438 438	67 700 67 700 67 700		85 900

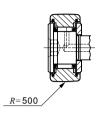
NUCF CFS

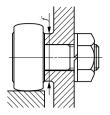

^{2.} Provided with prepacked grease.

II)KI

CAM FOLLOWERS

Thrust Disk Type Cam Followers With Cage/With Hexagon Hole


Stud dia. 3 — 12mm

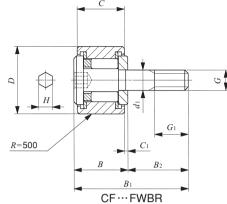

CF...WBR

	ldentificati	on number	Mass (Ref.)			Bour	ndary dimension	s mm
Stud dia.	Shield type	Sealed type	g	D	C	d_1	G	G_1
3	CF 3 WBR	CF 3 WBUUR	4.3	10	7	3	M 3×0.5	5
4	CF 4 WBR	CF 4 WBUUR	7.4	12	8	4	M 4×0.7	6
5	CF 5 WBR	CF 5 WBUUR	10.3	13	9	5	M 5×0.8	7.5
6	CF 6 WBR	CF 6 WBUUR	18.5	16	11	6	M 6×1	8
8	CF 8 WBR	CF 8 WBUUR	28.5	19	11	8	M 8×1.25	10
	CF 10 WBR	CF 10 WBUUR	45	22	12	10	M10 × 1.25	12
10	CF 10-1 WBR	CF 10-1 WBUUR	60	26	12	10	M10 × 1.25	12
	CF 12 WBR	CF 12 WBUUR	95	30	14	12	M12 × 1.5	13
12	CF 12-1 WBR	CF 12-1 WBUUR	105	32	14	12	M12 × 1.5	13

Remarks1. Models with a stud diameter d_1 of 10 mm or less have no oil hole. Other models are provided with one oil hole each on the outside surface and end surface of the stud.

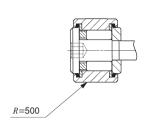
2. Shield type models with a stud diameter d_1 of 10 mm or less and the sealed type models are provided with prepacked grease. Other models are not provided with prepacked grease. Perform proper lubrication for use.

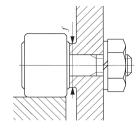
CF...WBUUR


	I	ı	I	I	I	ı	I	Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load
В	B_1	B_2	B_3	C_1	<i>g</i> ₁	g_2	Н	Min. mm	N-m	N	N	N
8	17	9	_	0.5	_	_	2	6.8	0.34	1 500	1 020	384
9	20	11		0.5		_	2.5	8.3	0.78	2 070	1 590	834
10	23	13	_	0.5			3	9.3	1.6	2 520	2 140	1 260
12.2 max	28.2 max	16	_	0.6	_	_	3	11	2.7	3 660	3 650	1 950
12.2 max	32.2 max	20		0.6			4	13	6.5	4 250	4 740	4 620
13.2 max	36.2 max	23	_	0.6	_	_	4	16	13.8	5 430	6 890	6 890
13.2 max	36.2 max	23		0.6		_	4	16	13.8	5 430	6 890	6 890
15.2 max	40.2 max	25	6	0.6	6	3	6	21	21.9	7 910	9 790	9 790
15.2 max	40.2 max	25	6	0.6	6	3	6	21	21.9	7 910	9 790	9 790

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch NUCF CFS

Thrust Disk Type Stainless Steel Made Cam Followers With Cage/With Hexagon Hole



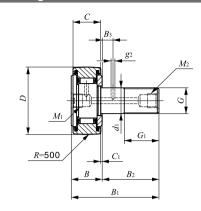


Stud dia. 3 — 5mm

								01	- · · · · V V L	71 1		
			Identificati	on nu	mbe	r	Mass (Ref.)			Boun	ndary dimension	s mm
Stud dia.	SI	nield	type		Sea	lled type	g	D	C	d_1	G	G_1
3	CF	3	FWBR	CF	3	FWBUUR	4.3	10	7	3	M 3×0.5	5
4	CF	4	FWBR	CF	4	FWBUUR	7.4	12	8	4	M 4×0.7	6
5	CF	5	FWBR	CF	5	FWBUUR	10.3	13	9	5	M 5×0.8	7.5

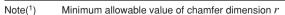
Remarks1. No oil hole is provided.

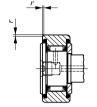
CF...FWBUUR

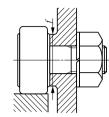

				Oi	TVVDOON					
	I	I	I	I	Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load	
В	B_1	B_2	C_1	Н	Min. mm	N-m	N	N	N	
8	17	9	0.5	2	6.8	0.34	1 200	813	384	
9	20	11	0.5	2.5	8.3	0.78	1 650	1 270	834	
10	23	13	0.5	3	9.3	1.6	1 930	1 730	1 260	

^{2.} Provided with prepacked grease.

Centralized Lubrication Type Cam Followers With Cage/With Screwdriver Slot




Stud dia. 6 – 30mm

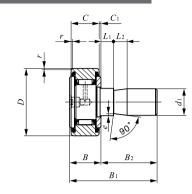

\sim	ᆮ.	. 🗅	łU.	11

			CF····RU1							
	Identification	on number	Mass (Ref.)			Bour	dary dimension	s mm		
Stud dia.	With crowned outer ring	With cylindrical outer ring	g	D	C	d_1	G	G_1		
6	CF-RU1- 6	CF-FU1- 6	18.5	16	11	6	M 6×1	8		
8	CF-RU1- 8	CF-FU1- 8	28.5	19	11	8	M 8×1.25	10		
10	CF-RU1-10 CF-RU1-10-1	CF-FU1-10 CF-FU1-10-1	45 60	22 26	12 12	10 10	M10 × 1.25 M10 × 1.25	12 12		
12	CF-RU1-12 CF-RU1-12-1	CF-FU1-12 CF-FU1-12-1	95 105	30 32	14 14	12 12	M12 × 1.5 M12 × 1.5	13 13		
16	CF-RU1-16	CF-FU1-16	170	35	18	16	M16 × 1.5	17		
18	CF-RU1-18	CF-FU1-18	250	40	20	18	M18 × 1.5	19		
20	CF-RU1-20 CF-RU1-20-1	CF-FU1-20 CF-FU1-20-1	460 385	52 47	24 24	20 20	M20 × 1.5 M20 × 1.5	21 21		
24	CF-RU1-24 CF-RU1-24-1	CF-FU1-24 CF-FU1-24-1	815 1 140	62 72	29 29	24 24	M24 × 1.5 M24 × 1.5	25 25		
30	CF-RU1-30 CF-RU1-30-1 CF-RU1-30-2	CF-FU1-30 CF-FU1-30-1 CF-FU1-30-2	1 870 2 030 2 220	80 85 90	35 35 35	30 30 30	M30 × 1.5 M30 × 1.5 M30 × 1.5	32 32 32		

Remarks1. Models with a stud diameter d_1 of 12 mm or less are provided with a lubrication tapped hole on the stud head only. Other models are provided with one lubrication tapped hole each on the head and end surface of the stud.

CF···FU1

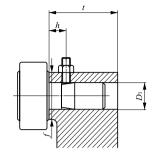
	I	I	I	I	l	I	I	l (1)	Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load	
B max	B ₁	B_2	B_3	C_1	<i>g</i> ₂	M_1	M_2	$r_{\rm s min}^{(1)}$	Min. mm	N-m	N	N	N	
12.2	28.2	16	_	0.6	_			0.3	11	2.7	3 660	3 650	1 950	
12.2	32.2	20		0.6				0.3	13	6.5	4 250	4 740	4 620	
13.2 13.2	36.2 36.2	23 23	_	0.6 0.6	_	M6× 0.75			0.3 0.3	16 16	13.8 13.8	5 430 5 430	6 890 6 890	6 890 6 890
15.2 15.2	40.2 40.2	25 25	_	0.6 0.6	_			0.6 0.6	21 21	23.9 23.9	7 910 7 910	9 790 9 790	9 790 9 790	
19.6	52.1	32.5	8	0.8	3			0.6	26	58.5	12 000	18 300	18 300	
21.6	58.1	36.5	8	0.8	3			1	29	86.2	14 800	25 200	25 200	
25.6 25.6	66.1 66.1	40.5 40.5	9 9	0.8	4 4	PT	PT	1 1	34 34	119 119	20 700 20 700	34 600 34 600	34 600 34 600	
30.6 30.6	80.1 80.1	49.5 49.5	11 11	0.8 0.8	4 4	1/8	1/8	1	40 40	215 215	30 500 30 500	52 600 52 600	52 000 52 000	
37 37 37 37	100 100 100	63 63 63	15 15 15	1 1 1	4 4 4			1 1 1	49 49 49	438 438 438	45 400 45 400 45 400	85 100 85 100 85 100	85 100 85 100 85 100	


NUCF

CFS

^{2.} Provided with prepacked grease.

Easy Mounting Type Cam Followers With Cage/With Screwdriver Slot



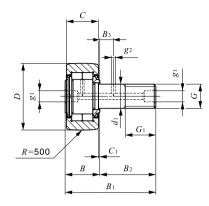
Stud dia. 6 – 20mm

CF...SFU

						Cr	····SFU			
Stud dia.	Identification	Mass (Ref.)					Boundary	dimensio	ons mm	
mm	number	g	D	C	d_1	B max	B_1 max	B_2	C_1	L_1
6	CF-SFU- 6	19.5	16	11	6	12.2	32	19.8	0.6	5
8	CF-SFU- 8	29	19	11	8	12.2	32	19.8	0.6	5
10	CF-SFU-10 CF-SFU-10-1	44 59	22 26	12 12	10 10	13.2 13.2	33 33	19.8 19.8	0.6 0.6	5 5
12	CF-SFU-12 CF-SFU-12-1	94 104	30 32	14 14	12 12	15.2 15.2	35 35	19.8 19.8	0.6 0.6	5 5
16	CF-SFU-16	164	35	18	16	19.6	44.5	24.9	0.8	10
18	CF-SFU-18	235	40	20	18	21.6	46.5	24.9	0.8	10
20	CF-SFU-20 CF-SFU-20-1	435 360	52 47	24 24	20 20	25.6 25.6	50.5 50.5	24.9 24.9	0.8	10 10

Note(1) Minimum allowable value of chamfer dimension	n r
--	-----

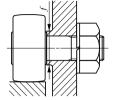
				Mounting d	imension	s mm		Basic dynamic load rating	Basic static load rating	Maximum allowable static load
L_2	e	(1) <i>r</i> _{s min}	D_1	Tolerance	<i>t</i> Min.	f Min.	h (Ref.)	C N	C_0 N	N
10	0.3	0.3	6	+ 0.012 0	20	11	10	3 660	3 650	1 950
10	0.5	0.3	8	1 0 015	20	13	10	4 250	4 740	4 620
10 10	0.5 0.5	0.3 0.3	10 10	+ 0.015 0	20 20	16 16	10 10	5 430 5 430	6 890 6 890	6 890 6 890
10 10	1 1	0.6 0.6	12 12	+ 0.018	20 20	21 21	10 10	7 910 7 910	9 790 9 790	9 790 9 790
10	1	0.6	16	0	25	26	15	12 000	18 300	18 300
10	1	1	18		25	29	15	14 800	25 200	25 200
10	1 1	1 1	20 20	+0.021	25 25	34 34	15 15	20 700 20 700	34 600 34 600	34 600 34 600


Remarks1. No oil hole is provided.

2. Provided with prepacked grease.

CAM FOLLOWERS

Heavy Duty Type Cam Followers Full Compliment Type/With Screwdriver Slot


Stud dia. 10 – 30mm

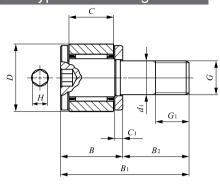
NUCF...R

						NOCE	11			
Charl die	Identification	Mass (Ref.)				Bou	ndary di	mensior	ns mm	
Stud dia.	number	g	D	C	d_1	G	G_1	B max	B_1 max	B_2
10	NUCF 10 R NUCF 10-1 R	44 58	22 26	12 12	10 10	M10 × 1.25 M10 × 1.25	12 12	13.2 13.2	36.2 36.2	23 23
12	NUCF 12 R NUCF 12-1 R	86 97	30 32	14 14	12 12	M12 × 1.5 M12 × 1.5	13 13	15.2 15.2	40.2 40.2	25 25
16	NUCF 16 R	167	35	18	16	M16 × 1.5	17	19.6	52.1	32.5
18	NUCF 18 R	244	40	20	18	M18 × 1.5	19	21.6	58.1	36.5
20	NUCF 20 R NUCF 20-1 R	457 384	52 47	24 24	20 20	M20 × 1.5 M20 × 1.5	21 21	25.6 25.6	66.1 66.1	40.5 40.5
24	NUCF 24 R NUCF 24-1 R	789 1 020	62 72	29 29	24 24	M24 × 1.5 M24 × 1.5	25 25	30.6 30.6	80.1 80.1	49.5 49.5
30	NUCF 30 R NUCF 30-2 R	1 600 1 970	80 90	35 35	30 30	M30 × 1.5 M30 × 1.5	32 32	37 37	100	63 63

Remarks1.	Models with a stud diameter d_1 of 10 mm or less (marked *) are provided with an oil hole on the stud head only.	Other models are
	provided with one oil hole each on the head, outside surface and end surface of the stud.	

^{2.} Provided with prepacked grease.

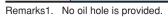
	l			Mounting dimension f	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load	
B_3	C_1	g_1	g_2	Min. mm	N-m	N	N	N	
_	0.6 0.6	*4 *4	_ _	12 12	13.8 13.8	10 400 10 400	11 500 11 500	5 300 9 210	
6 6	0.6 0.6	6 6	3 3	17 17	21.9 21.9	14 000 14 000	13 400 13 400	5 650 9 040	
8	0.8	6	3	20	58.5	23 400	27 300	11 800	
8	0.8	6	3	22	86.2	25 200	30 900	20 300	
9 9	0.8 0.8	8	4 4	31 27	119 119	43 100 38 900	58 100 49 000	30 000 27 200	
11 11	0.8 0.8	8	4 4	38 44	215 215	58 200 63 900	75 300 88 800	35 200 57 000	
15 15	1 1	8 8	4	45 45	438 438	90 300 90 300	121 000 121 000	98 300 98 300	

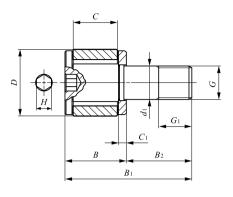

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch NUCF CFS CR

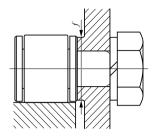
CAM FOLLOWERS

Miniature Type Cam Followers With Cage/With Hexagon Hole

Full Complement Type/With Hexagon Hole




Stud dia. 2 – 6mm

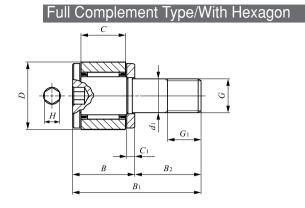

CFS

						CF3			
0. 1.1.	Identificati	ion number	Mass (Ref.)				Boundary di	mension	s mm
Stud dia.	With cage	Full complement	g	D	C	d_1	G	G_1	В
2	CFS 2	CFS 2 V	0.6 0.6	4.5 4.5	2.5 2.5	2 2	M2 × 0.4 M2 × 0.4	2 2	4
2.5	CFS 2.5	 CFS 2.5 V	1 1	5 5	3	2.5 2.5	M2.5 × 0.45 M2.5 × 0.45	2.5 2.5	4.5 4.5
3	CFS 3	CFS 3 V	2 2	6 6	4 4	3 3	M3 × 0.5 M3 × 0.5	3 3	5.5 5.5
4	CFS 4	CFS 4 V	4 4	8 8	5 5	4 4	M4 × 0.7 M4 × 0.7	4 4	7 7
5	CFS 5	CFS 5 V	7 7	10 10	6 6	5 5	M5 × 0.8 M5 × 0.8	5 5	8 8
6	CFS 6	CFS 6 V	13 13	12 12	7	6 6	M6 × 1 M6 × 1	6 6	9.5 9.5

2. Provided with prepacked grease.

CFS...V

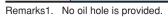
				010 1					
_	_			Mounting dimension f Min.	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load	
B_1	B_2	C_1	Н	mm	N-cm	N	N	N	
8 8	4 4	0.7 0.7	0.9 0.9	4.3 4.3	9.1 9.1	288 768	202 734	202 229	
9.5 9.5	5 5	0.7 0.7	0.9 0.9	4.8 4.8	18.7 18.7	428 1 000	351 1 080	351 360	
11.5 11.5	6 6	0.7 0.7	1.3 1.3	5.8 5.8	33.5 33.5	629 1 420	611 1 790	484 484	
15 15	8	1.0 1.0	1.5 1.5	7.7 7.7	77.7 77.7	1 120 2 370	1 120 3 000	919 919	
18 18	10 10	1.0 1.0	2 2	9.6 9.6	158 158	1 570 3 180	1 850 4 700	1 570 1 570	
21.5 21.5	12 12	1.2	2.5 2.5	11.6 11.6	268 268	2 090 4 610	2 200 6 250	2 150 2 150	

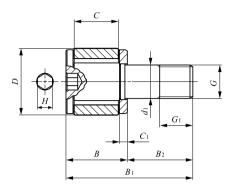

CFS CR

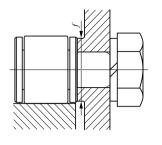
NUCF

CAM FOLLOWERS

Miniature Type Cam Followers Stainless Steel Made With Cage/With Hexagon Hole



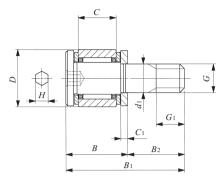

Stud dia. 2.5 — 6mm


\cap			E

					01	0 .			
	Identificati	on number	Mass (Ref.)				Boundary dir	nensions	s mm
Stud dia.	With cage	Full complement	g	D	C	d_1	G	G_1	В
2.5	CFS 2.5 F	 CFS 2.5 FV	1 1	5 5	3 3	2.5 2.5	M2.5 × 0.45 M2.5 × 0.45	2.5 2.5	4.5 4.5
3	CFS 3 F	CFS 3 FV	2 2	6 6	4	3	M3 × 0.5 M3 × 0.5	3	5.5 5.5
4	CFS 4 F	CFS 4 FV	4 4	8	5 5	4 4	M4 × 0.7 M4 × 0.7	4 4	7
5	CFS 5 F	CFS 5 FV	7 7	10 10	6 6	5 5	M5 × 0.8 M5 × 0.8	5 5	8
6	CFS 6 F	CFS 6 FV	13 13	12 12	7 7	6 6	M6 ×1 M6 ×1	6 6	9.5 9.5

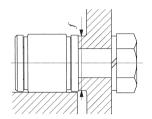
^{2.} Provided with prepacked grease.

CFS ··· FV


				0					
	_			Mounting dimension f Min.	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load	
B_1	B_2	C_1	Н	mm	N-cm	N	N	N	
9.5 9.5	5 5	0.7 0.7	0.9 0.9	4.8 4.8	18.7 18.7	342 800	281 862	281 360	
11.5 11.5	6	0.7 0.7	1.3 1.3	5.8 5.8	33.5 33.5	504 1 140	488 1 430	484 484	
15 15	8 8	1.0 1.0	1.5 1.5	7.7 7.7	77.7 77.7	897 1 900	894 2 400	894 919	
18 18	10 10	1.0 1.0	2 2	9.6 9.6	158 158	1 250 2 540	1 480 3 760	1 480 1 570	
21.5 21.5	12 12	1.2 1.2	2.5 2.5	11.6 11.6	268 268	1 670 3 690	1 760 5 000	1 760 2 150	

CAM FOLLOWERS

Thrust Disk Type Miniature Cam Followers With Cage/With Hexagon Hole



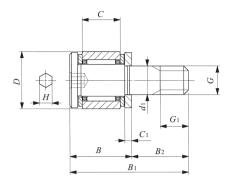
S

	■ B ₁	
Stud dia. 2 — 6 mm	CFS··· W	/

		Mass (Ref.)			Во	undary dimensio	ns mm	
Stud dia.	Identification number	g	D	C	d_1	G	G_1	В
2	CFS 2 W	0.6	4.5	2.5	2	M2 × 0.4	2	4.5
2.5	CFS 2.5 W	1	5	3	2.5	M2.5 × 0.45	2.5	5
3	CFS 3 W	2	6	4	3	M3 × 0.5	3	6.5
4	CFS 4 W	4	8	5	4	M4 × 0.7	4	8
5	CFS 5 W	7	10	6	5	M5 × 0.8	5	9
6	CFS 6 W	13	12	7	6	M6 ×1	6	10.5

Remarks 1. No oil hole is provided.

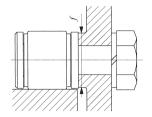
				Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load	
B_1	B_2	C_1	Н	Min. mm	N-cm	N	N	N	
8.5	4	0.7	0.9	4.3	9.1	288	202	194	
10	5	0.7	0.9	4.8	18.7	428	351	313	
12.5	6	0.7	1.3	5.8	33.5	629	611	399	
16	8	1.0	1.5	7.7	77.7	1 120	1 120	785	
19	10	1.0	2	9.6	158	1 570	1 850	1 370	
22.5	12	1.2	2.5	11.6	268	2 090	2 200	1 920	



^{2.} Provided with prepacked grease.

CAM FOLLOWERS

Thrust Disk Type Miniature Cam Followers · Stainless Steel Made With Cage/With Hexagon Hole



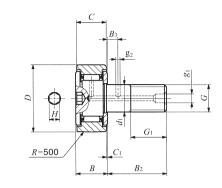
Stud dia.2 – 6 mm

CES	 FW
CEO	 -vv

		Mass (Ref.)			Во	oundary dimensions mm			
Stud dia.	Identification number	g	D	C	d_1	G	G_1	В	
2	CFS 2 FW	0.6	4.5	2.5	2	M2 × 0.4	2	4.5	
2.5	CFS 2.5 FW	1	5	3	2.5	M2.5 × 0.45	2.5	5	
3	CFS 3 FW	2	6	4	3	M3 × 0.5	3	6.5	
4	CFS 4 FW	4	8	5	4	M4 × 0.7	4	8	
5	CFS 5 FW	7	10	6	5	M5 × 0.8	5	9	
6	CFS 6 FW	13	12	7	6	M6 ×1	6	10.5	

Remarks 1. No oil hole is provided.

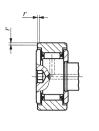
				Mounting	Maximum	Basic dynamic	Basic static	Maximum	
				$\frac{\text{dimension}}{f}$	tightening torque	load rating	load rating	allowable static load	
B_1	D	C_1	11	Min.		C	C_0		
<i>D</i> ₁	B_2		Н	mm	N-cm	N	N	N	
8.5	4	0.7	0.9	4.3	9.1	230	161	161	
10	5	0.7	0.9	4.8	18.7	342	281	281	
12.5	6	0.7	1.3	5.8	33.5	504	488	399	
16	8	1.0	1.5	7.7	77.7	897	894	785	
19	10	1.0	2	9.6	158	1 250	1 480	1 370	
22.5	12	1.2	2.5	11.6	268	1 670	1 760	1 760	

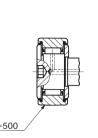


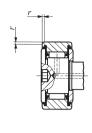
NUCF CFS CR

^{2.} Provided with prepacked grease.

Inch Series Cam Followers With Cage/With Hexagon Hole


Stud dia. 4.826 — 22.225 mm

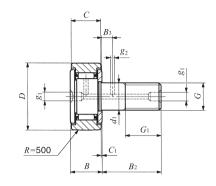

CR…BR


0		Identific	ation number		Mass (Ref.)					
Stud dia.	Shield	type	Sealed	l type	(11011)		l I		l	
mm (inch)	With crowned outer ring	With cylindrical outer ring	With crowned outer ring	With cylindrical outer ring	g	D	C	d_1	G UNF	G_1
	CR 8 BR	Ů	CR 8 BUUR		9	12.700 (½)	8.731 (11/ ₃₂)	4.826	No.10-32	6.350 (1/4)
4.826			CR 8-1 BUUR		ı	12.700 (½)		4.826	No.10-32	6.350 (½)
6.350			CR 10 BUUR		19		10.319 (13/32)	6.350 (½)	½ - 28	7.938 (5/16)
(1/4)	CR 10-1 BR	CR 10-1 B	CR 10-1 BUUR	CR 10-1 BUU	21	15.875 (5/8)	11.112 (1/16)	6.350 (½)	½ - 28	7.938 (5/16)
9.525		CR 12 B		CR 12 BUU	35	, , ,	12.700 (½)	9.525 (3/8)	³ / ₈ - 24	9.525 (3/8)
(3/8)	CR 14 BR			CR 14 BUU	46	22.225 (7/8)		9.525 (3/8)	3/ ₈ - 24	9.525 (3/8)
11.112 (½)		CR 16 B CR 18 B		CR 16 BUU CR 18 BUU	73 88	25.400 (1) 28.575 (1 ½)	15.875 (½) 15.875 (½)	11.112 (½ ₁₆) 11.112 (½ ₁₆)	$\frac{1}{16}$ - 20 $\frac{1}{16}$ - 20	12.700 ($\frac{1}{2}$) 12.700 ($\frac{1}{2}$)
12.700				CR 20 BUU			19.050 (3/4)	12.700 (1/2)	1/2 - 20	15.875 (5/8)
$(\frac{1}{2})$		CR 22 B		CR 22 BUU	l .	. , т	19.050 (3/4)	12.700 $(\frac{1}{2})$	$\frac{1}{1/2}$ - 20	15.875 ($\frac{5}{8}$)
15.875	CR 24 BR	CR 24 B	CR 24 BUUR	CR 24 BUU	225	38.100 (1 ½)	22.225 (7/8)	15.875 (⁵ / ₈)	½ - 18	19.050 (3/4)
(%)	CR 26 BR	CR 26 B	CR 26 BUUR	CR 26 BUU	260	41.275 (1 ½)	22.225 (7/8)	15.875 (½)	½ - 18	19.050 (3/4)
19.050		CR 28 B		CR 28 BUU	365	44.450 (1 ³ ⁄ ₄)		19.050 (3/4)	³ ⁄ ₄ - 16	22.225 (7/8)
(3/4)	CR 30 BR			CR 30 BUU	410	47.625 (1 ½)		19.050 (3/4)	³ ⁄ ₄ - 16	22.225 (7/8)
22.225				CR 32 BUU		` '	31.750 (1 1/4)	22.225 (7/8)	-	25.400 (1)
(%)	CR 36 BR	CR 36 B	CR 36 BUUR	CR 36 BUU	750	57.150 (2 1/4)	31.750 (1 1/4)	22.225 (⁷ / ₈)	⅓ ₈ - 14	25.400 (1)


Remarks1. Models with a stud diameter d_1 of 6.35 mm or less have no oil hole. Other models are provided with one oil hole each on the outside surface and end surface of the stud.

2. Provided with prepacked grease.

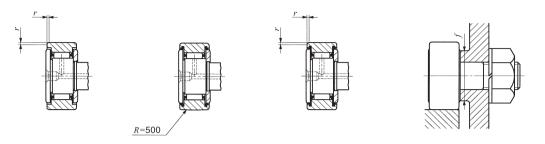
CR…B


CR...BUUR

CR...BUU

Во	undary dim	ensions r	Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating					
B max	B_2	B ₃	C_1	<i>g</i> ₁	g ₂	Н	r	Min. mm(inch)	N-m	C N	<i>C</i> ₀
10.2 (0.40)	12.700 (½)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397 (½4)	8.334(²¹ / ₆₄)	1.4	2 520	2 140
10.9 (0.43)	15.875 (½)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397 (½4)	8.334(²¹ / ₆₄)	1.4	2 520	2 140
11.8 (0.46)	15.875 (½)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397 (½4)	11.509 (29/ ₆₄)	3.4	3 650	3 670
12.5 (0.49)	19.050 (½)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397 (½4)	11.509 (29/ ₆₄)	3.4	3 650	3 670
14.2 (0.56)	22.225(½)	6.350 (½)	0.794 (½)	4.762 (½)	2.381(3/32)	4.762 (³ / ₁₆)	0.794(½)	13.494 (½)	10.8	4 420	5 110
14.2 (0.56)	22.225(½)	6.350 (½)	0.794 (½)	4.762 (½)	2.381(3/32)	4.762 (³ / ₁₆)	0.794(½)	15.081 (½)	10.8	4 790	5 810
17.3 (0.68)	25.400(1)	6.350(½)	0.794(½)	4.762 (½)	3.175(½)	6.350(½)	1.191 (3/ ₆₄)	17.859 (45/ ₆₄)	17.4	8 810	10 800
17.3 (0.68)	25.400(1)	6.350(½)	0.794(½)	4.762 (½)	3.175(½)	6.350(½)	1.588 (1/ ₁₆)	19.050 (3/ ₄)	17.4	9 180	11 600
20.4(0.80)	31.750(1 ½)	7.938 (½)	0.794(½)	4.762 (½)	3.175(½)	6.350(½)	1.588 (½)	21.828(⁵⁵ / ₆₄)	27.7	14 200	16 000
20.4(0.80)	31.750(1 ½)	7.938 (½)	0.794(½)	4.762 (½)	3.175(½)	6.350(½)	1.588 (½)	21.828(⁵⁵ / ₆₄)	27.7	14 200	16 000
23.6(0.93)	38.100(1 ½)	9.525 (3/ ₈)	0.794(½)	4.762 (½)	3.969(\(\frac{5}{32} \) 3.969(\(\frac{5}{32} \)	7.938 (½6)	1.588 (½)	26.196(1 ³ / ₆₄)	55.7	18 600	24 300
23.6(0.93)	38.100(1 ½)	9.525 (3/ ₈)	0.794(½)	4.762 (½)		7.938 (½6)	1.588 (½)	26.196(1 ³ / ₆₄)	55.7	18 600	24 300
26.8 (1.06)	44.450(1 ³ / ₄)	11.112(½)	0.794(½)	4.762 (½)	3.969(\(\frac{5}{32} \) 3.969(\(\frac{5}{32} \)	7.938 (½6)	1.588 (½)	32.543(1 ⁹ / ₃₂)	100	25 100	38 200
26.8 (1.06)	44.450(1 ³ / ₄)	11.112(½)	0.794(½)	4.762 (½)		7.938 (½6)	1.588 (½)	32.543(1 ⁹ / ₃₂)	100	25 100	38 200
33.5 (1.32)	50.800(2)	12.700(½)	0.794(%)	4.762 (¾ ₆)	4.762(¾ ₆)	11.112(½6)	1.588 (½ ₆)	37.306(1½)	162	32 500	63 900
33.5 (1.32)	50.800(2)	12.700(½)	0.794(%)	4.762 (¾ ₆)	4.762(¾ ₆)	11.112(½6)	1.588 (½ ₆)	37.306(1½)	162	32 500	63 900

Inch Series Cam Followers With Cage/With Screwdriver Slot


Stud dia. 4.826 — 22.225 mm

CR…R

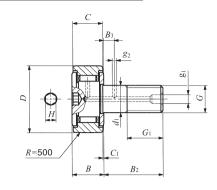
_											
	Stud		Identific	ation number		Mass (Ref.)					
	dia. mm (inch)	Shield With crowned outer ring	d type With cylindrical outer ring	Sealed With crowned outer ring	type With cylindrical outer ring	g	D	C	d_1	G UNF	G_1
4	1.826	CR 8 R CR 8-1 R	CR 8 CR 8-1	CR 8 UUR CR 8-1 UUR	CR 8 UU CR 8-1 UU	9 10	12.700 (½) 12.700 (½)		4.826 4.826	No.10-32 No.10-32	6.350 (½) 6.350 (½)
	6.350 (½)	CR 10 R CR 10-1 R	CR 10 CR 10-1	CR 10 UUR CR 10-1 UUR	CR 10 UU CR 10-1 UU	19 21		10.319 (½) 11.112 (½)	6.350 (½) 6.350 (½)	½ - 28 ½ - 28	7.938 (½) 7.938 (½)
	9. 525 (3/8)	CR 12 R CR 14 R	CR 12 CR 14	CR 12 UUR CR 14 UUR	CR 12 UU CR 14 UU	35 46		12.700 (½) 12.700 (½)	9.525 (³ / ₈) 9.525 (³ / ₈)	3/8 - 24 3/8 - 24	9.525 (³ / ₈) 9.525 (³ / ₈)
	1.112 (½6)	CR 16 R CR 18 R	CR 16 CR 18	CR 16 UUR CR 18 UUR	CR 16 UU CR 18 UU	73 88		15.875 (½) 15.875 (½)	11.112 (½6) 11.112 (½6)	7/16 - 20 7/16 - 20	12.700 (½) 12.700 (½)
	2.700 (½)	CR 20 R CR 22 R	CR 20 CR 22	CR 20 UUR CR 22 UUR	CR 20 UU CR 22 UU	132 157	. , т	19.050 (³ ⁄ ₄) 19.050 (³ ⁄ ₄)	12.700 ($\frac{1}{2}$) 12.700 ($\frac{1}{2}$)	$\frac{1}{2}$ - 20 $\frac{1}{2}$ - 20	15.875 (½) 15.875 (½)
	5.875 (%)	CR 24 R CR 26 R	CR 24 CR 26	CR 24 UUR CR 26 UUR	CR 24 UU CR 26 UU	225 260		22.225 (½ ₈) 22.225 (½ ₈)	15.875 (⁵ / ₈) 15.875 (⁵ / ₈)	½ - 18 ½ - 18	19.050 (³ ⁄ ₄) 19.050 (³ ⁄ ₄)
	9.050 (¾)	CR 28 R CR 30 R	CR 28 CR 30	CR 28 UUR CR 30 UUR	CR 28 UU CR 30 UU	365 410	44.450 (1 ³ ⁄ ₄) 47.625 (1 ^{7⁄} ₈)	25.400 (1) 25.400 (1)	19.050 (³ ⁄ ₄) 19.050 (³ ⁄ ₄)		22.225 (½ ₈) 22.225 (½ ₈)
	2.225 (%)	CR 32 R CR 36 R	CR 32 CR 36	CR 32 UUR CR 36 UUR	CR 32 UU CR 36 UU	615 750		31.750 (1 ½) 31.750 (1 ½)	22.225 (⁷ / ₈) 22.225 (⁷ / ₈)	$\frac{7}{8}$ - 14 $\frac{7}{8}$ - 14	25.400 (1) 25.400 (1)

Remarks1. Models with a stud diameter d_1 of 6.35 mm or less (marked *) are provided with an oil hole on the stud head only. Other models are provided with one oil hole each on the head, outside surface and end surface of the stud.

2. Provided with prepacked grease.

CR	CRUUR	CRUU
OII	011 0011	011 00

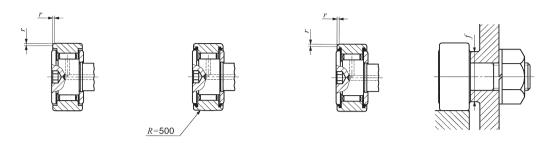
I	Boundary di	mensions	mm(inch		Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating			
B max	B_2	B ₃	C_1	<i>g</i> ₁	<i>g</i> ₂	r	f Min. mm(inch)	N-m	C N	C_0 N	
10.2 (0.40) 10.9 (0.43)	12.700 (½) 15.875 (½)	- (-) - (-)	0.794(½) 0.794(½)	*3.175(½) *3.175(½)	- (-) - (-)	0.397 (½) 0.397 (½)	8.334 (2½) 8.334 (2½)	1.4 1.4	2 520 2 520	2 140 2 140	
11.8 (0.46) 12.5 (0.49)	15.875(⁵ / ₈) 19.050(³ / ₄)	- (-) - (-)	0.794 (½) 0.794 (½)	*3.175(½) *3.175(½)	- (-) - (-)	0.397 (½) 0.397 (½)	11.509 (2% ₄) 11.509 (2% ₆)	3.4 3.4	3 650 3 650	3 670 3 670	
14.2 (0.56) 14.2 (0.56)	22.225(½) 22.225(½)	6.350 (½ ₄) 6.350 (½ ₄)	0.794(½) 0.794(½)	4.762 (³ / ₁₆) 4.762 (³ / ₁₆)	02	0.794(½) 0.794(½)	13.494(½) 15.081(½)	10.8 10.8	4 420 4 790	5 110 5 810	
17.3 (0.68) 17.3 (0.68)	25.400(1) 25.400(1)	6.350 (½ ₄) 6.350 (½ ₄)	0.794(½) 0.794(½)	4.762 (³ / ₁₆) 4.762 (³ / ₁₆)		1.191(3/ ₆₄) 1.588(1/ ₁₆)	17.859 (45/4) 19.050 (3/4)	17.4 17.4	8 810 9 180	10 800 11 600	
20.4(0.80) 20.4(0.80)	31.750(1 ½) 31.750(1 ½)	7.938 (½) 7.938 (½)	0.794(½) 0.794(½)	4.762 (³ / ₁₆) 4.762 (³ / ₁₆)	-	1.588(½) 1.588(½)	21.828(⁵⁵ / ₆₄) 21.828(⁵⁵ / ₆₄)	27.7 27.7	14 200 14 200	16 000 16 000	
23.6 (0.93) 23.6 (0.93)	38.100(1 ½) 38.100(1 ½)	9.525 (³ / ₈) 9.525 (³ / ₈)	0.794(½) 0.794(½)	4.762 (½6) 4.762 (½6)	3.969(\(\frac{5}{32} \) 3.969(\(\frac{5}{32} \)	1.588 (½) 1.588 (½)	26.196(1 ³ / ₆₄) 26.196(1 ³ / ₆₄)	55.7 55.7	18 600 18 600	24 300 24 300	
26.8 (1.06) 26.8 (1.06)	44.450(1 ³ / ₄) 44.450(1 ³ / ₄)	11.112 (½) 11.112 (½)	0.794(½) 0.794(½)	4.762 (³ / ₁₆) 4.762 (³ / ₁₆)		1.588(½) 1.588(½)	32.543(1 ½) 32.543(1 ½)	100 100	25 100 25 100	38 200 38 200	
33.5(1.32) 33.5(1.32)	50.800(2) 50.800(2)	12.700 (½2) 12.700 (½2)	0.794(½) 0.794(½)	4.762 (½6) 4.762 (½6)	- 10	1.588 (½ ₆) 1.588 (½ ₆)	37.306(1 ¹⁵ / ₂) 37.306(1 ¹⁵ / ₂)	162 162	32 500 32 500	63 900 63 900	


NUCF

IIKC

CAM FOLLOWERS

Inch Series Cam Followers Full Complement Type/With Hexagon



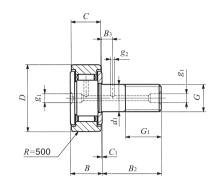
Stud dia. 4.826 — 22.225 mm

CR…VBR

Stud		Identifi	cation number		Mass (Ref.)					
dia. mm (inch)	Shield With crowned outer ring	type With cylindrical outer ring	Sealed With crowned outer ring	I type With cylindrical outer ring	g	D	C	d_1	G UNF	G_1
4.826	1		CR 8 VBUUR CR 8-1 VBUUR		9 10	12.700 (½) 12.700 (½)	8.731 (½) 9.525 (¾)	4.826 4.826	No.10-32 No.10-32	6.350 (½) 6.350 (½)
6.350 (½)			CR 10 VBUUR CR 10-1 VBUUR		19 21	15.875 (½) 15.875 (½)	10.319 (½3) 11.112 (½6)	6.350 (½ ₄) 6.350 (½ ₄)	½ - 28 ½ - 28	7.938 (½) 7.938 (½)
9.525 (³ / ₈)		CR 12 VB CR 14 VB			36 47	19.050 (³ ⁄ ₄) 22.225 (⁷ ⁄ ₈)	12.700 (½) 12.700 (½)	9.525 (³ / ₈) 9.525 (³ / ₈)	3/8 - 24 3/8 - 24	9.525 (³ / ₈) 9.525 (³ / ₈)
11.112 (½6)		CR 16 VB			74 85	25.400(1) 28.575(1 ½)	15.875 (½) 15.875 (½)		⅓ ₁₆ - 20 ⅓ ₁₆ - 20	12.700 (½) 12.700 (½)
12.700 (½)		CR 20 VB			137 160	31.750 (1 ½) 34.925 (1 ¾)	19.050 (³ ⁄ ₄) 19.050 (³ ⁄ ₄)		$\frac{1}{2}$ - 20 $\frac{1}{2}$ - 20	15.875 (½) 15.875 (½)
15.875 (5/8)		CR 24 VB CR 26 VB			230 265	38.100 (1 ½) 41.275 (1 ½)	22.225 (½) 22.225 (½)	-	½ - 18 ⅓ - 18	19.050 (³ ⁄ ₄) 19.050 (³ ⁄ ₄)
		CR 28 VB			372 418	44.450 (1 ³ ⁄ ₄) 47.625 (1 ⁷ ⁄ ₈)		19.050 (³ ⁄ ₄) 19.050 (³ ⁄ ₄)	³ ⁄ ₄ - 16 ³ ⁄ ₄ - 16	22.225 (½ ₈) 22.225 (½ ₈)
22.225 (%)		CR 32 VB CR 36 VB			627 759	50.800 (2) 57.150 (2 ½)	31.750 (1 ½) 31.750 (1 ½)	-	½ - 14 ⅓ - 14	25.400(1) 25.400(1)

Remarks1. Models with a stud diameter d_1 of 6.35 mm or less have no oil hole. Other models are provided with one oil hole each on the outside surface and end surface of the stud.

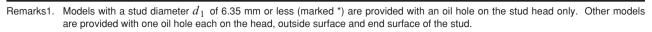
CR···VB CR···VBUUR CR···VBL

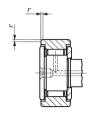

	Boundary di	mensions	mm(inch	1)			Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating	
B	B_2	B_3	C_1	g_1	g_2	H	r	f Min. mm(inch)	N-m	C N	C_0 N
10.2(0.40)	12.700 (½)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397 (½)	8.334(²¹ / ₆₄)	1.4	4 260	4 750
10.9(0.43)	15.875 (½)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397 (½)	8.334(²¹ / ₆₄)		4 710	5 410
11.8 (0.46)	15.875(½)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397 (½4)	11.509 (²⁹ / ₆₄)	3.4	5 830	7 660
12.5 (0.49)	19.050(¾)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397 (½4)	11.509 (²⁹ / ₆₄)	3.4	6 340	8 530
14.2 (0.56)	22.225(½)	6.350 (½)	0.794(½)	4.762 (½)	2.381(³ / ₃₂)	4.762 (½6)	0.794(½)	13.494 (½)	10.8	8 710	12 300
14.2 (0.56)	22.225(½)	6.350 (½)	0.794(½)	4.762 (½)	2.381(³ / ₃₂)	4.762 (½6)	0.794(½)	15.081 (½)	10.8	8 710	12 300
17.3 (0.68)	25.400(1)	6.350 (½)	0.794(½)	4.762 (½)	3.175(½)	6.350 (½)	1.191 (3/4)	17.859 (45/4)	17.4	13 100	22 700
17.3 (0.68)	25.400(1)	6.350 (½)	0.794(½)	4.762 (½)	3.175(½)	6.350 (½)	1.588 (1/6)	19.050 (3/4)	17.4	13 100	22 700
20.4(0.80) 20.4(0.80)	31.750(1 ½)	7.938 (½6)	0.794 (½)	4.762 (³ / ₁₆)	3.175(½)	6.350 (½)	1.588 (½)	21.828(55/4)	27.7	23 600	31 700
	31.750(1 ½)	7.938 (½6)	0.794 (½)	4.762 (³ / ₁₆)	3.175(½)	6.350 (½)	1.588 (½)	21.828(55/4)	27.7	23 600	31 700
23.6 (0.93)	38.100(1 ½)	9.525 (³ / ₈)	0.794 (½)	4.762 (³ / ₁₆)	3.969(⁵ / ₃₂)	7.938 (½6)	1.588 (½)	26.196(1 ¾)	55.7	28 200	40 100
23.6 (0.93)	38.100(1 ½)	9.525 (³ / ₈)	0.794 (½)	4.762 (³ / ₁₆)	3.969(⁵ / ₃₂)	7.938 (½6)	1.588 (½)	26.196(1 ¾)	55.7	28 200	40 100
26.8 (1.06)	44.450 (1 ³ ⁄ ₄)	11.112 (½ ₆)	0.794(½)	4.762 (³ / ₁₆)	3.969(⁵ / ₃₂)	7.938 (½6)	1.588 (½)	32.543 (1 % ₃₂)	100	35 300	55 600
26.8 (1.06)	44.450 (1 ³ ⁄ ₄)	11.112 (½ ₆)	0.794(½)	4.762 (³ / ₁₆)	3.969(⁵ / ₃₂)	7.938 (½6)	1.588 (½)	32.543 (1 % ₃₂)	100	35 300	55 600
33.5 (1.32)	50.800(2)	12.700(½)	0.794(½)	4.762 (¾ ₆)	4.762(¾ ₆)	11.112 (½6)	1.588 (½ ₆) 1.588 (½ ₆)	37.306(1½)	162	45 700	80 600
33.5 (1.32)	50.800(2)	12.700(½)	0.794(½)	4.762 (¾ ₆)	4.762(¾ ₆)	11.112 (½6)		37.306(1½)	162	45 700	80 600

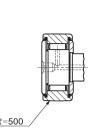
NUCF CFS CR

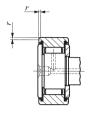
^{2.} Provided with prepacked grease.

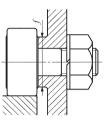
Inch Series Cam Followers Full Complement Type/With Screwdriver Slot




Stud dia. 4.826 — 31.750mm


 $\mathsf{CR} \cdots \mathsf{VR}$

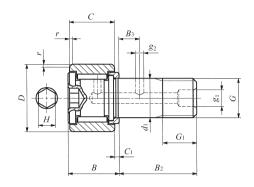

					I					
Stud		ldentifi	cation number		Mass (Ref.)					
dia. mm (inch)	Shield With crowned outer ring	type With cylindrical outer ring	Sealed With crowned outer ring	I type With cylindrical outer ring	g	D	C	d_1	G UNF	G_1
4.826	CR 8 VR CR 8-1 VR	CR 8 V CR 8-1 V	CR 8 VUUR CR 8-1 VUUR	CR 8 VUU CR 8-1 VUU	9 10	$ \begin{vmatrix} 12.700 (& \frac{1}{2}) \\ 12.700 (& \frac{1}{2}) \end{vmatrix} $	8.731(½) 9.525(½)	4.826 4.826	No.10-32 No.10-32	6.350 (½ ₄) 6.350 (½ ₄)
6.350 (½)	CR 10 VR CR 10-1 VR	CR 10 V CR 10-1 V	CR 10 VUUR CR 10-1 VUUR	CR 10 VUU CR 10-1 VUU	19 21	15.875 (½) 15.875 (½)	10.319(½) 11.112(½)	6.350 (½) 6.350 (½)		7.938 (5/16) 7.938 (5/16)
9.525 (³ / ₈)	CR 12 VR CR 14 VR	CR 12 V CR 14 V	CR 12 VUUR CR 14 VUUR	CR 12 VUU CR 14 VUU	36 47	\ / 4/	12.700(½) 12.700(½)	1 , 0		9.525 (³ / ₈) 9.525 (³ / ₈)
11.112 (½ ₁₆)	CR 16 VR CR 18 VR	CR 16 V CR 18 V	CR 16 VUUR CR 18 VUUR	CR 16 VUU CR 18 VUU	74 85	25.400(1) 28.575(1 ½)		11.112 (½) 11.112 (½)		12.700 (½) 12.700 (½)
12.700 (½)	CR 20 VR CR 22 VR	CR 20 V CR 22 V	CR 20 VUUR CR 22 VUUR	CR 20 VUU CR 22 VUU	137 160	31.750 (1 ½) 34.925 (1 ¾)	19.050(³ ⁄ ₄) 19.050(³ ⁄ ₄)			15.875 (½) 15.875 (½)
15.875 (5/8)	CR 24 VR CR 26 VR	CR 24 V CR 26 V	CR 24 VUUR CR 26 VUUR	CR 24 VUU CR 26 VUU	230 265	38.100 (1 ½) 41.275 (1 ½)	22.225(½) 22.225(½)	15.875 (½) 15.875 (½)	-	19.050 (³ ⁄ ₄) 19.050 (³ ⁄ ₄)
19.050 (³ ⁄ ₄)	CR 28 VR CR 30 VR	CR 28 V CR 30 V	CR 28 VUUR CR 30 VUUR	CR 28 VUU CR 30 VUU	372 418	(= / 4/	25.400(1) 25.400(1)	19.050 (³ ⁄ ₄) 19.050 (³ ⁄ ₄)		. , 0,
22.225 (%)	CR 32 VR CR 36 VR	CR 32 V CR 36 V	CR 32 VUUR CR 36 VUUR	CR 32 VUU CR 36 VUU	627 759	50.800 (2) 57.150 (2 ½)	31.750(1 ½) 31.750(1 ½)	22.225 (½ ₈) 22.225 (½ ₈)	-	25.400 (1) 25.400 (1)
31.750 (1 ¹ / ₄)	_	_	_	CR 48 VUU	1 960	76.200 (3	44.450 (1 ³ ⁄ ₄)	31.750 (1 ½)	1 ½ - 12	31.750 (1 ½)



^{2.} Provided with prepacked grease.

CR…V

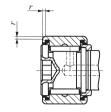
CR...VUUR

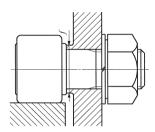

CR...VUU

Во	undary dim	ensions r	mm(inch)			Mounting dimension	Maximum tightening	Basic dynamic load rating	Basic static load rating	
B max	B_2	B_3	C_1	g ₁	g_2	r	f Min. mm(inch)	torque N-m	C N	C_0 N
10.2 (0.40)	12.700(½)	- (-)	0.794(½)	*3.175(½)	- (-)	0.397 (½4)	8.334(²¹ / ₆₄)	1.4	4 260	4 750
10.9 (0.43)	15.875(½)	- (-)	0.794(½)	*3.175(½)	- (-)	0.397 (½4)	8.334(²¹ / ₆₄)	1.4	4 710	5 410
11.8 (0.46)	15.875(⁵ / ₈)	- (-)	0.794(½)	*3.175(½)	\ /	0.397 (½)	11.509(²⁹ / ₆₄)	3.4	5 830	7 660
12.5 (0.49)	19.050(³ / ₄)	- (-)	0.794(½)	*3.175(½)		0.397 (½)	11.509(²⁹ / ₆₄)	3.4	6 340	8 530
14.2 (0.56)	22.225(½ ₈)	6.350 (½)	0.794(½)	4.762 (³ / ₁₆)		0.794(½)	13.494(½)	10.8	8 710	12 300
14.2 (0.56)	22.225(½ ₈)	6.350 (½)	0.794(½)	4.762 (³ / ₁₆)		0.794(½)	15.081(½)	10.8	8 710	12 300
17.3 (0.68)	25.400(1)	6.350 (½)	0.794(½)	4.762 (³ / ₁₆)		1.191(¾)	17.859(⁴ % ₄)	17.4	13 100	22 700
17.3 (0.68)	25.400(1)	6.350 (½)	0.794(½)	4.762 (³ / ₁₆)		1.588(¼)	19.050(³ % ₄)	17.4	13 100	22 700
20.4 (0.80)	31.750(1 ½)	7.938 (½6)	0.794(½)	4.762 (³ / ₁₆)	3.175(½)	1.588(½)	21.828(⁵⁵ / ₆₄)	27.7	23 600	31 700
20.4 (0.80)	31.750(1 ½)	7.938 (½6)	0.794(½)	4.762 (³ / ₁₆)	3.175(½)	1.588(½)	21.828(⁵⁵ / ₆₄)	27.7	23 600	31 700
23.6 (0.93)	38.100(1 ½)	9.525 (³ / ₈)	0.794(½)	4.762 (³ / ₁₆)		1.588(½)	26.196(1 ³ / ₆₄)	55.7	28 200	40 100
23.6 (0.93)	38.100(1 ½)	9.525 (³ / ₈)	0.794(½)	4.762 (³ / ₁₆)		1.588(½)	26.196(1 ³ / ₆₄)	55.7	28 200	40 100
26.8 (1.06)	44.450 (1 ³ ⁄ ₄)	11.112 (½)	0.794(½)	4.762 (³ / ₁₆)	3.969(⁵ / ₃₂)	1.588(½)	32.543(1 ½)	100	35 300	55 600
26.8 (1.06)	44.450 (1 ³ ⁄ ₄)	11.112 (½)	0.794(½)	4.762 (³ / ₁₆)	3.969(⁵ / ₃₂)	1.588(½)	32.543(1 ½)	100	35 300	55 600
33.5 (1.32)	50.800(2)	12.700 (½)	0.794(½)	4.762 (³ / ₁₆)	4.762(³ / ₁₆)	1.588(½)	37.306(1 ¹⁵ / ₃₂)	162	45 700	80 600
33.5 (1.32)	50.800(2)	12.700 (½)	0.794(½)	4.762 (³ / ₁₆)	4.762(³ / ₁₆)	1.588(½)	37.306(1 ¹⁵ / ₃₂)	162	45 700	80 600
46.4(1.83)	63.500 (2 ½)	15.875 (3/8)	1.588 (½)	6.350(½)	4.762(3/16)	2.381(3/32)	51.991(2 3/4)	500	77 600	172 000

NUCF

Inch Series Cam Followers Full Complement Type/With Hexagon



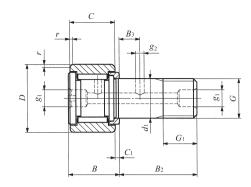

Stud dia. 6.350 — 50.800mm

CRH...VB

			1						
0	Identifica	ition number	Mass (Ref.)						
Stud dia.			(ITCI.)						
mm	Shield type	Sealed type		D	a	1			D
(inch)			g	D	C	d_1	G	G_1	B max
	ODIL 04 VD	ODIL 0.4 VDIIII	40	40.700 / 1/)	0.505 / 2/)	0.050 / 1/)		0.050 (1/)	
6.350	CRH 8-1 VB	CRH 8-1 VBUU	12	12.700 (½)	9.525 (3/8)	6.350 (1/4)	½ - 28	6.350 (½)	11.1(0.44)
(1/4)	CRH 9 VB	CRH 9 VBUU	15	14.228 (%)	9.525 (3/8)	6.350 (1/4)	½ - 28	6.350 (1/4)	11.1(0.44)
7.938	CRH 10-1 VB	CRH 10-1 VBUU	23	15.875 (½)	11.112 (1/6)	7.938 (5/6)	5/16 - 24	7.938 (5/16)	12.8(0.50)
$(\frac{5}{16})$	CRH 11 VB	CRH 11 VBUU	27	17.462	11.112 (1/16)	7.938 (5/16)	5√16 - 24	7.938 (½)	12.8(0.50)
11.112	CRH 12 VB	CRH 12 VBUU	39						14 6/0 57)
			l	19.050 (3/4)	12.700 (½)	11.112 (7/6)	7/ ₁₆ - 20	9.525 (3/8)	14.6(0.57)
$(\frac{7}{16})$	CRH 14 VB	CRH 14 VBUU	49	22.225 (7/8)	12.700 (½)	11.112 (½)	⅓ ₁₆ - 20	9.525 (3/8)	14.6(0.57)
15.875	CRH 16 VB	CRH 16 VBUU	93	25.400 (1)	15.875 (⁵ / ₈)	15.875 (½)	½ - 18	12.700 (½)	17.9(0.70)
$(\frac{5}{8})$	CRH 18 VB	CRH 18 VBUU	109	28.575 (1 ½)	15.875 (1/8)	15.875 (1/8)	½ - 18	12.700 (½)	17.9(0.70)
19.050	CRH 20 VB	CRH 20 VBUU	176	31.750 (1 1/4)	19.050 (3/4)	19.050 (3/4)	³ ⁄ ₄ - 16	15.875 (5/8)	21.0(0.83)
$\binom{3}{4}$	CRH 22 VB	CRH 22 VBUU	200	34.925 (1 ³ / ₈)	19.050 (3/4)	19.050 (3/4)	-	15.875 (½)	21.0(0.83)
-			200	34.323 (1 %8)	19.000 (%4)	19.000 (%4)	³ ⁄ ₄ - 16	13.073 (7/8)	21.0(0.03)
22.225	CRH 24 VB	CRH 24 VBUU	296	38.100 (1 ½)	22.225 (½)	22.225 (7/8)	⅓ ₈ - 14	19.050 (³ / ₄)	24.3(0.96)
(%)	CRH 26 VB	CRH 26 VBUU	329	41.275 (1 ⁵ / ₈)	22.225 (7/8)	22.225 ($\frac{7}{8}$)	⅓ ₈ - 14	19.050 (³ / ₄)	24.3(0.96)
25.400	CRH 28 VB	CRH 28 VBUU	463	44.450 (1 ¾)	25.400 (1)	25.400 (1)	1- 14 UNS	22.225 (½)	27.4(1.08)
(1)	CRH 30 VB	CRH 30 VBUU	508	47.625 (1 ½)	25.400 (1)	25.400 (1)	1- 14 UNS	22.225 (½)	27.4(1.08)
					, ,	, ,			
28.575	CRH 32 VB	CRH 32 VBUU	722	50.800 (2)	31.750 (1 ½)	28.575 (1 ½)	1½- 12	25.400 (1)	34.2(1.35)
$(1\frac{1}{8})$	CRH 36 VB	CRH 36 VBUU	858	57.150 (2 ½)	31.750 (1 ½)	28.575 (1 ½)	1½- 12	25.400 (1)	34.2(1.35)
31.750	CRH 40 VB	CRH 40 VBUU	1 260	63.500 (2 ½)	38.100 (1 ½)	31.750 (1 1/4)	1½ - 12	28.575 (1 ½)	40.0(1.57)
$(1\frac{1}{4})$	CRH 44 VB	CRH 44 VBUU	1 460	69.850 (2 3/4)	38.100 (1 ½)	31.750 (1 1/4)	11/4 - 12	28.575 (1 ½)	40.0(1.57)
				, , T			-		
38.100	CRH 48 VB	CRH 48 VBUU	2 100	76.200 (3	44.450 (1 ³ / ₄)	38.100 (1 ½)	1½-12	31.750 (1 1/4)	46.4(1.83)
$(1\frac{1}{2})$	CRH 52 VB	CRH 52 VBUU	2 380	82.550 (3 ½)	44.450 (1 ³ ⁄ ₄)	38.100 (1 ½)	1½-12	31.750 (1 ½)	46.4(1.83)
44.450	CDU 56 VD	CDU 56 VIDIU	2 240	00 000 (2.1/)	E0 000 (2	AA 4EO /1 3/\	13/ 10111	24 025 /1 3/\	E2 0/2 00\
$(1\frac{3}{4})$	CRH 56 VB	CRH 56 VBUU	3 240	88.900 (3 ½)	50.800 (2)	44.450 (1 ³ ⁄ ₄)	1¾ - 12 UN	34.925 (1 ³ / ₈)	52.8(2.08)
50.800									
(2)	CRH 64 VB	CRH 64 VBUU	4 960	101.600 (4	57.150 (2 ½)	50.800 (2)	2- 12 UN	38.100 (1 ½)	59.4(2.34)
(2)									

Remarks1. Models with a stud diameter d_1 of 7.938 mm or less have no oil hole. Other models are provided with one oil hole each on the outside surface and end surface of the stud.

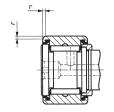
CRH...VBUU

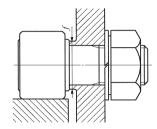

Boundary	dimensions	mm(incl	Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating				
B_2	B_3	C_1	<i>g</i> 1	g ₂	Н	r	f Min. mm(inch)	N-m	C N	<i>C</i> ₀
15.875(⁵ / ₈)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397(½)	8.334(²¹ / ₆₄)	3.4	4 710	5 410
15.875(⁵ / ₈)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397(½)	8.334(²¹ / ₆₄)	3.4	4 710	5 410
19.050(³ / ₄)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397(½)	11.112 (½)	6.8	6 340	8 530
19.050(³ / ₄)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397(½)	11.112 (½)	6.8	6 340	8 530
22.225(½)	6.350(½)	0.794(½)	4.762(³ / ₁₆)	2.381(³ / ₃₂)	4.762(3/16)	0.794(½)	13.494(½)	17.6	8 710	12 300
22.225(½)	6.350(½)	0.794(½)	4.762(³ / ₁₆)	2.381(³ / ₃₂)	4.762(3/16)	0.794(½)	13.494(½)	17.6	8 710	12 300
25.400(1)	6.350(½)	1.588(½)	4.762(³ / ₁₆)	2.381(³ / ₃₂)	6.350(½)	1.191(3/ ₆₄)	18.256(²³ / ₃₂)	57.8	13 100	22 700
25.400(1)	6.350(½)	1.588(½)	4.762(³ / ₁₆)	2.381(³ / ₃₂)	6.350(½)	1.588(1/ ₁₆)	18.256(²³ / ₃₂)	57.8	13 100	22 700
31.750(1 ½)	$7.938(\frac{5}{16}) \\ 7.938(\frac{5}{16})$	1.588(½)	4.762(³ / ₁₆)	2.381(³ / ₃₂)	6.350(½)	1.588(½)	24.209(% ₄)	103	23 600	31 700
31.750(1 ½)		1.588(½)	4.762(³ / ₁₆)	2.381(³ / ₃₂)	6.350(½)	1.588(½)	24.209(% ₄)	103	23 600	31 700
38.100(1 ½)	9.525(³ / ₈)	1.588(½)	4.762(³ / ₁₆)	2.381(³ / ₃₂)	7.938(½)	1.588(½)	26.988 (1 ½) 26.988 (1 ½)	162	28 200	40 100
38.100(1 ½)	9.525(³ / ₈)	1.588(½)	4.762(³ / ₁₆)	2.381(³ / ₃₂)	7.938(½)	1.588(½)		162	28 200	40 100
44.450 (1 ³ ⁄ ₄)	$11.112(\ {}^{\prime\prime}_{16})\\ 11.112(\ {}^{\prime\prime}_{16})$	1.588(½)	4.762(³ / ₁₆)	2.381(³ / ₃₂)	7.938(½)	1.588(½)	32.941(1½)	258	35 300	55 600
44.450 (1 ³ ⁄ ₄)		1.588(½)	4.762(³ / ₁₆)	2.381(³ / ₃₂)	7.938(½)	1.588(½)	32.941(1½)	258	35 300	55 600
50.800(2)	12.700(½)	1.588(½)	4.762(³ / ₁₆)	3.175(½)	11.112(½)	1.588(½)	37.306(1½)	356	45 700	80 600
50.800(2)	12.700(½)	1.588(½)	4.762(³ / ₁₆)	3.175(½)	11.112(½)	1.588(½)	37.306(1½)	356	45 700	80 600
57.150(2 ½)	14.288(\%)6)	1.588(½)	4.762(³ / ₁₆)	3.175(½)	12.700(½)	2.381(³ / ₃₂)	40.878(1 ³⁹ / ₆₄)	500	61 400	116 000
57.150(2 ½)	14.288(\%)6)	1.588(½)	4.762(³ / ₁₆)	3.175(½)	12.700(½)	2.381(³ / ₃₂)	40.878(1 ³⁹ / ₆₄)	500	61 400	116 000
63.500(2 ½)	15.875(⁵ / ₈)	1.588(½)	6.350(½)	3.175(½)	19.050(³ / ₄)	2.381(³ / ₃₂)	51.991(2 ³ / ₆₄)	892	77 600	172 000
63.500(2 ½)	15.875(⁵ / ₈)	1.588(½)	6.350(½)	3.175(½)	19.050(³ / ₄)	2.381(³ / ₃₂)	51.991(2 ³ / ₆₄)	892	77 600	172 000
69.850 (2 ³ ⁄ ₄)	17.462(½)	1.588(1/16)	6.350(1/4)	3.175(1/8)	19.050(3/4)	2.381(3/32)	59.928 (2 ²³ ⁄ ₆₄)	1 450	111 000	239 000
88.900(3 ½)	19.050(¾)	1.588(1/16)	6.350(1/4)	3.175(1/8)	19.050(3/4)	2.381(3/32)	64.691(235/4)	2 190	142 000	317 000

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch NUCF CFS

^{2.} Provided with prepacked grease.

Inch Series Cam Followers Full Complement Type/With Screwdriver Slot




Stud dia. 6.350 - 50.800mm

CRH...V

		4:	N 4						
Stud	Identifica	ition number	Mass (Ref.)						
dia.	Shield type	Sealed type		D	G.	,	C	C	D
(inch)			g	D	C	d_1	G UNF	G_1	B max
6.350	CRH 8-1 V	CRH 8-1 VUU	12	12.700 (½)	9.525 (3/8)	6.350 (½)	½ - 28	6.350 (½)	11.1(0.44)
$(\frac{1}{4})$	CRH 9 V	CRH 9 VUU	15	14.228 (%)	9.525 (³ / ₈)	6.350 (½)	½- 28	6.350 (½)	11.1(0.44)
7.938	CRH 10-1 V	CRH 10-1 VUU	23	15.875 (½)	11.112 (½)	7.938 (5/16)	½6 - 24	7.938 (½)	12.8(0.50)
$(\frac{5}{16})$	CRH 11 V	CRH 11 VUU	27	17.462 (½)	11.112 (½)	7.938 (5/16)	⁵ ∕ ₁₆ - 24	7.938 (5/16)	12.8(0.50)
11.112	CRH 12 V	CRH 12 VUU	39	19.050 (3/4)	12.700 ($\frac{1}{2}$)	11.112 (½)	$\frac{7}{16}$ - 20	9.525 (3/8)	14.6(0.57)
$(\frac{7}{16})$	CRH 14 V	CRH 14 VUU	49	22.225 (½ ₈)	12.700 (½)	11.112 (½)	½ ₆ - 20	9.525 (3/8)	14.6(0.57)
15.875	CRH 16 V	CRH 16 VUU	93	25.400 (1)	15.875 ($\frac{5}{8}$)	15.875 (½)	½ ₈ - 18	12.700 (½)	17.9(0.70)
(%)	CRH 18 V	CRH 18 VUU	109	28.575 (1 ½)	15.875 (⁵ / ₈)	15.875 (½)	⁵ ∕ ₈ - 18	12.700 (½)	17.9(0.70)
19.050	CRH 20 V	CRH 20 VUU	176	31.750 (1 ½)	19.050 ($\frac{3}{4}$)	19.050 (³ ⁄ ₄)	³ ⁄ ₄ - 16	15.875 (½)	21.0(0.83)
(3/4)	CRH 22 V	CRH 22 VUU	200	34.925 (1 ³ / ₈)	19.050 (³ / ₄)	19.050 (³ ⁄ ₄)	³ ⁄ ₄ - 16	15.875 (½)	21.0(0.83)
22.225	CRH 24 V	CRH 24 VUU	296	38.100 (1 ½)	22.225 (7/8)	22.225 (½ ₈)	7∕ ₈ - 14	19.050 (3/4)	24.3(0.96)
(%)	CRH 26 V	CRH 26 VUU	329	41.275 (1 ⁵ ⁄ ₈)	22.225 (7/8)	22.225 (7/8)	½ - 14	19.050 (3/4)	24.3(0.96)
25.400	CRH 28 V	CRH 28 VUU	463	44.450 (1 ³ ⁄ ₄)	25.400 (1)	25.400 (1)	1- 14 UNS	22.225 (7/8)	27.4(1.08)
(1)	CRH 30 V	CRH 30 VUU	508	47.625 (1 ½)	25.400 (1)	25.400 (1)	1- 14 UNS	22.225 (7/8)	27.4(1.08)
28.575	CRH 32 V	CRH 32 VUU	722	50.800(2)	31.750 (1 1/4)	28.575 (1 1/8)	1½-12	25.400 (1)	34.2(1.35)
(11/8)	CRH 36 V	CRH 36 VUU	858	57.150 (2 ½)	31.750 (1 1/4)	28.575 (1 ½)	1½-12	25.400 (1)	34.2(1.35)
31.750	CRH 40 V	CRH 40 VUU	1 260	63.500 (2 ½)	38.100 (1 ½)	31.750 (1 1/4)	11/4 - 12	28.575 (1 ½)	40.0(1.57)
$(1\frac{1}{4})$	CRH 44 V	CRH 44 VUU	1 460	69.850 (2 ¾ ₄)	38.100 (1 ½)	31.750 (1 1/4)	1½- 12	28.575 (1 ½)	40.0(1.57)
38.100	CRH 48 V	CRH 48 VUU	2 100	76.200 (3)	44.450 (1 ³ / ₄)	38.100 (1 ½)	1½-12	31.750 (1 1/4)	46.4(1.83)
$(1\frac{1}{2})$	CRH 52 V	CRH 52 VUU	2 380	82.550 (3 ½)	44.450 (1 ³ ⁄ ₄)	38.100 (1 ½)	1½- 12	31.750 (1 ½)	46.4(1.83)
44.450 (1 ³ / ₄)	CRH 56 V	CRH 56 VUU	3 240	88.900 (3 ½)	50.800 (2)	44.450 (1 ¾ ₄)	1¾ - 12 UN	34.925 (1 ³ / ₈)	52.8(2.08)
50.800 (2)	CRH 64 V	CRH 64 VUU	4 960	101.600 (4)	57.150 (2 ½)	50.800 (2)	2- 12 UN	38.100 (1 ½)	59.4(2.34)

Remarks 1. Models with a stud diameter d_1 of 7.938 mm or less (marked *) are provided with an oil hole on the stud head only. Other models are provided with one oil hole each on the head, outside surface and end surface of the stud.

CRH...VUU

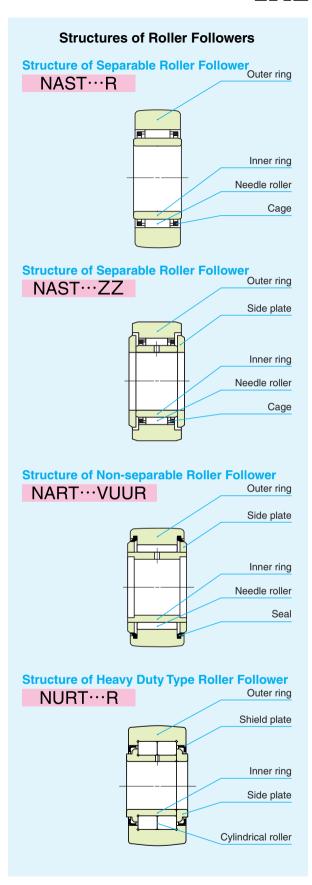
Boundary	dimensions	mm(inc	h)	Mounting dimension	tightening	Basic dynamic load rating	Basic static load rating			
B_2	B_3	C_1	<i>g</i> ₁	g_2	r	f Min. mm(inch)	torque N-m	C N	$egin{array}{c} C_0 \ & N \end{array}$	
15.875(½) 15.875(½)	- (-) - (-)	0.794(½) 0.794(½)	*3.175(½) *3.175(½)	- (-) - (-)	0.397(½) 0.397(½)	8.334(²¹ / ₆₄) 8.334(²¹ / ₆₄)	3.4 3.4	4 710 4 710	5 410 5 410	
19.050(³ ⁄ ₄) 19.050(³ ⁄ ₄)	- (-) - (-)	0.794(½) 0.794(½)	*3.175(½) *3.175(½)	- (-) - (-)	0.397(½) 0.397(½)	11.112 (½) 11.112 (½)	6.8 6.8	6 340 6 340	8 530 8 530	
22.225(½) 22.225(½)	6.350(½) 6.350(½)	0.794(½) 0.794(½)	4.762(³ / ₁₆) 4.762(³ / ₁₆)	2.381(¾) 2.381(¾)	0.794(½) 0.794(½)	13.494(½) 13.494(½)	17.6 17.6	8 710 8 710	12 300 12 300	
25.400 (1) 25.400 (1)	6.350(½) 6.350(½)	1.588(½) 1.588(½)	4.762(³ / ₁₆) 4.762(³ / ₁₆)	2.381(³ / ₃₂) 2.381(³ / ₃₂)	1.191(3/ ₆₄) 1.588(1/ ₁₆)	18.256(²³ / ₃₂) 18.256(²³ / ₃₂)	57.8 57.8	13 100 13 100	22 700 22 700	
31.750(1 ½) 31.750(1 ½)	7.938($\frac{5}{16}$) 7.938($\frac{5}{16}$)	1.588(½) 1.588(½)	4.762(³ / ₁₆) 4.762(³ / ₁₆)	2.381(³ / ₃₂) 2.381(³ / ₃₂)	1.588(½) 1.588(½)	24.209(⁶ ½) 24.209(⁶ ½)	103 103	23 600 23 600	31 700 31 700	
38.100(1 ½) 38.100(1 ½)	9.525(³ / ₈) 9.525(³ / ₈)	1.588(½) 1.588(½)	4.762(3/6) 4.762(3/6)	2.381(³ / ₃₂) 2.381(³ / ₃₂)	1.588(½) 1.588(½)	26.988(1 ½) 26.988(1 ½)	162 162	28 200 28 200	40 100 40 100	
44.450 (1 ³ ⁄ ₄) 44.450 (1 ³ ⁄ ₄)	11.112(½) 11.112(½)	1.588(½) 1.588(½)	4.762(³ / ₁₆) 4.762(³ / ₁₆)	2.381(³ / ₃₂) 2.381(³ / ₃₂)	1.588(½) 1.588(½)	32.941(1½) 32.941(1½)	258 258	35 300 35 300	55 600 55 600	
50.800 (2) 50.800 (2)	12.700(½) 12.700(½)	1.588(½) 1.588(½)	4.762(³ / ₁₆) 4.762(³ / ₁₆)	3.175(½) 3.175(½)	1.588(½) 1.588(½)	37.306(1 ¹⁵ / ₃₂) 37.306(1 ¹⁵ / ₃₂)	356 356	45 700 45 700	80 600 80 600	
57.150(2½) 57.150(2½)	14.288(\%6) 14.288(\%6)	1.588(½) 1.588(½)	4.762(3/6) 4.762(3/16)	3.175(½) 3.175(½)	2.381(3/32) 2.381(3/32)	40.878(1 ³ % ₄) 40.878(1 ³ % ₄)	500 500	61 400 61 400	116 000 116 000	
63.500(2½) 63.500(2½)	15.875(⁵ / ₈) 15.875(⁵ / ₈)	1.588(½) 1.588(½)	6.350(½) 6.350(½)	3.175(½) 3.175(½)	2.381(3/32) 2.381(3/32)	51.991(2 ³ / ₄) 51.991(2 ³ / ₄)	892 892	77 600 77 600	172 000 172 000	
69.850 (2 ³ ⁄ ₄)	17.462(½)	1.588(1/16)	6.350(1/4)	3.175(1/8)	2.381(3/32)	59.928 (2 ²³ / ₆₄)	1 450	111 000	239 000	
88.900(3½)	19.050(3/4)	1.588(1/16)	6.350(1/4)	3.175(1/8)	2.381(3/32)	64.691(235/64)	2 190	142 000	317 000	

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

NUCF

^{2.} Provided with prepacked grease.

- **Our Separable Roller Followers**
- Non-separable Roller Followers
- Heavy Duty Type Roller Followers


Structure and Features

INCO Roller Followers are bearings designed for outer ring rotation, in which needle rollers are incorporated in a thick walled outer ring. Both crowned and cylindrical outer rings are available. The outer rings run directly on mating track surfaces, and the crowned outer ring is effective in relieving the edge load caused by mounting errors. The cylindrical outer ring, on the other hand, has a large contact area with the mating track surface and is suitable for applications involving large loads or low track surface hardness.

In Roller Followers, there are two types of bearings available, the caged type and the full complement type. The caged type is useful for applications at high-speed rotation. The full complement type, on the other hand, is suitable for heavy-load applications at low-speed rotation or oscillating motions.

Roller Followers include separable and non-separable types. Also, in addition to the open type, shield type and sealed type are available. The clearances between the side plates and outer ring of the shield type are narrow, and form labyrinths. In the sealed type, special synthetic rubber seals are assembled in these clearances, and they are effective in preventing penetration of dust and dirt.

These bearings are available in a variety of types to suit almost any kind of application. They are widely used for cam mechanisms and for linear motions of conveying equipment.

NAST NART NURT

392

In Roller Followers, types shown in Table 1 are available

Table 1 Type of Roller Followers

	Type			With	cage	Full compl	Full complement type	
	Турс				Cylindrical outer ring	Crowned outer ring	Cylindrical outer ring	
		Without inner ring	Open type	RNAST··· R	RNAST	_	_	
	Separable Roller Followers	With inner ring	Open type	NAST··· R	NAST	_	_	
	RNAST, NAST		Shield type	NAST…ZZ R	NAST…ZZ	_	_	
Metric series			Sealed type	NAST…ZZUUR	NAST…ZZUU	_	_	
WELLIC SELIES	Non-separable Roller Followers NART		Shield type	NART… R	_	NART…V R	_	
			Sealed type	NART… UUR	_	NART ··· VUUR	_	
	Heavy Duty Type Roller Followers NURT		Shield type	-	_	NURT… R	NURT	
Inch series	Non-separable Roller Followers CRY		Shield type	_	_	_	CRY ··· V	
			Sealed type	_	_	_	CRYVUU	

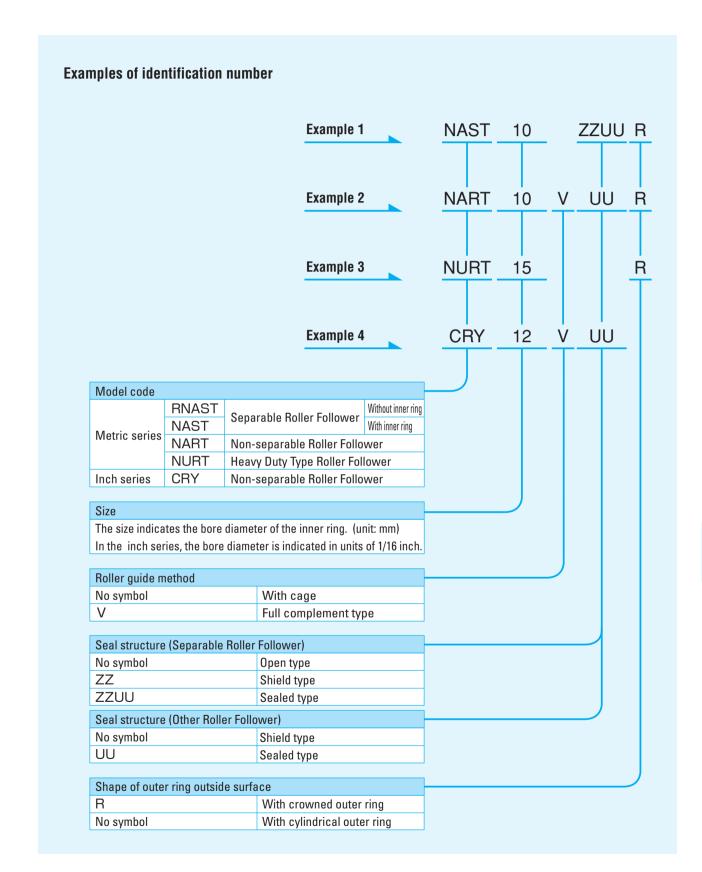
Separable Roller Followers

These bearings are assembled by combining an outer ring, inner ring and Needle Roller Cage, which can be separated from one another. Thus, handling is easy. Oil lubrication is also easy, making them suitable for high-speed rotations.

There are two types: type without inner ring RNAST and type with inner ring NAST. The type with inner ring includes open type, shield type, and sealed type.

Non-separable Roller Followers

These non-separable type bearings have side plates fixed on both sides of the inner ring, and include the caged type and the full complement type. Both shield type and sealed type are available.


Inch series Non-separable Roller Followers are full complement type bearings and their surface is treated with black oxide surface treatment.

Heavy Duty Type Roller Followers

These full complement type bearings incorporate cylindrical rollers in the outer ring in two rows and can withstand large radial loads and some axial loads. These bearings are shield type with non-separable structure.

Identification Number

Some examples of the identification number of Roller Followers are shown below.

NAST NART NURT

Accuracy

Dimensional accuracy and rotational accuracy of Roller Followers are based on Tables 2, 3 and 4. Tolerances for the smallest single roller set bore diameter of Separable Roller Followers are shown in Table 5. Roller Followers with special accuracy can also be manufactured. Please contact IKO.

Table 2 Tolerances

Table 2 Tolerances				unit: μ m
	Series	Metric	series	Inch series
Dimensions and symbols		Crowned outer ring	Cylindrical outer ring	Cylindrical outer ring
Bore dia. of inner ring d		See T	able 3.	+ 5 - 10
Outside dia. of outer ring D		0 — 50	See Table 4.	0 - 25
Width of outer ring C			0 - 130	
Width of inner ring B	Separable Roller Follower		0 120	_
Width of bearing B	Non-separable Roller Follower	h12		+ 130
Width of Dearing D	Heavy Duty Type Roller Follower	1112	_	- 250
Roller set bore dia. $F_{ m w}$	Separable Roller Follower	See T	able 5.	_

Table 3 Tolerances and allowable values of inner rings (Metric series)

ances and an	owable values of little filing	3 (Metric Serie	-3)		
l	$\Delta_{d\mathrm{mn}}$	V_{dn}	Vdmn	K_{i_2}	

d Nominal bore dia. mm		$\Delta_{d\mathrm{mp}}$ Single plane mean bore dia. deviation		$$V_{dp}$$ Bore dia. variation in a single radial plane	$V_{d{ m mp}}$ Mean bore dia. variation	$K_{ m ia}$ Radial runout of assembled bearing inner ring	$V_{B m s}$ Width variation
Over	Incl.	High	Low	(Max.)	(Max.)	(Max.)	(Max.)
2.5	10	0	- 8	10	6	10	15
10	18	0	- 8	10	6	10	20
18	30	0	- 10	13	8	13	20
30	50	0	- 12	15	9	15	20

Table 4 Tolerances and allowable values of outer rings (Metric series)

unit: μ m

unit: μ m

D Nominal outside dia. of outer ring mm		$\Delta_{D{ m mp}}$ Single plane mean outside dia. deviation		$V_{D\mathrm{p}}$ (1) Outside dia. variation in a single radial plane	$V_{D{ m mp}}(^{ m 1})$ Mean outside dia. variation	K _{ea} (1) Radial runout of assembled bearing outer ring	$V_{C\mathrm{s}}$ Width variation
Over	Incl.	High	Low	(Max.)	(Max.)	(Max.)	(Max.)
6	18	0	- 8	10	6	15	Same as the
18	30	0	- 9	12	7	15	tolerance values
30	50	0	— 11	14	8	20	of $V_{B{ m s}}$ for d of
50	80	0	- 13	16	10	25	the inner of the same bearing
80	120	0	— 15	19	11	35	Same bearing

Note(1) Also applicable to the inch series.

Table 5 Tolerances of smallest single roller set bore diameter $F_{
m ws\;min}$

F Nominal roller s m	et bore diameter	$\Delta_{F m wsmin}$ Deviation of smallest single roller set bore diameter			
Over	Incl.	High	Low		
6	10	+22	+13		
10	18	+27	+16		
18	30	+33	+20		
30	50	+41	+ 25		
50	80	+49	+30		

Clearance

Radial internal clearances of Roller Followers are based on Table 6.

Table 6 Radial internal clearance

unit: μ m

	Identification	Identification number (1)								
	Metric series		Inch series							
Separable Roller Followers	Non-separable Roller Followers	Heavy Duty Type Roller Followers	Non-separable Roller Followers	Min.	Max.					
NAST 6R	NART 5R	_	_	5	20					
NAST 8R~NAST12R	NART 6R~NART12R	_	_	5	25					
NAST15R~NAST25R	NART15R~NART20R	_	_	10	30					
NAST30R~NAST40R	NART25R~NART40R	_	_	10	40					
NAST45R, NAST50R	NART45R, NART50R	_	_	15	50					
-	_	NURT15R~NURT30-1R	_	20	45					
-	_	NURT35R~NURT40-1R	_	25	50					
_	_	NURT45R~NURT50-1R	_	30	60					
_	_	_	CRY12~CRY56	35	60					
_	_	_	CRY64	45	70					

Note(1) Also applicable to the full complement type, cylindrical outer ring type, shield type and sealed type.

Roller Followers are generally used under the loading conditions in which the load direction is fixed in relation to the inner ring and rotates in relation to the outer ring. The recommended fits for shafts are shown in Table 7. Those for the inch series are shown in the dimension table.

Table 7 Recommended fit (Metric series)

Туре	Tolerance cl	ass of shaft	
Separable Roller Followers	without inner ring	k5,	k6
Separable notier rollowers	with inner ring		
Non-separable Roller Follo	g6,	h6	
Heavy Duty Type Roller Fol			

Maximum allowable static load

The load that is applicable to Roller Followers is, in some cases, determined by the strength of the outer ring rather than by the load rating of the needle roller bearing. Therefore, the maximum allowable load that is limited by the strength of outer ring is specified.

Track Capacity

Track capacity is defined as the load that can be continuously applied on a Roller Follower placed on a steel track surface without causing deformation and indentation on the track surface when the outer ring of the Roller Follower makes contact with the mating track surface (plane). The track capacities shown in Tables 8.1 and 8.2 are applicable when the hardness of the mating track surface is 40HRC (Tensile strength 1250N/mm²). When the hardness of the

mating track surface differs from 40HRC, the track capacity is obtained by multiplying the value by the track capacity factor shown in Table 9.

If lubrication between the outer ring and the mating track surface is insufficient, seizure and/or wear may occur depending on the application. Therefore, pay attention to lubrication and surface roughness of the mating track especially in the case of high-speed rotation such as for cam mechanisms.

Table 8.1 Track capacity (Metric series)

unit: N

Roller	Followers with cr	owned outer ring		Roller Follo	wers with	cylindrical outer	ring	cylindrical ou	ter ring
	· ·	Heavy Duty Type Roller Followers	Track capacity	Identification number	Track capacity	Identification number (2)	Track capacity	Identification number	Track capacity
RNAST 5R	NART 5R	_	1 040	RNAST 5	2 310	_	_	_	_
(R)NAST 6R	NART 6R	_	1 330	(R)NAST 6	3 550	NAST 6ZZ	3 550	_	_
(R)NAST 8R	NART 8R	_	1 850	(R)NAST 8	3 980	NAST 8ZZ	4 490	_	_
(R)NAST10R	NART10R	_	2 470	(R)NAST10	5 610	NAST10ZZ	6 890	_	_
(R)NAST12R	NART12R	_	2 710	(R)NAST12	5 990	NAST12ZZ	7 350	_	_
(R)NAST15R	NART15R	NURT15 R	3 060	(R)NAST15	6 550	NAST15ZZ	8 030	NURT15	11 500
_	_	NURT15-1R	3 910	_	_	_	_	NURT15-1	13 700
(R)NAST17R	NART17R	NURT17 R	3 660	(R)NAST17	10 900	NAST17ZZ	11 700	NURT17	13 600
_	_	NURT17-1R	4 530	_	_	_	_	NURT17-1	16 000
(R)NAST20R	NART20R	NURT20 R	4 530	(R)NAST20	12 800	NAST20ZZ	13 800	NURT20	20 000
_	_	NURT20-1R	5 190	_	_	_	_	NURT20-1	22 100
(R)NAST25R	NART25R	NURT25 R	5 190	(R)NAST25	14 100	NAST25ZZ	15 300	NURT25	22 100
_	_	NURT25-1R	6 580	_	_	_	_	NURT25-1	26 400
(R)NAST30R	NART30R	NURT30 R	6 580	(R)NAST30	22 100	NAST30ZZ	22 100	NURT30	31 600
_	_	NURT30-1R	8 020	_	_	_	_	NURT30-1	36 700
(R)NAST35R	NART35R	NURT35 R	8 020	(R)NAST35	25 700	NAST35ZZ	25 700	NURT35	36 700
_	_	NURT35-1R	9 220	_	_	_	_	NURT35-1	40 800
(R)NAST40R	NART40R	NURT40 R	9 220	(R)NAST40	26 900	NAST40ZZ	30 300	NURT40	44 200
_	_	NURT40-1R	10 800	_	_	_	_	NURT40-1	49 700
(R)NAST45R	NART45R	NURT45 R	9 990	(R)NAST45	28 500	NAST45ZZ	32 200	NURT45	47 000
_	_	NURT45-1R	12 400	_	_	_	_	NURT45-1	55 300
(R)NAST50R	NART50R	NURT50 R	10 800	(R)NAST50	30 200	NAST50ZZ	34 000	NURT50	49 700
_	_	NURT50-1R	14 000	_	_	_	_	NURT50-1	60 800

Notes(1) Also applicable to the full complement type, shield type, and sealed type.

Table 9.2 Track consoity (Inch corice)

Table 8.2 Track capacity	(Inch series)	unit: N
Identification number (1)	Track capacity	
CRY12	4 490	
CRY14	5 240	
CRY16	7 270	
CRY18	7 700	
CRY20	10 700	
CRY22	11 800	
CRY24	15 400	
CRY26	16 700	
CRY28	21 000	
CRY30	22 500	
CRY32	30 800	
CRY36	34 700	
CRY40	44 900	
CRY44	49 400	
CRY48	64 300	
CRY52	69 600	
CRY56	87 000	
CRY64	113 000	

Table 9 Track capacity factor

Hardness	Tensile strength	Track capacity factor		
HRC	N/mm²	Crowned outer ring	Cylindrical outer ring	
20	760	0.22	0.37	
25	840	0.31	0.46	
30	950	0.45	0.58	
35	1 080	0.65	0.75	
38	1 180	0.85	0.89	
40	1 250	1.00	1.00	
42	1 340	1.23	1.15	
44	1 435	1.52	1.32	
46	1 530	1.85	1.51	
48	1 635	2.27	1.73	
50	1 760	2.80	1.99	
52	1 880	3.46	2.29	
54	2 015	4.21	2.61	
56	2 150	5.13	2.97	
58	2 290	6.26	3.39	

Note(1) Also applicable to the sealed type.

398

Allowable Rotational Speed

The allowable rotational speed of Roller Followers is affected by mounting and operating conditions. For reference, Table 10 shows dn values when only pure radial loads are applied. Under actual operating conditions, the recommended dn value is 1/10 of the value shown in the table in consideration of the axial loads that may act on the bearing.

Table 10 dn values of Boller Followers(1)

Table 10 an values of Holler Followers()										
Lubricant	Grease	Oil								
Caged type	84 000	140 000								
Full complement type	42 000	70 000								
Heavy Duty Type Roller Follower	72 000	120 000								

Note(1) dn value = $d \times n$

where, d: Bore diameter of bearing \mathbf{mm}

n: Rotational speed rpm

Lubrication

In Sealed Type Roller Followers, Heavy Duty Type Roller Followers and Inch series Roller Followers. ALVANIA GREASE 2 (SHELL) is prepacked as the lubricating grease.

For Roller Followers without prepacked grease, grease or oil should be supplied through the oil hole of the inner ring for use. If they are used without lubrication, wear of rolling contact surfaces may take place, leading to a short bearing life.

Oil Hole

Open Type Separable Roller Followers have no oil hole. Inner rings of other types of Metric series Roller Followers have an oil hole. Inch series inner rings have an oil groove and an oil hole.

Mounting

- 1 In case of shield and sealed types, match the side surface correctly to the mating seating surface indicated by the dimension a shown in the dimension table, and fix them. (See Fig. 1.)
- When mounting Roller Followers, pay special attention to avoid locating the oil hole of the inner ring within the loading zone. This may lead to a short bearing life. (See Fig. 2.)
- **3**When mounting Sealed Type Separable Roller Followers, do not cause the side plates to come off. If they come off, set them again in place taking care to avoid damaging the seal lips.

Also, the outer ring and cage are guided by side surfaces of the mounting parts. Therefore, it is recommended that the side surfaces of the mounting parts be finished by grinding or at least by machining. (See Fig. 3.)

5 In Non-separable Roller Followers, the side plates are press-fitted. Therefore, when mounting the Roller Followers, do not push the side plates.

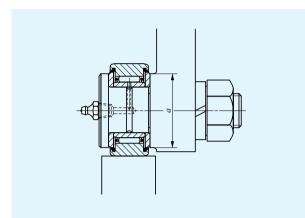


Fig. 1 Mating seating dimension "a"

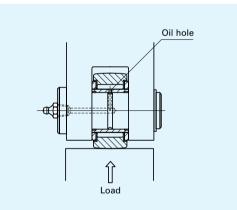


Fig. 2 Position of oil hole and load direction

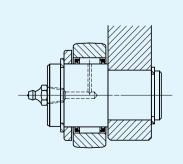
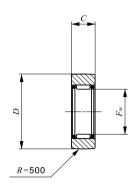


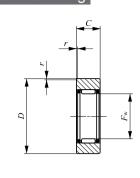
Fig. 3 Mounting example of Roller Follower without inner ring

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

NAST NART

NURT


⁽²⁾ Also applicable to the sealed type.


IIKC

ROLLER FOLLOWERS

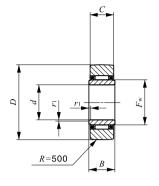
Separable Roller Followers, Open Type With Cage/Without Inner Ring

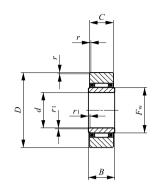
Shaft dia. 7 — 60mm

RNAST…R

RNAST

			D.A.	_					
	Identificati	on number	Mass (Ref.)	Во	undary (m	dimensi m	ons	Basic dynamic load rating	Basic static load rating
Shaft dia.	0000			1	l	(1)	C	C_0	
mm		type	g	F_{w}	D	C	$r_{\rm s min}$	N	N
	Crowned outer ring	Cylindrical outer ring	_	7	10	7.0	0.0		
7	RNAST 5 R	RNAST 5	8.9	7	16	7.8	0.3	2 710	2 390
10	RNAST 6 R	RNAST 6	13.9	10	19	9.8	0.3	4 160	4 550
12	RNAST 8 R	RNAST 8	23.5	12	24	9.8	0.6	5 650	5 890
14	RNAST 10 R	RNAST 10	42.5	14	30	11.8	1	9 790	9 680
16	RNAST 12 R	RNAST 12	49.5	16	32	11.8	1	10 500	10 900
20	RNAST 15 R	RNAST 15	50	20	35	11.8	1	12 400	14 300
22	RNAST 17 R	RNAST 17	90	22	40	15.8	1	17 600	20 900
25	RNAST 20 R	RNAST 20	135	25	47	15.8	1	19 400	24 500
30	RNAST 25 R	RNAST 25	152	30	52	15.8	1	20 800	28 400
38	RNAST 30 R	RNAST 30	255	38	62	19.8	1	30 500	45 400
42	RNAST 35 R	RNAST 35	375	42	72	19.8	1	32 400	50 600
50	RNAST 40 R	RNAST 40	420	50	80	19.8	1.5	35 900	61 100
55	RNAST 45 R	RNAST 45	460	55	85	19.8	1.5	37 400	66 400
60	RNAST 50 R	RNAST 50	500	60	90	19.8	1.5	38 900	71 700


Note(1) Minimum allowable value of chamfer dimension r


Remarks1. No oil hole is provided.

2. Not provided with prepacked grease. Perform proper lubrication for use.

Separable Roller Followers, Open Type With Cage/With Inner Ring

Shaft dia. 6 – 50mm

NAST···R NAST

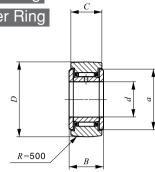
Shaft	ldenti	n number	Mass (Ref.)		В	Sound		limens nm	ions		Basic dynamic load rating	Basic static load rating	Assembled inner ring	
dia.	Open type			d	D	B	C	$r_{\rm s min}^{(1)}$	(1) r _{1s min}	$ _{F_{\mathrm{w}}}$	C	C_0		
mm	Crowned or	uter ring	Cylindrical outer ring	g								N	N	
6	NAST	6 R	NAST 6	17.8	6	19	10	9.8	0.3	0.3	10	4 160	4 550	LRT 61010 S
8	NAST	8 R	NAST 8	28	8	24	10	9.8	0.6	0.3	12	5 650	5 890	LRT 81210 S
10	NAST	10 R	NAST 10	49.5	10	30	12	11.8	1	0.3	14	9 790	9 680	LRT 101412 S
12	NAST	12 R	NAST 12	58	12	32	12	11.8	1	0.3	16	10 500	10 900	LRT 121612 S
15	NAST	15 R	NAST 15	62	15	35	12	11.8	1	0.3	20	12 400	14 300	LRT 152012 S
17	NAST	17 R	NAST 17	109	17	40	16	15.8	1	0.3	22	17 600	20 900	LRT 172216 S
20	NAST	20 R	NAST 20	157	20	47	16	15.8	1	0.3	25	19 400	24 500	LRT 202516 S
25	NAST	25 R	NAST 25	180	25	52	16	15.8	1	0.3	30	20 800	28 400	LRT 253016 S
30	NAST	30 R	NAST 30	320	30	62	20	19.8	1	0.6	38	30 500	45 400	LRT 303820 S
35	NAST	35 R	NAST 35	440	35	72	20	19.8	1	0.6	42	32 400	50 600	LRT 354220 S
40	NAST	40 R	NAST 40	530	40	80	20	19.8	1.5	1	50	35 900	61 100	LRT 405020 S
45	NAST	45 R	NAST 45	580	45	85	20	19.8	1.5	1	55	37 400	66 400	LRT 455520 S
50	NAST	50 R	NAST 50	635	50	90	20	19.8	1.5	1	60	38 900	71 700	LRT 506020 S

Note(1) Minimum allowable value of chamfer dimension r or r_1

Remarks1. No oil hole is provided.

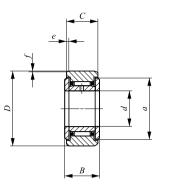
2. Not provided with prepacked grease. Perform proper lubrication for use.

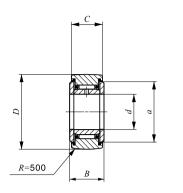
NAST NART NURT

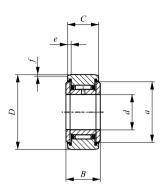

IIKC

ROLLER FOLLOWERS

Separable Roller Followers, Shield Type With Cage/With Inner Ring Separable Roller Followers, Sealed Type With Cage/With Inner Ring


Shaft dia. 6 – 50mm


NAST…ZZR


		lden	tification number		Mass
Shaft					(Ref.)
dia.	Shiel	d type	Seale	d type	
mm	Crowned outer ring	Cylindrical outer ring	Crowned outer ring	Cylindrical outer ring	g
6	NAST 6 ZZR	NAST 6 ZZ	NAST 6 ZZUUR	NAST 6 ZZUU	24.5
8	NAST 8 ZZR	NAST 8 ZZ	NAST 8 ZZUUR	NAST 8 ZZUU	39
10	NAST 10 ZZR	NAST 10 ZZ	NAST 10 ZZUUR	NAST 10 ZZUU	65
12	NAST 12 ZZR	NAST 12 ZZ	NAST 12 ZZUUR	NAST 12 ZZUU	75
15	NAST 15 ZZR	NAST 15 ZZ	NAST 15 ZZUUR	NAST 15 ZZUU	83
17	NAST 17 ZZR	NAST 17 ZZ	NAST 17 ZZUUR	NAST 17 ZZUU	135
20	NAST 20 ZZR	NAST 20 ZZ	NAST 20 ZZUUR	NAST 20 ZZUU	195
25	NAST 25 ZZR	NAST 25 ZZ	NAST 25 ZZUUR	NAST 25 ZZUU	225
30	NAST 30 ZZR	NAST 30 ZZ	NAST 30 ZZUUR	NAST 30 ZZUU	400
35	NAST 35 ZZR	NAST 35 ZZ	NAST 35 ZZUUR	NAST 35 ZZUU	550
40	NAST 40 ZZR	NAST 40 ZZ	NAST 40 ZZUUR	NAST 40 ZZUU	710
45	NAST 45 ZZR	NAST 45 ZZ	NAST 45 ZZUUR	NAST 45 ZZUU	760
50	NAST 50 ZZR	NAST 50 ZZ	NAST 50 ZZUUR	NAST 50 ZZUU	830

Remarks1.	The inner	ring has	an oil hole.

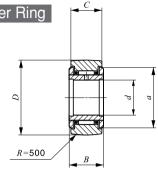
The shalled type is provided with prepacked grease. The shield type is not provided with prepacked grease. Perform proper lubrication for use.

NAST…ZZ

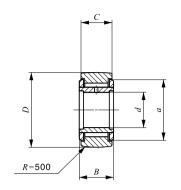
NAST…ZZUUR

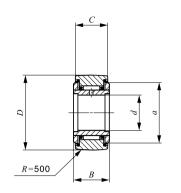
NAST…ZZUU

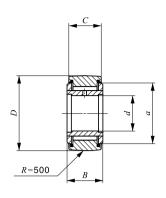
			Вс		y dime mm	nsions		Basic dynamic load rating	Basic static load rating
		l	I	I		I	I	C	C_0
	d	D	В	C	a	e	f	N	N
ŀ	6	19	14	13.8	14	2.5	0.8	4 160	4 550
ı	8	24	14		17.5	2.5	0.8	5 650	5 890
	10	30	16		23.5	2.5	8.0	9 790	9 680
	12	32	16	15.8	25.5	2.5	8.0	10 500	10 900
_	15	35	16	15.8	29	2.5	8.0	12 400	14 300
	17	40	20	19.8	32.5	3	1	17 600	20 900
	20	47	20	19.8	38	3	1	19 400	24 500
	25	52	20	19.8	43	3	1	20 800	28 400
	30	62	25	24.8	50.5	4	1.2	30 500	45 400
	35	72	25	24.8	53.5	4	1.2	32 400	50 600
	40	80	26	25.8	61.5	4	1.2	35 900	61 100
	45	85	26	25.8	66.5	4	1.2	37 400	66 400
	50	90	26	25.8	76	4	1.2	38 900	71 700


NAST NART NURT

Non-separable Roller Followers With Cage/With Inner Ring


Shaft dia. 5 — 40mm


NART…R


		Iden	tification number		Mass
Shaft	Shield	d type	Seale	d type	(Ref.)
dia.	Crowned	outer ring	Crowned		
mm	With cage	Full complement	With cage	Full complement	g
5	NART 5 R	NART 5 VR	NART 5 UUR —	NART 5 VUUR	14.5 15.1
6	NART 6 R	NART 6 VR	NART 6 UUR —	NART 6 VUUR	20.5 21.5
8	NART 8 R	NART 8 VR	NART 8 UUR —	NART 8 VUUR	41.5 42.5
10	NART 10 R	NART 10 VR	NART 10 UUR	NART 10 VUUR	64.5 66.5
12	NART 12 R	NART 12 VR	NART 12 UUR	NART 12 VUUR	71 73
15	NART 15 R	NART 15 VR	NART 15 UUR —	NART 15 VUUR	102 106
17	NART 17 R	NART 17 VR	NART 17 UUR	NART 17 VUUR	149 155
20	NART 20 R	NART 20 VR	NART 20 UUR	NART 20 VUUR	250 255
25	NART 25 R	NART 25 VR	NART 25 UUR —	NART 25 VUUR	285 295
30	NART 30 R	NART 30 VR	NART 30 UUR —	NART 30 VUUR	470 485
35	NART 35 R	NART 35 VR	NART 35 UUR —	NART 35 VUUR	640 655
40	NART 40 R	NART 40 VR	NART 40 UUR	NART 40 VUUR	845 865

Remarks1. The inner ring has an oil hole.

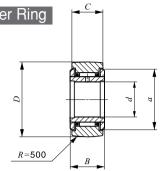
2. The sealed type is provided with prepacked grease. The shield type is not provided with prepacked grease. Perform proper lubrication for use.

NART…VR

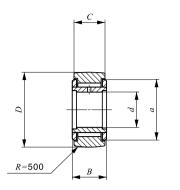
NART…UUR

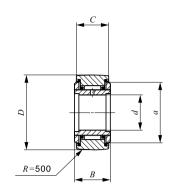
NART…VUUR

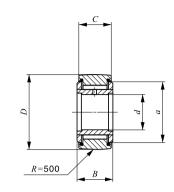
В	Bounda	ry dim mm	ension	ıs	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load	
d	D	В	С	а	C N	C ₀	N	
5	16	12	11	12	3 650	3 680	3 680	
5	16	12	11	12	6 810	8 370	7 310	
6	19	12	11	14	4 250	4 740	4 740	
6	19	12	11	14	7 690	10 300	10 300	
8	24 24	15 15	14 14	17.5 17.5	5 640 11 800	5 900 15 600	5 900 15 600	
10	30	15	14	23.5	8 030	7 540	7 540	
10	30	15	14	23.5	15 600	18 100	17 500	
12	32	15	14	25.5	8 580	8 470	8 470	
12	32	15	14	25.5	16 800	20 500	18 600	
15	35	19	18	29	13 700	16 400	16 400	
15	35	19	18	29	25 200	36 400	24 000	
17	40	21	20	32.5	17 600	21 000	21 000	
17	40	21	20	32.5	32 000	46 300	33 100	
20	47	25	24	38	23 000	30 700	30 700	
20	47	25	24	38	41 600	67 300	67 300	
25	52	25	24	43	24 700	35 400	35 400	
25	52	25	24	43	45 500	79 100	79 100	
30	62	29	28	50.5	33 600	51 400	51 400	
30	62	29	28	50.5	59 900	110 000	92 500	
35	72	29	28	53.5	35 700	57 400	57 400	
35	72	29	28	53.5	63 100	121 000	121 000	
40	80	32	30	61.5	44 900	81 500	81 500	
40	80	32	30	61.5	76 300	164 000	164 000	


NAST NART

Non-separable Roller Followers With Cage/With Inner Ring


Shaft dia. 45 - 50mm


NART…R

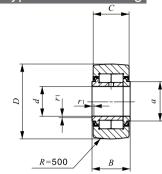

Identification number											
	Chial	d type	I.	d type	Mass (Ref.)						
Shaft dia.		outer ring		outer ring							
mm		Full complement		Full complement	g						
111111	With cage	Full complement	With cage	ruii complement							
45	NART 45 R	NART 45 VR	NART 45 UUR	NART 45 VUUR	915 935						
		NANT 45 VN	NADT COLUID	NANT 45 VOON							
50	NART 50 R	NADT 50 VD	NART 50 UUR	NADT 50 VIIID	980 1 010						
		NART 50 VR		NART 50 VUUR	1 0 10						

Remarks1. The inner ring has an oil hole.

2. The sealed type is provided with prepacked grease. The shield type is not provided with prepacked grease. Perform proper lubrication for use.

NART…VR

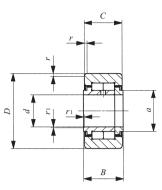
NART…UUR


NART…VUUR

Boundary dimensions								
В	Bounda	ry dim mm	ension	ıs	Basic dynamic load rating $oldsymbol{C}$	Basic static load rating C_0	Maximum allowable static load	
d	45 85 32 30 66.5			а	N	N	N	
45 45	5 85 32 30 66.5 60 90 32 30 76		66.5 66.5	46 800 80 300	88 600 181 000	88 600 181 000		
50 50					48 600 84 300	95 600 198 000	95 600 198 000	

NAST NART NURT

Heavy Duty Type Roller Followers Full Complement Type/With Inner Ring


Shaft dia. 15 — 50mm

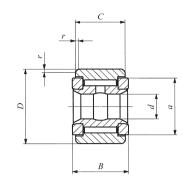
NURT…R

	ldentificati	on number	Mass (Ref.)			Bounda	ary dime	ensions	
Shaft dia.	Crowned outer ring	Culindrical outer ring	(1161.)	d	$\mid D \mid$	В	C		<i>v</i> . (1)
mm	Crowned outer ring	Cylindrical outer ring	g	а	D	D	C	а	$r_{\rm s min}(^1)$
15	NURT 15 R	NURT 15	100	15	35	19	18	20	0.6
	NURT 15-1 R	NURT 15-1	160	15	42	19	18	20	0.6
17	NURT 17 R	NURT 17	147	17	40	21	20	22	1
	NURT 17-1 R	NURT 17-1	222	17	47	21	20	22	1
20	NURT 20 R	NURT 20	245	20	47	25	24	27	1
	NURT 20-1 R	NURT 20-1	321	20	52	25	24	27	1
25	NURT 25 R	NURT 25	281	25	52	25	24	31	1
	NURT 25-1 R	NURT 25-1	450	25	62	25	24	31	1
30	NURT 30 R	NURT 30	466	30	62	29	28	38	1
	NURT 30-1 R	NURT 30-1	697	30	72	29	28	38	1
35	NURT 35 R	NURT 35	630	35	72	29	28	44	1
	NURT 35-1 R	NURT 35-1	840	35	80	29	28	44	1
40	NURT 40 R	NURT 40	817	40	80	32	30	49	1
	NURT 40-1 R	NURT 40-1	1 130	40	90	32	30	49	1
45	NURT 45 R	NURT 45	883	45	85	32	30	53	1
	NURT 45-1 R	NURT 45-1	1 400	45	100	32	30	53	1
50	NURT 50 R	NURT 50	950	50	90	32	30	58	1
	NURT 50-1 R	NURT 50-1	1 690	50	110	32	30	58	1

Note(1)	Minimum allowable value of chamfer dimension r or	r_1
---------	---	-------

Remarks1. The inner ring has an oil hole.
2. Provided with prepacked grease.

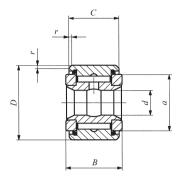
NURT


	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load	
$r_{1\text{s min}}(^1)$	N	N	N	
0.3	23 400	27 300	11 800	
0.3	23 400	27 300	27 300	
0.3	25 200	30 900	20 300	
0.3	25 200	30 900	30 900	
0.3	38 900	49 000	27 200	
0.3	38 900	49 000	49 000	
0.3	43 100	58 100	30 000	
0.3	43 100	58 100	58 100	
0.3	58 200	75 300	35 200	
0.3	58 200	75 300	75 300	
0.6	63 900	88 800	57 000	
0.6	63 900	88 800	88 800	
0.6	86 500	122 000	75 300	
0.6	86 500	122 000	122 000	
0.6	91 500	135 000	78 700	
0.6	91 500	135 000	135 000	
0.6	96 300	148 000	82 100	
0.6	96 300	148 000	148 000	

NAST NART

ROLLER FOLLOWERS

Non-separable Roller Followers, Inch Series Full Complement Type /With Inner Ring



Shaft dia. 6.350 — 31.750mm

CRY...V

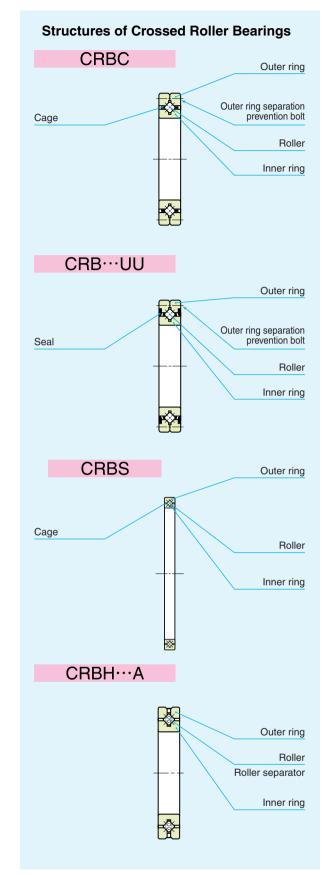
Shaft dia.	ldentificati	on number	Mass (Ref.)			y dimensions n(inch)	ı
mm (inch)	Shield type	Sealed type	g	d	D	В	C
6.350 (½)	CRY 12 V CRY 14 V	CRY 12 VUU CRY 14 VUU	27 36	6.350 (½) 6.350 (½)		14.288(0.5625) 14.288(0.5625)	12.700 (½) 12.700 (½)
7.938 (5/16)	CRY 16 V CRY 18 V	CRY 16 VUU CRY 18 VUU	68 77	7.938 (½) 7.938 (½)		17.463(0.6875) 17.463(0.6875)	15.875(½) 15.875(½)
9.525 (3/8)	CRY 20 V CRY 22 V	CRY 20 VUU CRY 22 VUU	109 136	9.525 (³ / ₈) 9.525 (³ / ₈)	31.750 (1 ½) 34.925 (1 ¾)	20.638(0.8125) 20.638(0.8125)	19.050 (¾) 19.050 (¾)
11.112 (½ ₁₆)	CRY 24 V CRY 26 V	CRY 24 VUU CRY 26 VUU	186 227	11.112 (½6) 11.112 (½6)		23.813(0.9375) 23.813(0.9375)	22.225(½) 22.225(½)
12.700 (½)	CRY 28 V CRY 30 V	CRY 28 VUU CRY 30 VUU	290 363	12.700 (½) 12.700 (½)		26.988(1.0625) 26.988(1.0625)	25.400 (1) 25.400 (1)
15.875 (5/8)	CRY 32 V CRY 36 V	CRY 32 VUU CRY 36 VUU	476 599	15.875 (½) 15.875 (½)		33.338(1.3125) 33.338(1.3125)	31.750 (1 1/4) 31.750 (1 1/4)
19.050 (³ ⁄ ₄)	CRY 40 V CRY 44 V	CRY 40 VUU CRY 44 VUU	816 1 020	19.050 (³ / ₄) 19.050 (³ / ₄)	_	39.688(1.5625) 39.688(1.5625)	38.100 (1 ½) 38.100 (1 ½)
25.400 (1)	CRY 48 V CRY 52 V	CRY 48 VUU CRY 52 VUU	1 410 1 640	25.400 (1) 25.400 (1)	76.200 (3) 82.550 (3½)	46.038(1.8125) 46.038(1.8125)	44.450 (1 ³ ⁄ ₄) 44.450 (1 ³ ⁄ ₄)
28.575 (1 ¹ / ₈)	CRY 56 V	CRY 56 VUU	2 250	28.575 (1 ½)	88.900 (3 ½)	52.388(2.0625)	50.800 (2)
31.750 (1 ¹ ⁄ ₄)	CRY 64 V	CRY 64 VUU	3 200	31.750 (1 ½)	101.600(4)	58.738(2.3125)	57.150 (2 ½)

Remarks1. The inner ring has an oil groove and an oil hole.
2. Provided with prepacked grease.

CRY...VUU

		Basic dynamic	Basic static	
		load rating	load rating	
		C	C_0	
а	r	N	N	
14.4(0.567)	0.794 (1/32)	8 710	12 300	
14.4(0.567)	0.794 (1/32)	8 710	12 300	
19.6(0.772)	1.191(3/4)	13 100	22 700	
19.6(0.772)	1.588 (½)	13 100	22 700	
25.0(0.984)	1.588 (1/6)	23 600	31 700	
25.0(0.984)	1.588 (1/16)	23 600	31 700	
28.8(1.134)	1.588 (1/6)	28 200	40 100	
28.8(1.134)	1.588 (1/16)	28 200	40 100	
32.7(1.287)	1.588 (½)	35 300	55 600	
32.7(1.287)	1.588 (½)	35 300	55 600	
36.0(1.417)	1.588 (1/2)	45 700	80 600	
36.0(1.417)	1.588 (½)	45 700	80 600	
43.3(1.705)	2.381(3/2)	61 400	116 000	
43.3(1.705)	2.381 (³ / ₃₂)	61 400	116 000	
54.0(2.125)	2.381 (3/32)	77 600	172 000	
54.0(2.125)	2.381 (3/32)	77 600	172 000	
61.9(2.437)	2.381 (¾)	111 000	239 000	
01.0(2.107)	2.001(732)	111 000	200 000	
71.0(2.797)	2.381(3/2)	142 000	317 000	

NAST NART


- High Rigidity Type Crossed Roller Bearings
- **Standard Type Crossed Roller Bearings**
- **Slim Type Crossed Roller Bearings**

Structure and Features

with their rollers alternately crossed at right angles to each other between inner and outer rings. They can take loads from any directions at the same time such as radial, thrust and moment loads. The rollers make line-contact with raceway surfaces, and, therefore, elastic deformation due to bearing loads is very small. These bearings are widely used in the rotating parts of industrial robots, machine tools, medical equipment, etc., which require compactness, high rigidity and high rotational accuracy.

In addition, bearings made of stainless steel or those with inner and outer rings provided with mounting holes are also available on request. Please contact \mathbb{IM} .

CRBH CRBC CRB CRBS

412

Crossed Roller Bearings are available in the types shown in Table 1.

Table 1 Crossed Roller Bearing Type

Туре		With Cage	With Separator	Full complement	
High rigidity type crossed roller bearings	Open type	_	CRBHA	_	
CRBH	Sealed type	_	CRBH ··· AUU	_	
Standard type crossed roller bearings	Open type	CRBC	_	CRB	
CRBC, CRB	Sealed type	CRBCUU	_	CRB ··· UU	
Slim type crossed roller bearings	Open type	CRBS	_	CRBS ··· V	
CRBS	Sealed type	_	CRBS ··· AUU	CRBS ··· VUU	

High Rigidity Type Crossed Roller Bearings

Both inner and outer rings have a solid one-piece construction. Therefore, high accuracy and high rigidity are achieved, and mounting errors can be minimized. As separators are incorporated between the rollers for smooth rotation, these bearings are suitable for applications where rotational speed is comparatively high.

Standard Type Crossed Roller Bearings

The outer ring is made of two split pieces, which are bolted together to prevent separation during transportation or mounting. So, handling is easy.

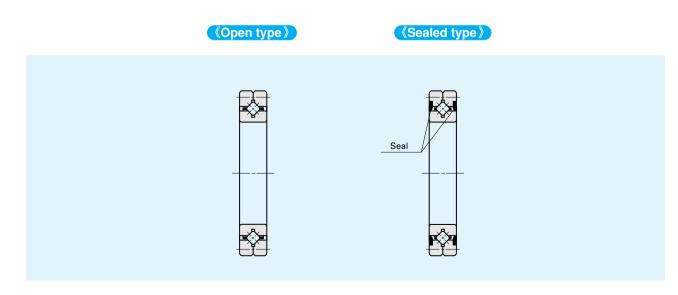
Slim Type Crossed Roller Bearings

These bearings are very slim bearings having a small outside diameter, in comparison with the bore diameter, and a narrow width. The type with cage and the type with separator provide smooth rotation and are suitable for applications where rotational speed is comparatively high.

■ Internal Structures and Shapes

Various types are lined up in Crossed Roller Bearing series, including the type with cage, the type with separator, open type, sealed type, etc..

Roller guide method

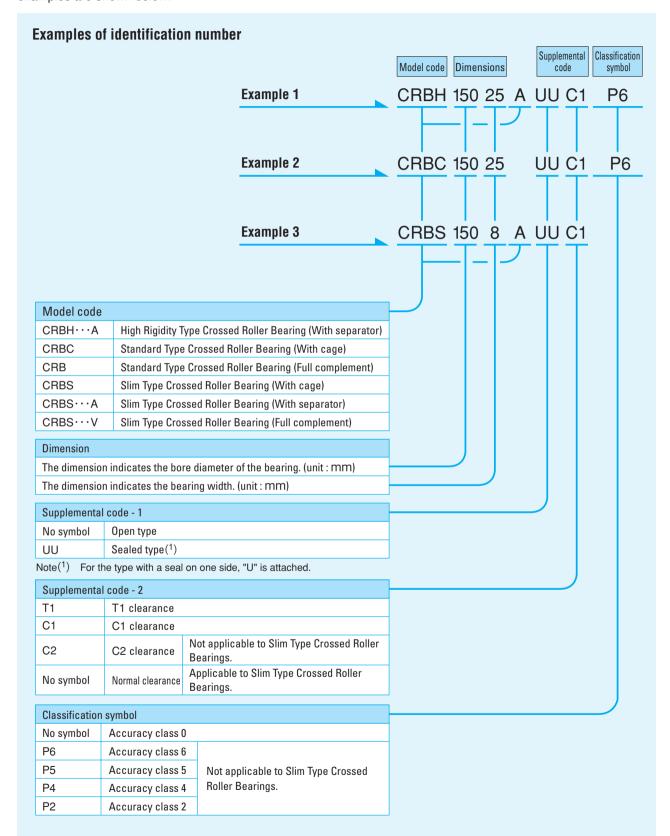

Crossed Roller Bearings include the type with cage, type with separator and full complement type. The type with cage and the type with separator have a small coefficient of friction and are suitable for com-

paratively high speed rotations, while the full complement type is suitable for heavy load applications at low speed rotations.

Seal structure

Crossed Roller Bearings include the open type and sealed type. The sealed type bearing incorporates seals made of special synthetic rubber that have excellent sealing performance against dust and dirt penetration and grease leakage.

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch **CRBH**


CRBC

CRB

CRBS

Identification number

The identification number of Crossed Roller Bearings consists of a model code, dimensions, any supplemental codes and a classification symbol. Some examples are shown below.

Dynamic Equivalent Load

The dynamic equivalent radial load of Crossed Roller Bearings can be obtained from the following equation.

$$P_{\rm r} = X \left(F_{\rm r} + \frac{2M}{D_{\rm pw}} \right) + YF_{\rm a} \quad \cdots \qquad (1)$$

where, P_{r} : Dynamic equivalent radial load, N

 $F_{\rm r}$: Radial load, N

 F_a : Axial load, N

M: Moment, N-mm

 $D_{\rm pw}$: Pitch circle diameter of roller set, $$\operatorname{mm}$$

$$\left(D_{\mathrm{pw}} = \frac{d+D}{2}\right)$$

X: Radial load factor (Refer to Table 2.)

Y: Axial load factor (Refer to Table 2.)

Static Equivalent Load

The static equivalent radial load of Crossed Roller Bearings can be obtained from the following equation.

$$P_{0r} = F_r + \frac{2M}{D_{pw}} + 0.44 F_a \cdots (2)$$

where, $P_{0\,\mathrm{r}}$: Static equivalent radial load, N

 $F_{\rm a}$: Axial load, N

M: Moment, N-mm

 $\ensuremath{D_{\mathrm{pw}}}$: Pitch circle diameter of roller set,

mm

$$\left(D_{\text{pw}} = \frac{d+D}{2}\right)$$

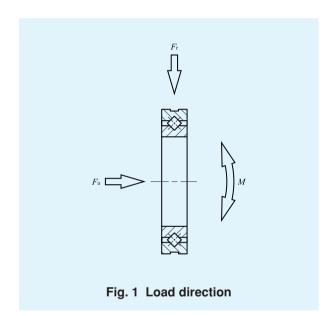


Table 2 Radial load factor and axial load factor

Conditions	X	Y
$\frac{F_{\rm a}}{F_{\rm r} + 2M/D_{\rm pw}} \le 1.5$	1	0.45
$\frac{F_{\rm a}}{F_{\rm r} + 2M/D_{\rm pw}} > 1.5$	0.67	0.67

CRBH CRBC CRB CRBS

The accuracy of Crossed Roller Bearings is shown in Tables 3 and 4. However, the accuracy of Slim Type Crossed Roller Bearings is based on Table 5.

Bearings with special accuracy are also optionally available. Please consult IKD.

Table 3 Tolerances and allowable values of inner rings and tolerances of outer ring width

		٠.		
п	ın	IT.	11	r

1	Vomin	d $\Delta_{d\mathrm{mp}}$ (1) ominal bore diameter Single plane mean bore dia. deviation								Deviation of Dev			(²) tion of ngle	$K_{ m ia}$ Radial run-out of assembled bearing inner ring					$S_{ m ia}$ Assembled bearing inner ring face run-out with raceway					
	m	m	Cla	ss 0	Cla	ss 6	Class 5		Cla	inner ass 4 wid		U	outer ring width		Class Class Class Class Cla			Class	Class Class Class			Class	Class	
	0ver	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	0	6	5	4	2	0	6	5	4	2
	18	30	0	-10	0	- 8	0	- 6	0	- 5	0	- 75	0	-100	13	8	4	3	2.5	13	8	4	3	2.5
	30	50	0	-12	0	-10	0	- 8	0	- 6	0	- 75	0	-100	15	10	5	4	2.5	15	10	5	4	2.5
	50	80	0	- 15	0	-12	0	- 9	0	- 7	0	- 75	0	-100	20	10	5	4	2.5	20	10	5	4	2.5
	80	120	0	-20	0	- 15	0	-10	0	- 8	0	- 75	0	-100	25	13	6	5	2.5	25	13	6	5	2.5
	120	150	0	- 25	0	- 18	0	-13	0	-10	0	-100	0	-120	30	18	8	6	2.5	30	18	8	6	2.5
	150	180	0	- 25	0	- 18	0	-13	0	-10	0	-100	0	-120	30	18	8	6	5	30	18	8	6	5
	180	250	0	-30	0	-22	0	- 15	0	-12	0	-100	0	-120	40	20	10	8	5	40	20	10	8	5
	250	315	0	-35	0	- 25	0	-18	_	_	0	-120	0	- 150	50	25	13	10	7	50	25	13	10	7
	315	400	0	-40	0	-30	0	-23	_	_	0	-150	0	-200	60	30	15	12	8	60	30	15	12	8
Ī	400	500	0	- 45	0	- 35	_	_	_	_	0	-150	0	-200	65	35	18	14	10	65	35	18	14	10
	500	630	0	-50	0	-40	_	_	_	_	0	-150	0	-200	70	40	20	16	12	70	40	20	16	12
	630	800	0	-75	_	_	_	_	_	_	0	-150	0	-200	80	50	25	20	15	80	50	25	20	15

Notes(1) When values are not indicated in the table (Class 2, etc.), those for the highest class for which the values are indicated are applicable.

(2) In case of High Rigidity Type Crossed Roller Bearings, the tolerances for deviation of a single inner ring width are applicable to those of a single outer ring width.

Remark The accuracy specified in this table is not applicable to Slim Type Crossed Roller Bearings.

Table 4 Tolerances and allowable values of outer ring

unit:	,,,

Nom outs diam	ninal side		Singl	e plane	$\Delta_{d ext{m}}$ mean o	_p (1) outside d	dia. devi	iation		Radial	$K_{ m ea}$ of asseuter rin	mbled b	oearing	$S_{ m ea}$ Assembled bearing outer ring face run-out with raceway					
m	m	Cla	ss 0	Cla	ss 6	Class 5		Class 4		Class	Class	Class	Class	Class	Class	Class	Class	Class	Class
0ver	Incl.	High	Low	High	Low	High	Low	High	Low	0	6	5	4(2)	2 (²)	0	6	5	4(2)	2(2)
30	50	0	- 11	0	- 9	0	- 7	0	- 6	20	10	7	5	2.5	20	10	7	5	2.5
50	80	0	- 13	0	-11	0	- 9	0	- 7	25	13	8	5	4	25	13	8	5	4
80	120	0	- 15	0	-13	0	-10	0	- 8	35	18	10	6	5	35	18	10	6	5
120	150	0	- 18	0	- 15	0	-11	0	- 9	40	20	11	7	5	40	20	11	7	5
150	180	0	- 25	0	-18	0	-13	0	-10	45	23	13	8	5	45	23	13	8	5
180	250	0	- 30	0	-20	0	-15	0	-11	50	25	15	10	7	50	25	15	10	7
250	315	0	- 35	0	-25	0	-18	0	-13	60	30	18	11	7	60	30	18	11	7
315	400	0	- 40	0	-28	0	-20	_	_	70	35	20	_	_	70	35	20	_	_
400	500	0	- 45	0	-33	0	-23	_	_	80	40	23	_	_	80	40	23	_	_
500	630	0	- 50	0	-38	0	-28	_	_	100	50	25	_	_	100	50	25	_	_
630	800	0	- 75	0	-45	_	_	_	_	120	60	30	_	_	120	60	30	_	_
800	1000	0	-100	0	-60	_	_	_	_	120	75	35	_	_	120	75	35	_	_
1000	1030	0	- 125	-	_	_	_	_	_	120	75	35	_	_	120	75	35	_	_

Notes(1) When values are not indicated in the table (Class 2, etc.), those for the highest class for which the values are indicated are applicable.

(2) Classes 4 and 2 apply to High Rigidity Type Crossed Roller Bearings. For Standard Type Crossed Roller Bearings, the tolerance val-

ues for Class 5 are applicable to Classes 4 and 2.

Remark The accuracy specified in this table is not applicable to Slim Type Crossed Roller Bearings.

Table 5 Tolerances and allowable values of Slim Type Crossed Roller Bearings

unit: μ m

d Nominal bore	Single plane r	'mp nean bore dia.	Δ_{Dmp} Single plane mean outside dia. Δ_{Bs} and Δ_{Cs} Deviations of a single inner ring width and outer ring width			$K_{ m ia}$ and $S_{ m ia}$ Radial and axial run-out	$K_{ m ea}$ and $S_{ m ea}$ Radial and axial run-out	
diameter		ation I .			and outer ring width		of assembled bearing	of assembled bearing
mm	High	Low	High	Low	High	Low	inner ring	outer ring
50	0	- 15	0	- 13	0	- 127	13	13
60	0	- 15	0	- 13	0	- 127	13	13
70	0	- 15	0	- 15	0	- 127	15	15
80	0	- 20	0	- 15	0	- 127	15	15
90	0	- 20	0	- 15	0	- 127	15	15
100	0	- 20	0	- 15	0	- 127	15	15
110	0	- 20	0	- 20	0	- 127	20	20
120	0	- 25	0	- 20	0	- 127	20	20
130	0	– 25	0	- 25	0	- 127	25	25
140	0	- 25	0	- 25	0	- 127	25	25
150	0	– 25	0	- 25	0	- 127	25	25
160	0	- 25	0	- 25	0	- 127	25	25
170	0	– 25	0	- 30	0	- 127	25	25
180	0	- 30	0	-30	0	- 127	30	30
190	0	- 30	0	- 30	0	- 127	30	30
200	0	- 30	0	- 30	0	- 127	30	30

Clearance

The radial internal clearances of Crossed Roller Bearings are shown in Table 6.1. However, the radial internal clearances of Slim Type Crossed Roller Bearings are based on Table 6.2.

Table 6.1 Radial internal clearances

	:4.	
- 11	nit:	11

	l .		Radial internal clearance									
Nominal bo m	re diameter m	Т	1	С	1	C2						
0ver	Incl.	Min.	Max.	Min.	Max.	Min.	Max.					
_	30	- 10	0	0	10	10	20					
30	40	- 10	0	0	10	10	20					
40	50	- 10	0	0	10	10	25					
50	65	- 10	0	0	10	10	25					
65	80	- 10	0	0	15	15	30					
80	100	- 10	0	0	15	15	35					
100	120	- 15	0	0	15	15	35					
120	140	- 15	0	0	20	20	45					
140	160	- 15	0	0	20	20	50					
160	200	- 15	0	0	20	20	50					
200	250	- 20	0	0	25	25	60					
250	315	- 20	0	0	25	25	60					
315	400	- 25	0	0	30	30	70					
400	500	- 30	0	0	40	40	85					
500	630	- 30	0	0	50	50	100					
630	710	- 30	0	0	60	60	120					
710	800	- 40	0	0	70	70	140					

Remark This table is not applicable to Slim Type Crossed Roller Bearings.

Table 6.2 Radial internal clearances of Slim
Type Crossed Roller Bearings

Тур	oe Cros	ssed R	oller Be	earings	u	nit: μ m
d			Radial intern	ial clearance		
Nominal bore diameter	Т	1	Nor	mal		
mm	Min.	Max.	Min.	Max.	Min.	Max.
50	- 8	0	0	15	30	56
60	- 8	0	0	15	30	56
70	- 8	0	0	15	30	56
80	- 8	0	0	15	41	66
90	- 8	0	0	15	41	66
100	- 8	0	0	15	41	66
110	- 8	0	0	15	41	66
120	- 8	0	0	15	51	76
130	- 8	0	0	15	51	76
140	- 8	0	0	15	51	76
150	- 8	0	0	15	51	76
160	- 10	0	0	20	51	76
170	- 10	0	0	20	51	76
180	- 10	0	0	20	61	86
190	- 10	0	0	20	61	86
200	- 10	0	0	20	61	86

CRBC CRB CRBS

The standard fits of Crossed Roller Bearings are shown in Table 7.1. For large bearings, fit based on the actual measured dimensions of the bearings is recommended, and fit allowance should be chosen as small as possible in accordance with the tolerance class given in Table 7.1. When complex loads or shock loads are applied or when high rotational accuracy and rigidity of the bearing are required, it is recommended to use a slight interference fit adjusted to the actual measured dimensions for both inner and outer rings.

For the interference fit, the radial internal clearance after the fit decreases by approximately 70% to 90% of the interference amount. To avoid excessive preload due to fit, it is recommended to use a slight interference fit adjusted to the actual measured dimensions for both T1 and C1 clearances.

Allowable rotational speed

Allowable rotational speeds of Crossed Roller Bearings are affected by mounting and operating conditions. The values in general operation are shown in Table 8.

Table 8 $d_{\rm m}n$ values(1) of Crossed Roller Bearings

111		
Lubricant Type	Grease	Oil
CRBH ··· A CRBC CRBS	75000	150000
CRB CRBS ··· V	50000	75000

Note(1) $\cdot d_{\rm m} n$ value = $d_{\rm m} \times n$

where, $d_{
m m}$: Mean value of bearing bore and outside diameters, $\,{
m mm}$

n : Number of rotations per minute, rpm

· These are not applicable to the Sealed Type.

Table 7.1 Recommended fits for Crossed Roller Bearings under normal load

	Tolerance class									
Radial internal clearance	Inner ring r	otating load	Outer ring rotating load							
	Shaft Housing bore		Shaft	Housing bore						
C1 clearance	h5	H7	g5	J7(1)						
C2 clearance	j5	H7	g5	J7 ⁽¹⁾						

Note(1) It is recommended that a slight interference fit adjusted to the actual measured dimensions of the bearing is used.

Table 7.2 Recommended fits for Slim Type Crossed Roller Bearings with normal clearances

(Dimensional tolerances of shaft and housing bore)

unit: μ m

d		Inner ring r	otating load		Outer ring rotating load					
Nominal bore diameter	Sh	aft	Housir	ng bore	Sh	aft	Housir	ng bore		
mm	High	Low	High	Low	High	Low	High	Low		
50	+ 15	0	+13	0	– 15	-30	- 13	- 25		
60	+ 15	0	+13	0	- 15	-30	- 13	- 25		
70	+ 15	0	+15	0	- 15	-30	- 15	- 30		
80	+20	0	+15	0	- 20	- 40	- 15	- 30		
90	+20	0	+15	0	- 20	-40	- 15	- 30		
100	+20	0	+15	0	-20	-40	- 15	-30		
110	+20	0	+20	0	- 20	-40	- 20	- 40		
120	+ 25	0	+20	0	- 25	- 50	- 20	- 40		
130	+ 25	0	+25	0	- 25	- 50	- 25	- 50		
140	+ 25	0	+25	0	- 25	- 50	- 25	- 50		
150	+ 25	0	+25	0	- 25	- 50	- 25	- 50		
160	+ 25	0	+25	0	- 25	- 50	- 25	- 50		
170	+ 25	0	+30	0	- 25	- 50	-30	-60		
180	+30	0	+30	0	-30	- 60	-30	-60		
190	+30	0	+30	0	-30	- 60	- 30	- 60		
200	+ 30	0	+30	0	-30	- 60	-30	- 60		

Lubrication

These bearings are generally lubricated with grease. Grease is supplied through the clearance between the inner ring and the outer ring.

In the sealed type bearings, ALVANIA EP GREASE 2 is prepacked as the lubricating grease.

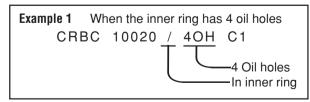
For bearings without prepacked grease, supply grease or oil for use. Operating without grease or oil will increase the wear of the rolling contact surfaces and cause a short bearing life.

When using a special grease, carefully examine the grease properties and contents such as base oil viscosity and extreme pressure additives. In this case, please contact $\mathbb{I}[\mathbb{R}]$.

Oil Hole

For Crossed Roller Bearings, oil holes and oil grooves can be provided on bearing rings on request. When an oil hole is required on the outer ring, attach "-OH" before the clearance symbol in the identification number. When an oil hole and an oil groove are required on the outer ring, attach "-OG" at the same place in the identification number. For an oil hole on the inner ring, attach "/OH", and for an oil hole and an oil groove on the inner ring, attach "/OG", at the same place in the identification number. High Rigidity Type Crossed Roller Bearings have an oil groove and two oil holes on the outer ring as standard. Table 9 shows availability of oil holes for each bearing type.

Table 9 Oil holes


Decrine to the (1)		Oil hole code								
Bearing type (1)	/nOH	/nOG	-nOH	-nOG						
CRBH	0	0	_	- (2)						
CRB, CRBC	0	0	0	0						
CRBS	0	_	0	_						

Notes(1) Only representative types are shown in the table, but this table is applicable to all Crossed Roller Bearings.

(2) CRBH is provided with an oil groove and two oil holes on the outer ring.

Remark n denotes the number of oil holes not exceeding 4. For one oil hole, number is not indicated.

When preparing multiple oil holes, please contact $\mathbb{IK}\ \blacksquare$.

Example 2 When the outer ring has a single oil hole CRBC 10020 - OH C1

1 Oil hole In outer ring

Operating Temperature Range

The operating temperature range for Crossed Roller Bearings is $-20\,^{\circ}\text{C} \sim +\,120\,^{\circ}\text{C}$. However, the maximum allowable temperature for types with separator and with seal is $+\,110\,^{\circ}\text{C}$, and $+\,100\,^{\circ}\text{C}$ when they are continuously operated.

Mounting

• When the rigidity of the mounting parts is insufficient, stress concentration will occur at the contact area between the rollers and the raceways, and the bearing performance will be deteriorated significantly. Therefore, carefully examine the rigidity of housing and the strength of fixing bolts when a large moment is applied.

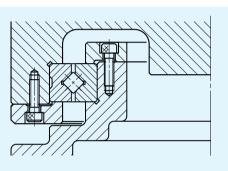
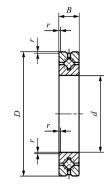
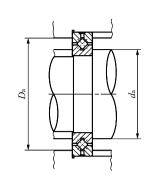


Fig. 2 Mounting example

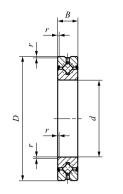

- **2** The inner and outer rings should be securely fixed in the axial direction by using fixing plates, etc. Recommended thickness of the fixing plate is 1/2 or more of the bearing width *B*. The dimensions in the axial direction of the housing bore and the fixing plates should be determined to get a secure fixing while considering the dimension of bearing width which is given a minus tolerance.
- **3** The shoulder height diameters $(d_a \text{ and } D_a)$ that are related to mounting should satisfy the values shown in the dimension tables. When these dimensions are incorrect, deformations of inner and outer rings will occur and the bearing performance will be remarkably impaired.
- **4** The depth of the housing bore is recommended to be equal to or larger than the bearing width.
- Separation prevention bolts for the outer ring are provided to prevent separation of two halves of the outer ring during transportation or mounting. When mounting, they should be loosened slightly.
- **6** High Rigidity Type Crossed Roller Bearings and Slim Type Crossed Roller Bearings have a plug for hole for inserting rollers. When mounting the bearings, locate the plug at a position that is not included in the maximum loading zone. The plug is a press-fitted pin that can be found on the side face of the outer ring.


CRBH CRBC CRB CRBS

High Rigidity Type Crossed Roller Bearings Open Type/With Separator

Shaft dia. 20 — 250mm

CRBH...A


Shaft dia.	Identification number	Mass (Ref.)	Во	undary m	dimens nm	ions	Mountin- dimension		Basic dynamic load rating	Basic static load rating
mm	identification number	kg	d	D	В	$r_{\min}^{(1)}$	$d_{\rm a}$	D_{a}	C N	C_0
20	CRBH 208 A	0.04	20	36	8	0.3	24	31	2 910	2 430
25	CRBH 258 A	0.05	25	41	8	0.3	29	36	3 120	2 810
30	CRBH 3010 A	0.12	30	55	10	0.3	36.5	48.5	7 600	8 370
35	CRBH 3510 A	0.13	35	60	10	0.3	41.5	53.5	7 900	9 130
40	CRBH 4010 A	0.15	40	65	10	0.3	46.5	58.5	8 610	10 600
45	CRBH 4510 A	0.16	45	70	10	0.3	51.5	63.5	8 860	11 300
50	CRBH 5013 A	0.29	50	80	13	0.6	56	74	17 300	20 900
60	CRBH 6013 A	0.33	60	90	13	0.6	66	84	18 800	24 300
70	CRBH 7013 A	0.38	70	100	13	0.6	76	94	20 100	27 700
80	CRBH 8016 A	0.74	80	120	16	0.6	88	112	32 100	43 400
90	CRBH 9016 A	0.81	90	130	16	0.6	98	122	33 100	46 800
100	CRBH 10020 A	1.45	100	150	20	0.6	110	140	50 900	72 200
110	CRBH 11020 A	1.56	110	160	20	0.6	120	150	52 400	77 400
120	CRBH 12025 A	2.62	120	180	25	1	132	168	73 400	108 000
130	CRBH 13025 A	2.82	130	190	25	1	142	178	75 900	115 000
140	CRBH 14025 A	2.96	140	200	25	1	152	188	81 900	130 000
150	CRBH 15025 A	3.16	150	210	25	1	162	198	84 300	138 000
200	CRBH 20025 A	4.0	200	260	25	1	212	248	92 300	169 000
250	CRBH 25025 A	4.97	250	310	25	1.5	262	298	102 000	207 000

Note(1) Minimum allowable single value of chamfer dimension r Remarks1. The outer ring has an oil groove and two oil holes.

2. Grease is not prepacked. Perform proper lubrication.

High Rigidity Type Crossed Roller Bearings Sealed Type/With Separator

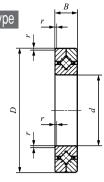
Shaft dia. 20 — 250mm

CRBH...AUU

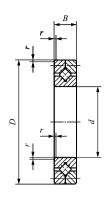
Shaft dia.	ldentification number	Mass (Ref.)	Во	undary m	dimens		Mounting dimension	-	Basic dynamic load rating	Basic static load rating C_0
mm		kg	d	D	В	$r_{\min}^{(1)}$	$d_{\rm a}$	D_{a}	N	N
20	CRBH 208 A UU	0.04	20	36	8	0.3	24	31	2 910	2 430
25	CRBH 258 A UU	0.05	25	41	8	0.3	29	36	3 120	2 810
30	CRBH 3010 A UU	0.12	30	55	10	0.3	36.5	48.5	7 600	8 370
35	CRBH 3510 A UU	0.13	35	60	10	0.3	41.5	53.5	7 900	9 130
40	CRBH 4010 A UU	0.15	40	65	10	0.3	46.5	58.5	8 610	10 600
45	CRBH 4510 A UU	0.16	45	70	10	0.3	51.5	63.5	8 860	11 300
50	CRBH 5013 A UU	0.29	50	80	13	0.6	56	74	17 300	20 900
60	CRBH 6013 A UU	0.33	60	90	13	0.6	66	84	18 800	24 300
70	CRBH 7013 A UU	0.38	70	100	13	0.6	76	94	20 100	27 700
80	CRBH 8016 A UU	0.74	80	120	16	0.6	88	112	32 100	43 400
90	CRBH 9016 A UU	0.81	90	130	16	0.6	98	122	33 100	46 800
100	CRBH 10020 A UU	1.45	100	150	20	0.6	110	140	50 900	72 200
110	CRBH 11020 A UU	1.56	110	160	20	0.6	120	150	52 400	77 400
120	CRBH 12025 A UU	2.62	120	180	25	1	132	168	73 400	108 000
130	CRBH 13025 A UU	2.82	130	190	25	1	142	178	75 900	115 000
140	CRBH 14025 A UU	2.96	140	200	25	1	152	188	81 900	130 000
150	CRBH 15025 A UU	3.16	150	210	25	1	162	198	84 300	138 000
200	CRBH 20025 A UU	4.0	200	260	25	1	212	248	92 300	169 000
250	CRBH 25025 A UU	4.97	250	310	25	1.5	262	298	102 000	207 000

Note(1) Minimum allowable single value of chamfer dimension r Remarks1. The outer ring has an oil groove and two oil holes.

2. Provided with prepacked grease.

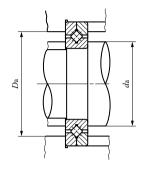

CRBC CRB CRBS

Standard Type Crossed Roller Bearings Open Type/With Cage


Open Type/Full Complement Type

CRBC

Shaft dia. 30 — 250mm


CRB

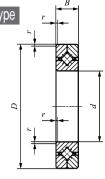
	Identification	on number	Mass	Bou	ndary d	limens	ions	Mou	nting	CR	ВС
Shaft dia.	W. O	le u	(Ref.)		mı	m	ı .	dimensio	ons mm	Basic dynamic load rating	Basic static load rating
mm	With Cage	Full complement	kg	d	D	В	$r_{\min}^{(1)}$	$d_{\rm a}$	$D_{\rm a}$	C N	C_0
30	CRBC 3010	CRB 3010	0.12	30	55	10	0.3	34	44	3 830	4 130
40	CRBC 4010	CRB 4010	0.15	40	65	10	0.3	44	54	4 280	5 140
50	CRBC 5013	CRB 5013	0.29	50	80	13	0.6	55	71	10 700	12 600
60	CRBC 6013	CRB 6013	0.33	60	90	13	0.6	64	81	11 600	14 600
70	CRBC 7013	CRB 7013	0.38	70	100	13	0.6	75	91	12 300	16 700
80	CRBC 8016	CRB 8016	0.74	80	120	16	0.6	86	107	18 200	25 500
90	CRBC 9016	CRB 9016	0.81	90	130	16	1	98	118	19 400	28 600
100	CRBC 10020	CRB 10020	1.45	100	150	20	1	108	134	31 500	45 100
110	CRBC 11020	CRB 11020	1.56	110	160	20	1	118	144	33 500	50 700
120	CRBC 12025	CRB 12025	2.62	120	180	25	1.5	132	164	47 700	70 500
130	CRBC 13025	CRB 13025	2.82	130	190	25	1.5	140	172	49 200	74 800
140	CRBC 14025	CRB 14025	2.96	140	200	25	1.5	151	183	50 700	79 200
150	CRBC 15025	CRB 15025	3.16	150	210	25	1.5	160	192	53 800	87 700
130	CRBC 15030	CRB 15030	5.3	150	230	30	1.5	166	202	69 200	108 000
200	CRBC 20025 CRBC 20030	CRB 20025 CRB 20030	4.0 6.7	200	260 280	25 30	2 2	208 218	239 262	60 200 108 000	110 000 178 000
200	CRBC 20035	CRB 20035	9.58	200	295	35	2	221	274	137 000	215 000
	CRBC 25025	CRB 25025	4.97	250	310	25	2.5	259	290	67 200	136 000
250	CRBC 25030	CRB 25030	8.1	250	330	30	2.5	265	310	116 000	208 000
	CRBC 25040	CRB 25040	14.8	250	355	40	2.5	271	330	179 000	299 000

Note(1)	Minimum allowable single value of chamfer dimension r
` ` `	N. W. I. I. C. C. I. I.

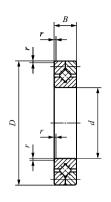
Remarks1. No oil hole is provided.

2. Grease is not prepacked. Perform proper lubrication.

CF	RB	
Basic dynamic	Basic static	
load rating ${\it C}$	load rating C_{0}	
N	N	
5 290	6 350	
5 980	8 040	
14 200	18 400	
15 400	21 500	
17 000	25 500	
24 300	37 500	
25 900	42 100	
39 400	61 100	
41 200	66 700	
59 900	95 400	
61 000	99 800	
64 100	108 000	
65 000	113 000	
85 900	144 000	
75 300	148 000	
133 000	234 000	
168 000	282 000	
83 900	183 000	
146 000	283 000	
215 000	382 000	

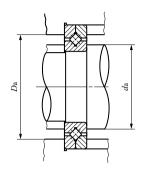


Standard Type Crossed Roller Bearings Open Type/With Cage


Open Type/Full Complement Type

CRBC

CRB


Shaft dia. 300 — 800mm

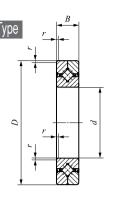
Shaft	Identification	on number	Mass (Ref.)	Bou	ndary d		ions	Mounting dimensions mm		CR Basic dynamic	BC Basic static
dia.	With Cage	Full complement					(1)			load rating	load rating C_0
mm			kg	d	D	В	r_{\min}	$d_{\rm a}$	$D_{\rm a}$	N	N N
000	CRBC 30025		5.88	300	360	25	2.5	310	341	73 800	
300	CRBC 30035 CRBC 30040		13.4 17.2	300	395 405	35 40	2.5 2.5	318 321	372 381	163 000 194 000	299 000 351 000
	CRBC 40035		14.5	400	480	35	2.5	414	457	133 000	300 000
400	CRBC 40040 CRBC 40070		23.5 72.4	400 400	510 580	40 70	2.5 2.5	423 430	483 532	222 000 470 000	
500	CRBC 50040		26.0	500	600	40	2.5	517	573	212 000	
500	CRBC 50050 CRBC 50070		41.7 86.1	500 500	625 680	50 70	2.5 2.5	531 530	592 633	247 000 536 000	
	CRBC 60040		30.6	600	700	40	3	621	676	231 000	581 000
600	CRBC 60070 CRBC 600120		102 274	600 600	780 870	70 120	3	630 643	734 817	591 000 1 250 000	
700	CRBC 70045		46.5	700	815	45	3	730	785	250 000	681 000
700	CRBC 70070 CRBC 700150		115 478	700 700	880 1 020	70 150	3	731 751	834 953	630 000 1 660 000	
800	CRBC 80070		109	800	950	70	4	831	907	417 000	
	CRBC 800100	CRB 800100	247	800	1 030	100	4	840	972	936 000	2 040 000

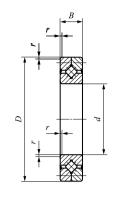
Note(1)	Minimum allowable single value of chamfer dimension r	

Remarks1. No oil hole is provided.

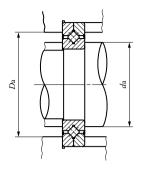
2. Grease is not prepacked. Perform proper lubrication.

Basic dynamic load rating C	RB Basic static load rating C_0 N
91 900 205 000 235 000	217 000 408 000 451 000
165 000 270 000 576 000	400 000 590 000 1 060 000
259 000 306 000 653 000	648 000 747 000 1 330 000
287 000 700 000 1 490 000	774 000 1 540 000 2 800 000
313 000 766 000 1 980 000	
513 000 1 140 000	1 440 000 2 640 000




Standard Type Crossed Roller Bearings Sealed Type/With Cage

Shaft dia. 30 — 300mm


CRBC...UU

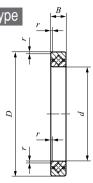
CRB...UU

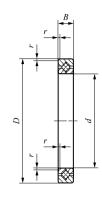
Shaft	Identificati	on number	Mass (Ref.)	Bou	,	dime	nsions	Mounting dimensions mm		CRBC Basic dynamic	Basic static
dia.	With Cage	Full complement	kg	d	D	В	$r_{\min}^{(1)}$	$d_{\rm a}$	D_{a}	load rating C N	load rating C_0
30	CRBC 3010 UU	CRB 3010 UU	0.12	30	55	10	0.3	34	44	3 830	4 130
40	CRBC 4010 UU	CRB 4010 UU	0.15	40	65	10	0.3	44	54	4 280	5 140
50	CRBC 5013 UU	CRB 5013 UU	0.29	50	80	13	0.6	55	71	10 700	12 600
60	CRBC 6013 UU	CRB 6013 UU	0.33	60	90	13	0.6	64	81	11 600	14 600
70	CRBC 7013 UU	CRB 7013 UU	0.38	70	100	13	0.6	75	91	12 300	16 700
80	CRBC 8016 UU	CRB 8016 UU	0.74	80	120	16	0.6	86	107	18 200	25 500
90	CRBC 9016 UU	CRB 9016 UU	0.81	90	130	16	1	98	118	19 400	28 600
100	CRBC 10020 UU	CRB 10020 UU	1.45	100	150	20	1	108	134	31 500	45 100
110	CRBC 11020 UU	CRB 11020 UU	1.56	110	160	20	1	118	144	33 500	50 700
120	CRBC 12025 UU	CRB 12025 UU	2.62	120	180	25	1.5	132	164	47 700	70 500
130	CRBC 13025 UU	CRB 13025 UU	2.82	130	190	25	1.5	140	172	49 200	74 800
140	CRBC 14025 UU	CRB 14025 UU	2.96	140	200	25	1.5	151	183	50 700	79 200
150	CRBC 15025 UU CRBC 15030 UU		3.16 5.3	150 150		25 30	1.5 1.5	160 166	192 202	53 800 69 200	87 700 108 000
200	CRBC 20025 UU		4.0	200		25	2	208	239	60 200	110 000
250	CRBC 25025 UU	CRB 25025 UU	4.97	250		25	2.5	259	290	67 200	136 000
300	CRBC 30025 UU	CRB 30025 UU	5.88	300		25	2.5	310	341	73 800	162 000
	01120 00020 00	0112 00020 00	0.00			20	2.0			70 000	102 000

 $Note(^1)$ Minimum allowable single value of chamfer dimension rRemarks1. No oil hole is provided.

2. Provided with prepacked grease.

CRB	UU			
Basic dynamic	Basic static			
load rating $oldsymbol{C}$	load rating ${\color{black} C_0}$			
N	N			
5 290	6 350			
5 980	8 040			
14 200	18 400			
15 400	21 500			
17 000	25 500			
24 300	37 500			
25 900	42 100			
39 400	61 100			
41 200	66 700			
59 900	95 400			
61 000	99 800			
64 100	108 000			
65 000	113 000			
85 900	144 000			
75 300	148 000			
83 900	183 000			
91 900	217 000			



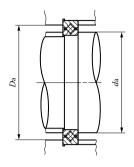


Slim Type Crossed Roller Bearings Open Type/With Cage

Open Type/Full Complement Type

CRBS

CRBS...V


Shaft d	ia. 50	-200	າmm ໄ
Orialt a	iu. Ju		<i>-</i>

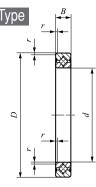
	Identifica	ation number	Mass	Boui	ndary o	dimens	sions	Mounting		CRBS	
Shaft dia.	VA/Sala Carra	Same Full same laws		(Ref.) mm					ons mm	Basic dynamic load rating	Basic static load rating
mm	With Cage	Full complement	g	d	D	В	$r_{\min}^{(1)}$	d_{a}	$D_{\rm a}$	C	C_0
50	CRBS 508	CRBS 508 V	84	50	66	8	0.4	54	61	4 900	N 6 170
60	CRBS 608	CRBS 608 V	94	60	76	8	0.4	64	71	5 350	7 310
70	CRBS 708	CRBS 708 V	108	70	86	8	0.4	74	81	5 740	8 440
80	CRBS 808	CRBS 808 V	122	80	96	8	0.4	84	91	6 130	9 590
90	CRBS 908	CRBS 908 V	135	90	106	8	0.4	94	101	6 490	10 700
100	CRBS 1008	CRBS 1008 V	152	100	116	8	0.4	104	111	6 850	11 900
110	CRBS 1108	CRBS 1108 V	163	110	126	8	0.4	114	121	7 160	13 000
120	CRBS 1208	CRBS 1208 V	184	120	136	8	0.4	124	131	7 530	14 100
130	CRBS 1308	CRBS 1308 V	199	130	146	8	0.4	134	141	7 860	15 300
140	CRBS 1408	CRBS 1408 V	205	140	156	8	0.4	144	151	8 060	16 400
150	CRBS 1508	CRBS 1508 V	220	150	166	8	0.4	154	161	8 350	17 500
160	CRBS 16013	CRBS 16013 V	620	160	186	13	0.6	166	179	20 300	39 900
170	CRBS 17013	CRBS 17013 V	675	170	196	13	0.6	176	189	20 900	42 200
180	CRBS 18013	CRBS 18013 V	710	180	206	13	0.6	186	199	21 500	44 600
190	CRBS 19013	CRBS 19013 V	740	190	216	13	0.6	196	209	22 100	46 900
200	CRBS 20013	CRBS 20013 V	780	200	226	13	0.6	206	219	22 500	49 300

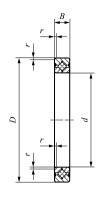
Note(1)	Minimum allowable single value of chamfer dimension r

Remarks1. No oil hole is provided.

2. Grease is not prepacked. Perform proper lubrication.

CRB	S V
Basic dynamic load rating	Basic static load rating
C	C_0
N	N N
6 930	9 800
7 600	11 700
8 190	13 600
8 790	15 500
9 310	17 400
9 850	19 300
10 300	21 200
10 900	23 000
11 200	24 600
11 700	26 800
12 100	28 700
26 900	58 200
27 800	61 600
28 600	65 200
29 300	68 600
30 000	72 200




CROSSED ROLLER BEARINGS

Slim Type Crossed Roller Bearings | Sealed Type/With Separator

Sealed Type/Full Complement Type

CRBS...AUU

CRBS...VUU

Shaft dia. 50 — 200mm

Shaft dia.			Mass (Ref.)	Boun	dary d m		sions		nting ons mm	Basic dynamic	
mm	With separator	Full complement	g	d	D	В	$r_{\min}^{(1)}$	$d_{\rm a}$	$D_{\rm a}$	$egin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	load rating ${C}_0$ N
50	CRBS 508 A UU	CRBS 508 V UU	84	50	66	8	0.4	54	61	4 680	5 810
60	CRBS 608 A UU	CRBS 608 V UU	94	60	76	8	0.4	64	71	5 350	7 310
70	CRBS 708 A UU	CRBS 708 V UU	108	70	86	8	0.4	74	81	5 740	8 440
80	CRBS 808 A UU	CRBS 808 V UU	122	80	96	8	0.4	84	91	6 130	9 590
90	CRBS 908 A UU	CRBS 908 V UU	135	90	106	8	0.4	94	101	6 490	10 700
100	CRBS 1008 A UU	CRBS 1008 V UU	152	100	116	8	0.4	104	111	6 530	11 100
110	CRBS 1108 A UU	CRBS 1108 V UU	163	110	126	8	0.4	114	121	6 850	12 300
120	CRBS 1208 A UU	CRBS 1208 V UU	184	120	136	8	0.4	124	131	7 070	13 000
130	CRBS 1308 A UU	CRBS 1308 V UU	199	130	146	8	0.4	134	141	7 270	13 800
140	CRBS 1408 A UU	CRBS 1408 V UU	205	140	156	8	0.4	144	151	7 510	14 900
150	CRBS 1508 A UU	CRBS 1508 V UU	220	150	166	8	0.4	154	161	7 810	16 000
160	CRBS 16013 A UU	CRBS 16013 V UU	620	160	186	13	0.6	166	179	19 400	37 700
170	CRBS 17013 A UU	CRBS 17013 V UU	675	170	196	13	0.6	176	189	20 000	39 900
180	CRBS 18013 A UU	CRBS 18013 V UU	710	180	206	13	0.6	186	199	21 900	45 700
190	CRBS 19013 A UU	CRBS 19013 V UU	740	190	216	13	0.6	196	209	22 900	49 200
200	CRBS 20013 A UU	CRBS 20013 V UU	780	200	226	13	0.6	206	219	23 300	51 600

Note(1)	Minimum allowable single value of chamfer dimension
Remarks1.	No oil hole is provided.

^{2.} Provided with prepacked grease.

_		
Da	$\downarrow \downarrow$	a
	()	
<u>, </u>	V	
	((

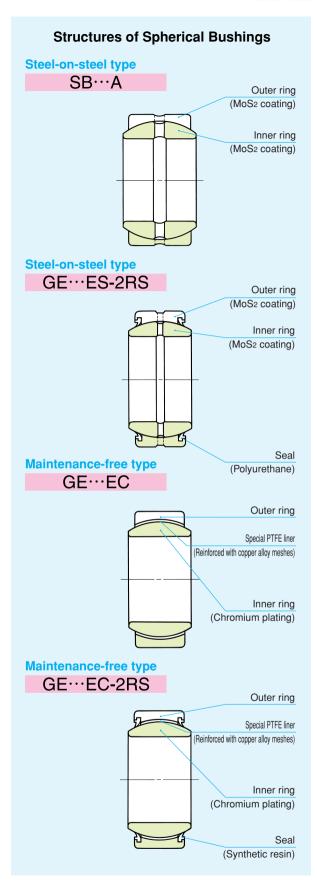
CF	RBS:	·· V UU
Basic o	dynamic	
	rating C	load rating C
	N N	C_0 N
6	930	9 800
7	600	11 700
8	190	13 600
8	790	15 500
9	310	17 400
9	850	19 300
10	300	21 200
10	900	23 000
11	200	24 600
11	700	26 800
12	100	28 700
26	900	58 200
27	800	61 600
28	600	65 200
29	300	68 600
30	000	72 200

- Steel-on-steel Spherical Bushings
- Maintenance-free Spherical Bushings

Structure and Features

Dixil Spherical Bushings are self-aligning spherical plain bushings that have inner and outer rings with spherical sliding surfaces, and can take a large radial load and a bi-directional axial load at the same time. There are many types of Spherical Bushings, but they are basically divided into steel-on-steel types and maintenance-free types according to the kind of sliding surfaces.

Steel-on-steel Spherical Bushings have inner and outer rings of high carbon chromium bearing steel, of which sliding surfaces are phosphate-treated and then dry-coated with molybdenum disulfide (MoS₂). They can, therefore, operate with low torque, and have excellent wear resistance and large load capacity. They are especially suitable for applications where there are alternate loads and shock loads. They have wide applications mainly in industrial and construction machinery.


Maintenance-free Spherical Bushings consist of an outer ring which has a special PTFE liner reinforced with copper alloy meshes on the sliding surface, and a spherical inner ring of which sliding surface has a hard chromium plating. Creep deformation due to compressive load is small, and wear resistance is superior. Thus, they are maintenance-free and can be used for extended periods of time without re-lubrication. They are especially suitable in cases where fixed directional loads are applied and are used mainly in food processing machines and construction machinery and in other applications in which the use of oil is undesirable or lubrication is not possible.

Types

Spherical Bushings are available in various types shown in Table 1.

Table 1 Type of bearing

	Туре	Steel-on-steel		Maintenance-free	
	Series	Without seals	With seals	Without seals	With seals
		SB	_		
	Metric	SB···A	_	GE ··· FC	GE ··· EC-2RS
		GE ··· E, ES	GE···ES-2RS	GE EC	
		GE…G, GS	GE ··· GS-2RS		
	Inch	SBB	SBB··· -2RS	_	_

SB GE

434

Steel-on-steel Spherical Bushings SB

These bushings have an outer ring split into halves. The split outer ring and the inner ring are held together by a snap ring placed in the groove around the outer periphery of the outer ring.

Steel-on-steel Spherical Bushings SB...A

These bushings have an outer ring split only at one position, and therefore, the outer and inner rings will not separate. Handling before mounting and mounting to the housing are simple. The boundary dimensions are the same as those of the SB type. Therefore, SB and SB \cdots A types are dimensionally interchangeable, but the radial internal clearances of the SB \cdots A type are smaller than those of the SB type.

Steel-on-steel Spherical Bushings GE...E,GE...ES

The dimension series of these types conform to ISO standards and they can be used internationally. The outer ring is split at one position. The $GE \cdots E$ and $GE \cdots ES$ types are available. These are classified by bushing size.

The GE ··· ES type can be provided with seals, which are double-lip type polyurethane seals effective for prevention against grease leakage and dust penetration. The sealed type is indicated by the suffix "-2RS" at the end of the identification number.

Steel-on-steel Spherical Bushings GE...G.GE...GS

As compared with the GE \cdots E and GE \cdots ES types, these bushings have larger load capacities and larger permissible tilting angles. The dimension series also conform to ISO standards, and they can be used internationally. The outer ring is split at one position. The GE \cdots G and GE \cdots GS types are available. They are classified by bushing size.

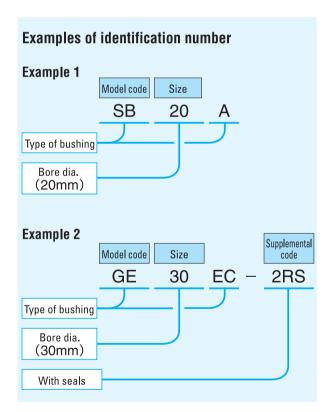
The GE ··· GS type can be provided with seals, which are double-lip type polyurethane seals effective for prevention against grease leakage and dust penetration

Steel-on-steel Spherical Bushings SBB

These are inch series bushings. The outer ring is split at one position.

These bushings can be provided with seals, which are double-lip type polyurethane seals effective for prevention against grease leakage and dust penetration.

Maintenance-free Spherical Bushings GE…EC


These bushings have the same boundary dimensions as the GE···ES type and can be used internationally. A special PTFE liner reinforced with copper alloy meshes is used on the sliding surface. Therefore, creep deformation due to compressive loads is small, and wear resistance is superior. These bushings are used as maintenance-free bushings.

These bushings can be provided with synthetic resin seals which are effective in preventing dust penetration. They are indicated by the suffix "-2RS" at the end of the identification number.

Spherical Bushings with superior rust prevention properties, which can be used in a corrosive environment or in an environment where water splashes, are also available on request. Please consult [136].

Identification number

The identification number of Spherical Bushings consists of a model code, a size and any supplemental codes. Examples are shown below.

The tolerances of Steel-on-steel Spherical Bushings of the metric series is shown in Table 2.

The tolerances of the GE type are applicable to bushings before splitting the outer ring and after surface treatment.

The tolerances of the SB and SB···A types are applicable to bushings before splitting the outer ring and before surface treatment.

The tolerances of the GE···EC type are applicable to bushings before splitting the outer ring.

The tolerances of the Spherical Bushings of the inch series are shown in Table 3. The tolerances of the bore diameter are applicable to bushings after surface treatment, while other tolerances are applicable to bushings before splitting the outer ring and before surface treatment.

Although minor dimensional changes may occur during surface treatment, they have negligible influence on the overall performance.

Table 2 Tolerances of inner and outer rings of metric series (JIS Class 0) unit: μ m

d or $D(^1)$ Nominal bore dia. or outside dia. mm		$\Delta_{d\mathrm{mp}}$ Single plane mean bore dia. deviation		$\Delta_{D{ m mp}}$ Single plane mean outside dia. deviation		$\Delta_{B{ m S}}$ or $\Delta_{C{ m S}}$ Deviation of a single inner ring width or outer ring width	
Over	Incl.	High	Low	High	Low	High	Low
2.5	6	0	– 8		_	0	- 120
6	18	0	– 8	0	- 8	0	- 120
18	30	0	— 10	0	- 9	0	- 120
30	50	0	- 12	0	- 11	0	- 120
50	80	0	- 15	0	- 13	0	- 150
80	120	0	- 20	0	- 15	0	- 200
120	150	0	- 25	0	- 18	0	- 250
150	180	0	- 25	0	- 25	0	- 250
180	250	0	- 30	0	- 30	0	- 300
250	315	0	- 35	0	- 35	0	- 350
315	400	0	- 40	0	-40	0	-400
400	500	0	- 45	0	- 45	0	- 450

Note(1) d for Δ_{dmp} , Δ_{Bs} and Δ_{Cs} and D for Δ_{Dmp} , respectively.

d or $D(^1)$ Nominal bore dia. or outside dia. mm		$\Delta_{d\mathrm{mp}}$ Single plane mean bore dia. deviation		$\Delta_{D\mathrm{mp}}$ Single plane mean outside dia. deviation		Δ_{Bs} or Δ_{Cs} Deviation of a single inner ring width or outer ring width	
Over	Incl.	High	Low	High	Low	High	Low
_	50.800	0	- 13	0	- 13	0	— 130
50.800	76.200	0	- 15	0	- 15	0	— 130
76.200	80.962	0	- 20	0	- 15	0	- 130
80.962	120.650	0	- 20	0	- 20	0	— 130
120.650	152.400	0	- 25	0	− 25	0	— 130
152.400	177.800	_	_	0	− 25	0	— 130
177.800	222.250	_		0	- 30	0	— 130

Note(1) d for Δ_{dmp} , Δ_{Bs} and Δ_{Cs} and D for Δ_{Dmp} , respectively.

Clearance

The radial internal clearances of Spherical Bushings are the values before splitting the outer ring, and are shown in Tables 4, 5 and 6. The radial internal clearances of the inch series are shown in the dimension table

Clearances other than these can also be prepared on request. Please consult [1](0].

Table 4 Radial internal clearance of SB and SB ··· A types (Steel-on-steel)

				unit: μ r	
d	SB t	type	SB · · ·	A type	
Nominal bore dia. mm	Min.	Max.	Min.	Max.	
12	70	125	32	68	
15	70	123	40	82	
20				02	
22	75	140			
25	, 0		50	100	
30					
35		150			
40	85		60	120	
45					
50					
55	90	160	72	142	
60					
65					
70 75	95				
80	93				
85					
90					
95	100	185			
100			85	165	
110	110				
115		200			
120					
130	100	015	100	100	
150	120	215	100	192	

SB GE SBB

Table 5 Radial internal clearance of GE type (Steel-on-steel)

unit: μ m

			unit: μ m
Nominal M	bore dia. m	Radial intern	al clearance
GE…E GE…ES	GE…G GE…GS	Min.	Max.
4 5 6 8 10 12	- - - 6 8 10	32	68
15 17 20	12 15 17	40	82
25 30 35	20 25 30	50	100
40 45 50 60	35 40 45 50	60	120
70 80 90	60 70 80	72	142
100 110 120 140	90 100 110 120	85	165
160 180 200 220 240	140 160 180 200 220	100	192
260 280 300	240 260 280	110	214

Remark Also applicable to bushings with seals.

Table 6 Radial internal clearance of GE ··· EC type (Maintenance-free)

unit: *U* ı

		unit: μ m			
<i>d</i> Nominal bore dia.	Radial internal clearance				
mm	Min.	Max.			
15					
17	0	40			
20					
25					
30	0	50			
35					
40					
45	0	60			
50	0	60			
60					
70	0	72			

Remark Also applicable to bushings with seals.

Fit

The recommended fits for Spherical Bushings are shown in Tables 7 and 8.

Table 7 Recommended fits for Steel-on-steel Spherical Bushings

Condition	Tolerance class				
Condition	Shaft	Housing bore			
Normal operation	h6, j6	H7, J7			
With directionally indeterminate load	m6, n6	M7, N7			

Remark N7 tolerance is recommended for light metal housings

Table 8 Recommended fits for Maintenance-free Spherical Bushings

Tolerance class of shaft	Tolerance class of housing bore		
h6, j6	H7, J7, K7		

Remark K7 tolerance is recommended for light metal housings.

Selection of Spherical Bushings

Selection between the steel-on-steel type and the maintenance-free type is made considering the operating conditions such as load, lubrication, temperature, and sliding velocity.

Load capacity

Dynamic load capacity

The dynamic load capacity $C_{\rm d}$ is the maximum allowable load that can be applied on a spherical bushing under oscillating motion. It is obtained on the basis of the contact pressure on the spherical surfaces. The dynamic load capacity is also used for calculating the life of spherical bushings.

The recommended value of bushing load is obtained by multiplying the dynamic load capacity $C_{\rm d}$ by a numerical factor, which differs depending on the bushing type and the load condition. A guideline for selection is shown in Table 9.

Table 9 Guide for determination of load

Type of bushing	Load direction							
Type of busining	Constant	Alternate						
Steel-on-steel	$\leq 0.3C_{\rm d}$	$\leq 0.6C_{\rm d}$						
Maintenance-free	$\leq C_{\rm d}$	$\leq 0.5C_{\rm d}$						

When the magnitude of load exceeds the value given in Table 9, please consult III.

The dynamic load capacity $C_{\rm dt}$ considering the influence of bushing temperature can be obtained from the following equation using the temperature factor.

$$C_{
m dt} = f_{
m t} \; C_{
m d}$$
(1) where, $C_{
m dt}$: Dynamic load capacity considering temperature increase N

 f_{t} : Temperature factor (Refer to Table 10.)

 $C_{
m d}$: Dynamic load capacity N (Refer to the dimension tables.)

Table 10 Temperature factor f_t

			Т	empera	ture °C	2	
Туре о	f bushing	- 30 + 80	+ 80 + 90	+ 90 + 100	+ 100 + 120	+ 120 + 150	+ 150 + 180
Steel-on-	Without seals	1	1	1	1	1	0.7
steel	With seals	1	_	_	_	_	_
Maintena	Without seals	1	1	0.9	0.75	0.55	_
nce-free	With seals	1	_	_	_	_	_

Static load capacity

The static load capacity $C_{\rm s}$ is the maximum static load that can be applied on the spherical bushing without breaking inner and outer rings or causing any permanent deformation severe enough to render the bushing unusable.

It must be noted that if the magnitude of the applied load becomes comparable to the static load capacity of bushing, the stresses in the shaft or housing may also reach to their limits. This possibility must be taken into consideration in the design.

Equivalent radial load

Spherical Bushings can take radial and axial loads at the same time. When the magnitude and direction of loads are constant, the equivalent radial load can be obtained from the following formula.

$$P = F_{\rm r} + YF_{\rm a} \qquad (2)$$

where, $\ P$: Equivalent radial load $\ N$

 $F_{\rm r}$: Radial load N $F_{\rm a}$: Axial load N

Y: Axial load factor (Refer to Table 11.)

Table 11 Axial load factor Y

$F_{ m a}/F_{ m r}$ Type of bushing	0.1	0.2	0.3	0.4	0.5	>0.5					
Steel-on-steel	1	2	3	4	5	Unusable					
Maintenance-free	1	2	3	U	nusab	le					

Life

The life of Spherical Bushings is defined as the total number of oscillating motions before the bushings cannot be operated normally because of wear, increase in internal clearance, increase in sliding torque, rise of operating temperature, etc.

As the actual life is affected by many factors such as the material of the sliding surface, the magnitude and direction of load, lubrication, sliding velocity, etc., the calculated life can be used as a practical measure of expected service life.

Life of Steel-on-steel spherical bushings

[1] Confirmation of pV value

Before attempting to calculate the life, make sure that the operating conditions are within the permissible range by referring to the pV diagram in Fig.1.

When the operating conditions are out of the permissible range, please consult \mathbb{R} .

The contact pressure p and the sliding velocity V are obtained from the following formulae.

$$p = \frac{100P}{C_{dt}}$$
 (3)
$$V = 5.82 \times 10^{-4} d_k \beta f$$
 (4)

where, p: Contact pressure N/mm²

P: Equivalent radial load N (Refer to Formula (2).)

 $C_{
m dt}$: Dynamic load capacity considering temperature increase $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ $\,$

(Refer to Formula (1).)

V: Sliding velocity mm/s

 $d_{\mathbf{k}}$: Sphere diameter $\,$ mm

(Refer to the dimension tables.)

 2β : Oscillating angle degrees (Refer to Fig.2.) when $\beta < 5^{\circ}$, $\beta = 5$ when rotating. $\beta = 90$

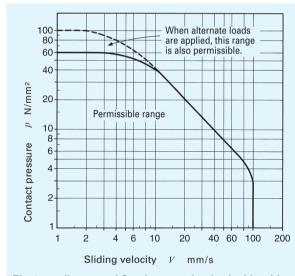
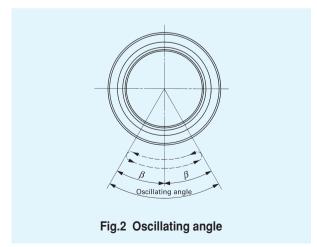



Fig.1 pV diagram of Steel-on-steel spherical bushings

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch GE

SBB

[2] Life calculation

The life of steel-on-steel spherical bushings can be calculated from the following formulae.

$$G = \frac{3.18b_1b_2b_3}{\sqrt{d_k \beta}} \left(\frac{C_{dt}}{P}\right)^2 \times 10^5 \dots (5)$$

$$L_{\rm h} = \frac{G}{60f} \qquad (6)$$

where, G: Life (Total number of oscillations)

 b_1 : Load directional factor (Refer to Table 12.)

 b_2 : Lubrication factor (Refer to Table 13.)

 b_3 : Sliding velocity factor (Refer to Fig.3.)

 $C_{
m dt}$: Dynamic load capacity considering temperature increase $\,$ N

(Refer to Formula (1).)

P: Equivalent radial load N

(Refer to Formula (2).)

 $L_{\rm h}$: Life in hours h

f: Number of oscillations per minute cpm

Table 12 Load directional factor b_1 (Steel-on-steel)

Load direction	Constant	Alternate
Load directional factor b_1	1	5

Table 13 Lubrication factor b_2

Periodical lubrication	None	Regular
Lubrication factor b_2	1	15

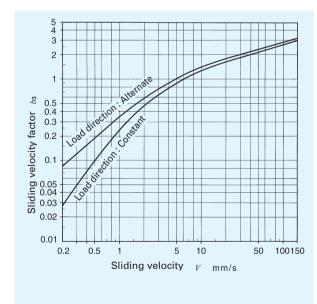


Fig.3 Sliding velocity factor

2 Life of Maintenance-free spherical bushings

[1] Confirmation of pV value

Before attempting to calculate the life, make sure that the operating conditions are within the permissible range by referring to the pV diagram in Fig.4.

When the operating conditions are out of the permissible range, please consult \mathbb{IK} .

The contact pressure p and the sliding velocity V are obtained from Formulae (3) and (4) shown on page 439

[2] Life calculation

The life of maintenance-free spherical bushings is obtained from the total sliding distance S which is given in Fig.5 for the contact pressure p obtained from Formula (3).

The total number of oscillations and life in hours can be obtained from the following formulae.

$$G = 16.67 \times b_1 \frac{Sf}{V}$$
 (7)

$$L_{\rm h} = \frac{G}{60f}$$
 (8)

where, G: Life (Total number of oscillations)

b₁: Load directional factor (Refer to Table 14.)

S: Total sliding distance m (Refer to Fig.5.)

V: Sliding velocity $\,$ mm/s

 $L_{\rm h}$: Life in hours h

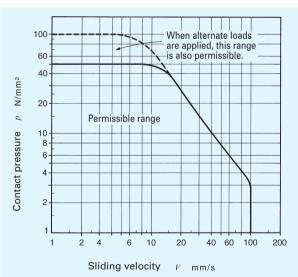


Fig.4 pV diagram of Maintenance-free spherical bushings

Table 14 Load directional factor b_1 (Maintenance-free)

Load direction	Constant	Alternate
Load directional factor b_1	1	0.2(1)

Note(1) This value is applicable when the load changes comparatively slowly. When the load changes rapidly, please consult 近尾回, as the factor degreases sharply.

Lubrication

Steel-on-steel Spherical Bushings can be operated without lubrication when the magnitude of applied load is small and the sliding velocity of oscillation is small. However, in general, it is necessary to supply grease periodically. During initial operation, it is recommended to shorten the lubrication interval. Lithium soap base grease (NLGI consistency No.2) containing molybdenum disulfide (MoS2) is widely used as the lubricating grease.

Maintenance-free Spherical Bushings can be used without lubrication. However, if lithium soap base grease is supplied before operation, the spherical bushings can be operated for an extended period of time. The spherical bushings can be effectively protected from dust and rust if the space around the bushings is filled with grease.

Oil Hole

The number of oil holes on inner and outer rings is shown in Table 15.

Table 15 Number of oil holes on inner and outer rings

				Ū
		Bushing type)	Number of oil holes on inner and outer rings
			GE···E	0
	Steel-on-steel Spherical Bushings	Metric series	GE····G	
			SB, SB···A	2
			GE ··· ES, GE ··· GS	
		Inch series	SBB	2
	Maintenance-free Spherical Bushings	Metric series	GE ··· EC	0

Remark Types with oil holes are also provided with oil grooves on inner and outer rings.

SB GE SBB

Operating Temperature Range

The operating temperature range for Spherical Bushings with seals is $-30\,^{\circ}\text{C} \sim +80\,^{\circ}\text{C}$.

The maximum allowable temperature for Spherical Bushings without seals is +180 °C for the steel-onsteel type and +150 °C for the maintenance-free type.

Precautions for Use

Design of shaft

When the load is large, sliding may occur between the shaft and the inner ring bore of bushing. For such cases, it is necessary to prepare the shaft with a hardness of 58HRC or greater and surface roughness of 0.8 μ m R_a or less.

Furthermore, attention must be paid to the strength of shaft because the shear and/or bending stresses in the shaft may surpass the allowable values even when the load is below the static load capacity of Spherical Bushings.

Design of housing

The housing should have sufficient rigidity to avoid harmful deformation under load.

When the housing shown in Fig.6 is used, it should be designed with sufficient strength as follows.

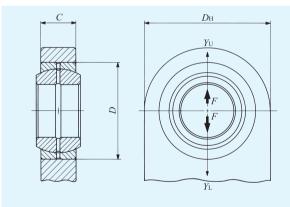


Fig.6 Shape of housing

1 When the load acts in the $Y_{\rm L}$ direction;

Select the housing material considering the compressive stress obtained from the following formula.

$$\sigma_1 = \frac{F}{CD} \cdots (9)$$

where, σ_1 : Maximum compressive stress occurring in the housing bore N/mm²

F: Applied load N

C: Width of outer ring and housing mm

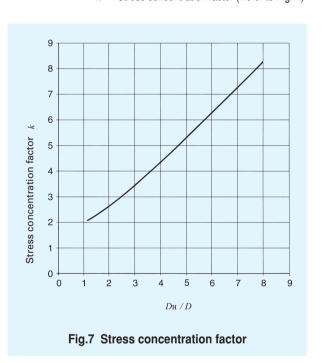
D: Outside diameter of outer ring mm

2When the load acts in the Yu direction;

Select the housing material considering the tensile stress obtained from the following formula.

$$\sigma_2 = \frac{F}{C (D_H - D)} k \cdots (10)$$

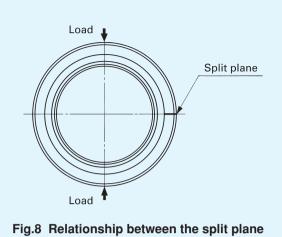
where, σ_2 : Maximum tensile stress occurring in the housing bore N/mm²

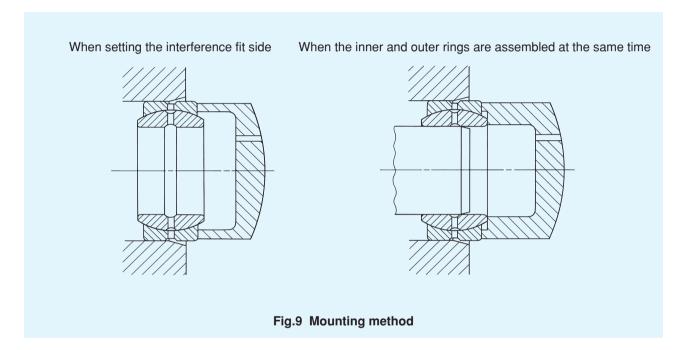

F: Applied load N

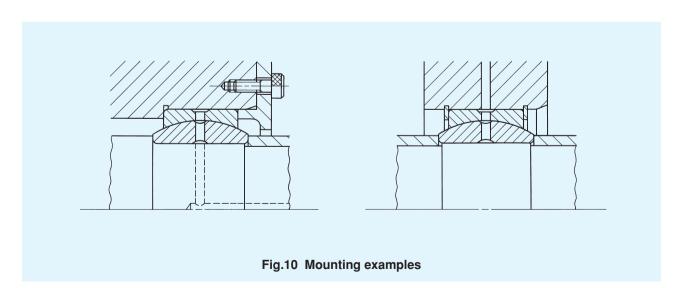
C: Width of outer ring and housing mm

 $D_{\rm H}$: Outside diameter of housing mm

D: Outside diameter of outer ring mm


k: Stress concentration factor (Refer to Fig.7.)


Mounting

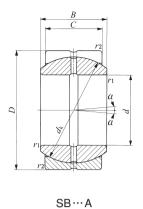

1 When mounting Spherical Bushings, pay attention to the location of the split plane of the outer ring. Set the split plane at right angles to the direction of load to avoid the application of load to the split plane as shown in Fig. 8.

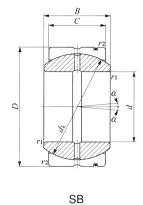
2 The shoulder dimensions of shaft and housing are shown in the dimension tables.

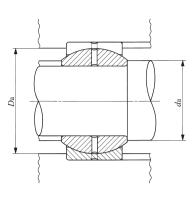
and the loading direction

Steel-on-steel Spherical Bushings

Shaft dia. 12 — 100mm


Shaft dia.							dimens nm	ions	1 .	Permissible tilting angle degree
mm			kg	d	D	В	C	$d_{\rm k}$	$r_{\rm s min}^{(1)}$	α
12	SB 12A	SB 122211	0.019	12	22	11	9	18	0.3	7
15	SB 15A	SB 152613	0.028	15	26	13	11	22	0.3	6
20	SB 20A	SB 203216	0.053	20	32	16	14	28	0.3	4
22	SB 22A	SB 223719	0.085	22	37	19	16	32	0.3	6
25	SB 25A	SB 254221	0.116	25	42	21	18	36	0.3	5
30	SB 30A	SB 305027	0.225	30	50	27	23	45	0.6	6
35	SB 35A	SB 355530	0.300	35	55	30	26	50	0.6	5
40	SB 40A	SB 406233	0.375	40	62	33	28	55	0.6	6
45	SB 45A	SB 457236	0.600	45	72	36	31	62	0.6	5
50	SB 50A	SB 508042	0.870	50	80	42	36	72	0.6	5
55	SB 55A	SB 559047	1.26	55	90	47	40	80	0.6	5
60	SB 60A	SB 6010053	1.70	60	100	53	45	90	0.6	6
65	SB 65A	SB 6510555	2.05	65	105	55	47	94	0.6	5
70	SB 70A	SB 7011058	2.22	70	110	58	50	100	0.6	5
75	SB 75A	SB 7512064	3.02	75	120	64	55	110	0.6	5
80	SB 80A	SB 8013070	3.98	80	130	70	60	120	0.6	5
85	SB 85A	SB 8513574	4.29	85	135	74	63	125	0.6	6
90	SB 90A	SB 9014076	4.71	90	140	76	65	130	0.6	5
95	SB 95A	SB 9515082	6.05	95	150	82	70	140	0.6	5
100	SB 100A	SB 10016088	7.42	100	160	88	75	150	1	5




Notes(1) Minimum allowable value of chamfer dimensions r_1 and r_2 (2) When Spherical Bushings are used with full tilting angle, the shaft shoulder dimesion must be less than the maximum value of d_a .

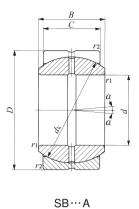
Remarks1. The inner ring and the outer ring have an oil groove and two oil holes, respectively.

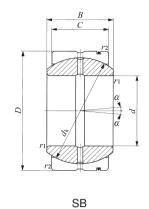
2. Not provided with prepacked grease. Perform proper lubrication for use.

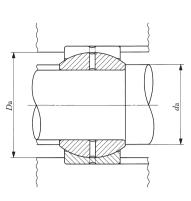
Me	ounting o	dimensio m	ns	Dynamic load capacity	Static load capacity	
á	! _a) _	$C_{\rm d}$	$C_{\rm s}$	
Min.	Max.(2)	Max.	Min.	N	N	
14	14	19.5	17	15 900	95 300	
17.5	17.5	23.5	21	23 700	142 000	
22.5	23	29.5	26	38 400	231 000	
24.5	25.5	34.5	30	50 200	301 000	
27.5	29	39.5	34	63 500	381 000	
34.5	36	45.5	42	101 000	609 000	
39.5	40	50.5	46.5	127 000	765 000	
44	44	57.5	51.5	151 000	906 000	
49.5	50.5	67.5	58	188 000	1 130 000	
54.5	58.5	75.5	67	254 000	1 530 000	
59.5	64.5	85.5	74.5	314 000	1 880 000	
64.5	72.5	95.5	83.5	397 000	2 380 000	
69.5	76	100.5	87	433 000	2 600 000	
74.5	81.5	105.5	93	490 000	2 940 000	
79.5	89.5	115.5	102	593 000	3 560 000	
84.5	97.5	125.5	112	706 000	4 240 000	
89.5	100.5	130.5	116	772 000	4 630 000	
94.5	105.5	135.5	121	829 000	4 970 000	
99.5	113.5	145.5	130	961 000	5 770 000	
105.5	121.5	154.5	139	1 100 000	6 620 000	

Steel-on-steel Spherical Bushings

Shaft dia. 110 — 150mm


Shaft dia.	Identi	fication number	Mass (Ref.)		Во	undary m	dimens nm	ions		Permissible tilting angle degree
mm			kg	d	D	В	C	$d_{\rm k}$	$r_{\rm s min}^{(1)}$	α
110	SB 110A	SB 11017093	8.55	110	170	93	80	160	1	5
115	SB 115A	SB 11518098	10.3	115	180	98	85	165	1	5
120	SB 120A	SB 120190105	12.4	120	190	105	90	175	1	5
130	SB 130A	SB 130200110	13.8	130	200	110	95	185	1	5
150	SB 150A	SB 150220120	17.0	150	220	120	105	205	1	5



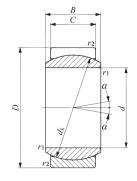

Notes(1) Minimum allowable value of chamfer dimensions r_1 and r_2 (2) When Spherical Bushings are used with full tilting angle, the shaft shoulder dimension must be less than the maximum value of d_a .

Remarks1. The inner ring and the outer ring have an oil groove and two oil holes, respectively.

2. Not provided with prepacked grease. Perform proper lubrication for use.

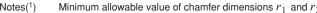
Me	ounting o		ns	Dynamic load capacity	Static load capacity	
a	a	L	a	$C_{\rm d}$	$C_{ m s}$	
Min.	Max.(2)	Max.	Min.	N	N	
115.5	130	164.5	149	1 260 000	7 530 000	
120.5	132.5	174.5	152	1 380 000	8 250 000	
125.5	140	184.5	162	1 540 000	9 270 000	
135.5	148.5	194.5	171	1 720 000	10 300 000	
155.5	166	214.5	189	2 110 000	12 700 000	

SB GE SBB


SB GE SBB

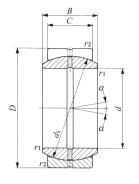
SPHERICAL BUSHINGS

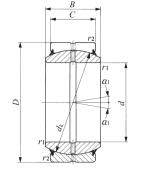
Steel-on-steel Spherical Bushings

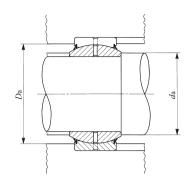


GE…E

Shaft dia. 4 - 100mm


Shaft dia.		Identification number Mass Boundary dimensions (Ref.) mm						Permissible tilting angle degree					
mm	Witho	out seals	With seals	kg	d	D	В	C	$d_{\rm k}$	$r_{1s \text{ min}}^{(1)}$	$r_{2\text{s min}}^{(1)}$	α	α_1
4	GE	4E	_	0.003	4	12	5	3	8	0.3	0.3	16	_
5	GE	5E	_	0.004	5	14	6	4	10	0.3	0.3	13	_
6	GE	6E		0.004	6	14	6	4	10	0.3	0.3	13	
8	GE	8E	_	0.008	8	16	8	5	13	0.3	0.3	15	_
10	GE	10E	_	0.012	10	19	9	6	16	0.3	0.3	12	_
12	GE	12E	_	0.017	12	22	10	7	18	0.3	0.3	11	_
15	GE	15ES	GE 15ES-2RS	0.032	15	26	12	9	22	0.3	0.3	8	5
17	GE	17ES	GE 17ES-2RS	0.049	17	30	14	10	25	0.3	0.3	10	7
20	GE	20ES	GE 20ES-2RS	0.065	20	35	16	12	29	0.3	0.3	9	6
25	GE	25ES	GE 25ES-2RS	0.115	25	42	20	16	35.5	0.6	0.6	7	4
30	GE	30ES	GE 30ES-2RS	0.160	30	47	22	18	40.7	0.6	0.6	6	4
35	GE	35ES	GE 35ES-2RS	0.258	35	55	25	20	47	0.6	1	6	4
40	GE	40ES	GE 40ES-2RS	0.315	40	62	28	22	53	0.6	1	7	4
45	GE	45ES	GE 45ES-2RS	0.413	45	68	32	25	60	0.6	1	7	4
50	GE	50ES	GE 50ES-2RS	0.560	50	75	35	28	66	0.6	1	6	4
60	GE	60ES	GE 60ES-2RS	1.10	60	90	44	36	80	1	1	6	3
70	GE	70ES	GE 70ES-2RS	1.54	70	105	49	40	92	1	1	6	4
80	GE	80ES	GE 80ES-2RS	2.29	80	120	55	45	105	1	1	6	4
90	GE	90ES	GE 90ES-2RS	2.82	90	130	60	50	115	1	1	5	3
100	GE 1	100ES	GE 100ES-2RS	4.43	100	150	70	55	130	1	1	7	5




Notes(1) Minimum allowable value of chamfer dimensions r_1 and r_2 (2) When Spherical Bushings are used with full tilting angle, the shaft shoulder dimention must be less than the maximum value of d_a .

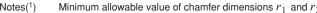
Remarks1. GE ··· E has no oil hole. Others are provided with an oil groove and two oil holes on the inner ring and outer ring, respectively.

2. Not provided with prepacked grease. Perform proper lubrication for use.

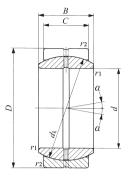
GΕ	E	S

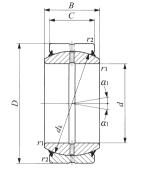
GE…ES-2RS

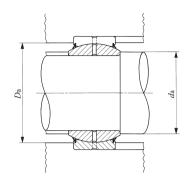
Me	ounting o		ons	Dynamic load capacity	Static load capacity
a	l _a	L) _a	$C_{\rm d}$	$C_{\rm s}$
Min.	Max.(2)	Max.	Min.	N	N
6	6	9.5	8	2 350	14 100
7.5	8	11.5	10	3 920	23 500
8	8	11.5	10	3 920	23 500
10	10	13.5	13	6 370	38 200
12.5	13	16.5	15.5	9 410	56 500
14.5	15	19.5	17	12 400	74 100
17.5	18	23.5	22.5	19 400	117 000
19.5	20.5	27.5	26	24 500	147 000
22.5	24	32.5	30.5	34 100	205 000
29	29	37.5	37	55 700	334 000
34	34	42.5	41.5	71 800	431 000
39.5	39.5	49.5	48	92 200	553 000
44.5	45	56.5	54.5	114 000	686 000
49.5	50.5	62.5	60	147 000	883 000
54.5	56	69.5	66	181 000	1 090 000
65.5	66.5	84.5	79	282 000	1 690 000
75.5	77.5	99.5	91	361 000	2 170 000
85.5	89	114.5	103	463 000	2 780 000
95.5	98	124.5	112	564 000	3 380 000
105.5	109.5	144.5	127	701 000	4 210 000


Steel-on-steel Spherical Bushings

Shaft dia. 110 — 300mm

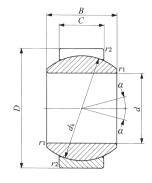

Shaft dia.	Identific	cation number	Mass (Ref.)	(Ref.) mm								Permissible tilting angle degree	
mm	Without seals	With seals	kg	d	D	В	C	$d_{\rm k}$	$r_{1\text{s min}}^{(1)}$	$r_{2\text{s min}}^{(1)}$	α	α_1	
110	GE 110ES	GE 110ES-2RS	4.94	110	160	70	55	140	1	1	6	4	
120	GE 120ES	GE 120ES-2RS	8.12	120	180	85	70	160	1	1	6	4	
140	GE 140ES	GE 140ES-2RS	11.4	140	210	90	70	180	1	1	7	5	
160	GE 160ES	GE 160ES-2RS	14.4	160	230	105	80	200	1	1	8	6	
180	GE 180ES	GE 180ES-2RS	18.9	180	260	105	80	225	1.1	1.1	6	5	
200	GE 200ES	GE 200ES-2RS	28.1	200	290	130	100	250	1.1	1.1	7	6	
220	GE 220ES	GE 220ES-2RS	36.1	220	320	135	100	275	1.1	1.1	8	6	
240	GE 240ES	GE 240ES-2RS	40.4	240	340	140	100	300	1.1	1.1	8	6	
260	GE 260ES	GE 260ES-2RS	52.0	260	370	150	110	325	1.1	1.1	7	6	
280	GE 280ES	GE 280ES-2RS	66.0	280	400	155	120	350	1.1	1.1	6	5	
300	GE 300ES	GE 300ES-2RS	76.0	300	430	165	120	375	1.1	1.1	7	6	




Notes(1) Minimum allowable value of chamfer dimensions r_1 and r_2 (2) When Spherical Bushings are used with full tilting angle, the shaft shoulder dimension must be less than the maximum value of d_a .

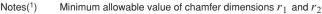
Remarks1. The inner ring and the outer ring have an oil groove and two oil holes, respectively.

2. Not provided with prepacked grease. Perform proper lubrication for use.


Mo	ounting o	dimensio m	ns	Dynamic load capacity	Static load capacity	
d	a	D	a	C_{d}	C_{s}	
Min.	Max.(2)	Max.	Min.	N	N	
115.5	121	154.5	138	755 000	4 530 000	
125.5	135.5	174.5	154	1 100 000	6 590 000	
145.5	155.5	204.5	176	1 240 000	7 410 000	
165.5	170	224.5	195	1 570 000	9 410 000	
187	199	253	221	1 770 000	10 600 000	
207	213.5	283	244	2 450 000	14 700 000	
227	239.5	313	269	2 700 000	16 200 000	
247	265	333	296	2 940 000	17 700 000	
267	288	363	320	3 510 000	21 000 000	
287	313.5	393	345	4 120 000	24 700 000	
307	336.5	423	371	4 410 000	26 500 000	

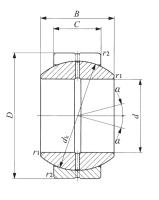
SB GE SBB

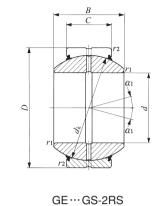
Steel-on-steel Spherical Bushings



GE…G

Shaft dia. 6 — 120mm


Shaft dia.	ldentifi	cation number	Mass (Ref.)	(Ref.) mm								Permissible tilting angle degree	
mm	Without seals With seals		kg	d	D	В	C	$d_{\rm k}$	$r_{1s \text{ min}}^{(1)}$	$r_{2\text{s min}}^{(1)}$	α	α_1	
6	GE 6G	_	0.010	6	16	9	5	13	0.3	0.3	21	_	
8	GE 8G	_	0.015	8	19	11	6	16	0.3	0.3	21	_	
10	GE 10G	_	0.022	10	22	12	7	18	0.3	0.3	18	_	
12	GE 12G	_	0.041	12	26	15	9	22	0.3	0.3	18	_	
15	GE 15GS	GE 15GS-2RS	0.059	15	30	16	10	25	0.3	0.3	16	13	
17	GE 17GS	GE 17GS-2RS	0.083	17	35	20	12	29	0.3	0.3	19	16	
20	GE 20GS	GE 20GS-2RS	0.155	20	42	25	16	35.5	0.3	0.6	17	16	
25	GE 25GS	GE 25GS-2RS	0.215	25	47	28	18	40.7	0.6	0.6	17	15	
30	GE 30GS	GE 30GS-2RS	0.330	30	55	32	20	47	0.6	1	17	16	
35	GE 35GS	GE 35GS-2RS	0.400	35	62	35	22	53	0.6	1	16	15	
40	GE 40GS	GE 40GS-2RS	0.515	40	68	40	25	60	0.6	1	17	14	
45	GE 45GS	GE 45GS-2RS	0.660	45	75	43	28	66	0.6	1	15	13	
50	GE 50GS	GE 50GS-2RS	1.50	50	90	56	36	80	0.6	1	17	16	
60	GE 60GS	GE 60GS-2RS	2.05	60	105	63	40	92	1	1	17	15	
70	GE 70GS	GE 70GS-2RS	3.00	70	120	70	45	105	1	1	16	14	
80	GE 80GS	GE 80GS-2RS	3.60	80	130	75	50	115	1	1	14	13	
90	GE 90GS	GE 90GS-2RS	5.41	90	150	85	55	130	1	1	15	14	
100	GE 100GS	GE 100GS-2RS	6.15	100	160	85	55	140	1	1	14	12	
110	GE 110GS	GE 110GS-2RS	9.70	110	180	100	70	160	1	1	12	11	
120	GE 120GS	GE 120GS-2RS	15.5	120	210	115	70	180	1	1	16	15	

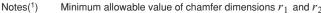

Notes(1) Minimum allowable value of chamfer dimensions r_1 and r_2 (2) When Spherical Bushings are used with full tilting angle, the shaft shoulder dimension must be less than the maximum value of d_a .


Remarks1. GE ··· G has no oil hole. Others are provided with an oil groove and two oil holes on the inner ring and outer ring, respectively.

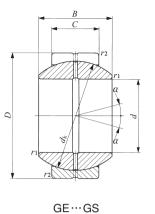
2. Not provided with prepacked grease. Perform proper lubrication for use.

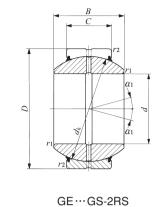
GE…GS

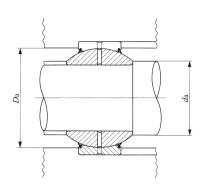
	ounting o	m		Dynamic load capacity $C_{ m d}$	Static load capacity $C_{ m S}$
a	1	$\mid \qquad \mathcal{L}$	a	C _d	C _S
Min.	Max.(2)	Max.	Min.	N	N
8.5	9	13.5	13	6 370	38 200
10.5	11.5	16.5	15.5	9 410	56 500
12.5	13	19.5	17	12 400	74 100
14.5	16	23.5	21	19 400	117 000
17.5	19	27.5	26	24 500	147 000
19.5	21	32.5	30.5	34 100	205 000
22.5	25	37.5	37	55 700	334 000
29.5	29.5	42.5	41.5	71 800	431 000
34	34	49.5	48	92 200	553 000
39.5	39.5	56.5	54.5	114 000	686 000
44.5	44.5	62.5	60	147 000	883 000
49.5	50	69.5	66	181 000	1 090 000
54.5	57	84.5	79	282 000	1 690 000
65.5	67	99.5	91	361 000	2 170 000
75.5	78	114.5	103	463 000	2 780 000
85.5	87	124.5	112	564 000	3 380 000
95.5	98	144.5	127	701 000	4 210 000
105.5	111	154.5	138	755 000	4 530 000
115.5	124.5	174.5	154	1 100 000	6 590 000
125.5	138.5	204.5	176	1 240 000	7 410 000


Steel-on-steel Spherical Bushings

Shaft dia. 140 — 280mm


Shaft	Identific	Identification number Mass Boundary dimensions (Ref.) mm									Permi tilting deg	ssible angle ree
dia. mm	Without seals	With seals	kg	d	D	В	C	$d_{\rm k}$	$r_{1s \text{ min}}^{(1)}$	$r_{2\text{s min}}^{(1)}$	α	α_1
140	GE 140GS	GE 140GS-2RS	19.2	140	230	130	80	200	1	1	16	15
160	GE 160GS	GE 160GS-2RS	25.4	160	260	135	80	225	1	1.1	16	14
180	GE 180GS	GE 180GS-2RS	34.7	180	290	155	100	250	1.1	1.1	14	13
200	GE 200GS	GE 200GS-2RS	43.8	200	320	165	100	275	1.1	1.1	15	14
220	GE 220GS	GE 220GS-2RS	51.3	220	340	175	100	300	1.1	1.1	16	14
240	GE 240GS	GE 240GS-2RS	66.1	240	370	190	110	325	1.1	1.1	15	14
260	GE 260GS	GE 260GS-2RS	81.8	260	400	205	120	350	1.1	1.1	15	14
280	GE 280GS	GE 280GS-2RS	97.4	280	430	210	120	375	1.1	1.1	15	14




Notes(1) Minimum allowable value of chamfer dimensions r_1 and r_2 (2) When Spherical Bushings are used with full tilting angle, the shaft shoulder dimension must be less than the maximum value of d_a .

Remarks1. The inner ring and the outer ring have an oil groove and two oil holes, respectively.

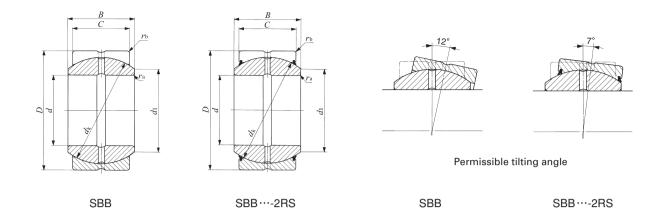
2. Not provided with prepacked grease. Perform proper lubrication for use.

Me		dimensio m	ns	Dynamic load capacity	capacity
a	! a	L) _a	$C_{\rm d}$	$C_{ m s}$
Min.	Max.(2)	Max.	Min.	N	N
145.5	152	224.5	195	1 570 000	9 410 000
165.5	180	253	221	1 770 000	10 600 000
187	196	283	244	2 450 000	14 700 000
207	220	313	269	2 700 000	16 200 000
227	243.5	333	296	2 940 000	17 700 000
247	263.5	363	320	3 510 000	21 000 000
267	283.5	393	345	4 120 000	24 700 000
287	310.5	423	371	4 410 000	26 500 000

SB GE SBB

SPHERICAL BUSHINGS

Steel-on-steel Spherical Bushings Inch Series


Shaft dia. 12.700 — 63.500mm

Shaft dia.	Identific	ation number	Mass (Ref.)		Boundary o		
mm (inch)	Without seal	With seals	kg	d	D	В	C
12.700 (½)	SBB 8	_	0.020	12.700 (½)	22.225(7/8)	11.10(.437)	9.52(.375)
15.875 (⁵ / ₈)	SBB 10	_	0.036	15.875(5/8)	26.988 (1 ½)	13.89(.547)	11.91(.469)
19.050 (³ ⁄ ₄)	SBB 12	SBB 12-2RS	0.057	19.050(3/4)	31.750 (1½)	16.66(.656)	14.27(.562)
22.225 (½)	SBB 14	SBB 14-2RS	0.088	22.225(7/8)	36.512 (1 ½)	19.43(.765)	16.66(.656)
25.400 (1)	SBB 16	SBB 16-2RS	0.125	25.400 (1)	41.275 (1 ⁵ / ₈)	22.22(.875)	19.05(.750)
31.750 (1 ¹ ⁄ ₄)	SBB 20	SBB 20-2RS	0.234	31.750 (1½)	50.800 (2)	27.76(1.093)	23.80(.937)
34.925 (1 ³ / ₈)	SBB 22	SBB 22-2RS	0.349	34.925 (1 ³ / ₈)	55.562 (2 ³ / ₁₆)	30.15(1.187)	26.19(1.031)
38.100 (1½)	SBB 24	SBB 24-2RS	0.424	38.100 (1 ½)	61.912 (2 1/16)	33.32(1.312)	28.58(1.125)
44.450 (1 ³ ⁄ ₄)	SBB 28	SBB 28-2RS	0.649	44.450 (1 ³ ⁄ ₄)	71.438(213/16)	38.89(1.531)	33.32(1.312)
50.800 (2)	SBB 32	SBB 32-2RS	0.939	50.800 (2)	80.962 (3 3/16)	44.45(1.750)	38.10(1.500)
57.150 (2½)	SBB 36	SBB 36-2RS	1.32	57.150 (2 ½)	90.488(3 %)	50.01(1.969)	42.85(1.687)
63.500 (2½)	SBB 40	SBB 40-2RS	1.85	63.500 (2 ½)	100.012 (315/16)	55.55(2.187)	47.62(1.875)

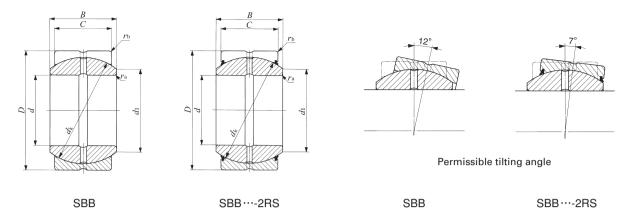
Maximum allowable corner radius of the shaft or housing

Remarks1. The value with mark * is applicable to types without seals. For types with seals, the value is 0.4 mm.

The inner ring and the outer ring have an oil groove and two oil holes, respectively.
 Not provided with prepacked grease. Perform proper lubrication for use.

	Radial internal clearance	Mount	ing dime	ensions	Dynamic load capacity	Static load capacity
$d_{\mathbf{k}}$	mm	d_1	$r_{\text{as max}}^{(1)}$	$r_{\rm bsmax}^{(1)}$	$C_{\rm d}$	$C_{ m s}$
ω _K	Min./Max.	<i>u</i> 1	Max.	Max.	N	N
18 (.709)	0.05 / 0.15	14.0	0.2	0.6	16 800	101 000
23 (.906)	0.05 / 0.15	17.9	0.2	0.8	26 900	161 000
27.5(1.083)	0.08 / 0.18	21.4	0.6	*0.8	38 500	231 000
32 (1.260)	0.08 / 0.18	25.0	0.6	*0.8	52 300	314 000
36 (1.417)	0.08 / 0.18	28.0	0.6	*0.8	67 300	404 000
45 (1.772)	0.08 / 0.18	35.1	0.6	0.8	105 000	630 000
49 (1.929)	0.08 / 0.18	38.5	0.6	0.8	126 000	755 000
55 (2.165)	0.08 / 0.18	43.3	0.6	0.8	154 000	925 000
64 (2.520)	0.08 / 0.18	50.4	0.6	0.8	209 000	1 250 000
73 (2.874)	0.08 / 0.18	57.6	0.6	0.8	273 000	1 640 000
82 (3.228)	0.10 / 0.20	64.9	0.6	0.8	345 000	2 070 000
91 (3.583)	0.10 / 0.20	72.0	0.6	0.8	425 000	2 550 000

Steel-on-steel Spherical Bushings Inch Series


Shaft dia. 69.850 — 152.400mm

Shaft dia.	Identific	ation number	Mass (Ref.)			dimensions inch)	
mm (inch)	Without seal	With seals	kg	d	D	В	С
69.850 (2 ³ ⁄ ₄)	SBB 44	SBB 44-2RS	2.44	69.850 (2 ³ ⁄ ₄)	111.125 (4 3/8)	61.11(2.406)	52.37(2.062)
76.200 (3)	SBB 48	SBB 48-2RS	3.12	76.200 (3)	120.650(4¾)	66.68(2.625)	57.15(2.250)
82.550 (3 ¹ ⁄ ₄)	SBB 52	SBB 52-2RS	3.92	82.550 (3½)	130.175 (5 1/8)	72.24(2.844)	61.90(2.437)
88.900 (3½)	SBB 56	SBB 56-2RS	4.83	88.900 (3½)	139.700 (5 ½)	77.77(3.062)	66.68(2.625)
95.250 (3 ³ ⁄ ₄)	SBB 60	SBB 60-2RS	5.87	95.250 (3 ³ / ₄)	149.225 (5 1/8)	83.34(3.281)	71.42(2.812)
101.600	SBB 64	SBB 64-2RS	7.07	101.600(4)	158.750 (6 1/4)	88.90(3.500)	76.20(3.000)
107.950 (4 ¹ ⁄ ₄)	SBB 68	SBB 68-2RS	8.46	107.950(41/4)	168.275 (6 %)	94.46(3.719)	80.95(3.187)
114.300 $(4\frac{1}{2})$	SBB 72	SBB 72-2RS	9.94	114.300(4½)	177.800(7)	100.00(3.937)	85.72(3.375)
120.650 (4 ³ ⁄ ₄)	SBB 76	SBB 76-2RS	11.6	120.650(4¾)	187.325 (7 ³ / ₈)	105.56(4.156)	90.47(3.562)
127.000 (5)	SBB 80	SBB 80-2RS	13.5	127.000(5)	196.850(7¾)	111.12(4.375)	95.25(3.750)
152.400 (6)	SBB 96	SBB 96-2RS	17.6	152.400(6)	222.250(8¾)	120.65(4.750)	104.78(4.125)

Note(1) Maximum allowable corner radius of the shaft or housing

Remarks1. The inner ring and the outer ring have an oil groove and two oil holes, respectively.

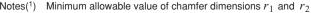
2. Not provided with prepacked grease. Perform proper lubrication for use.

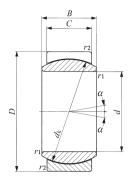
	Radial internal clearance	clearance mm		Dynamic load capacity	capacity	
d_{k}	mm	d_1	$r_{\text{as max}}^{(1)}$	$r_{\rm bsmax}^{(1)}$	$C_{ m d}$	$C_{\rm s}$
K	Min./Max.	1	Max.	Max.	N	N
100(3.937)	0.10 / 0.20	79.0	0.6	0.8	514 000	3 080 000
110(4.331)	0.10 / 0.20	86.5	0.6	0.8	616 000	3 700 000
119(4.685)	0.13 / 0.23	94.1	0.6	0.8	722 000	4 330 000
128(5.039)	0.13 / 0.23	101.6	0.6	0.8	837 000	5 020 000
137(5.394)	0.13 / 0.23	108.4	0.6	0.8	960 000	5 760 000
146(5.748)	0.13 / 0.23	115.8	0.6	0.8	1 090 000	6 550 000
155(6.102)	0.13 / 0.23	122.6	0.8	1.1	1 230 000	7 380 000
164(6.457)	0.13 / 0.23	129.8	0.8	1.1	1 380 000	8 270 000
173(6.811)	0.13 / 0.23	136.8	0.8	1.1	1 530 000	9 210 000
183(7.205)	0.13 / 0.23	144.9	0.8	1.1	1 710 000	10 300 000
207(8.150)	0.13 / 0.23	167.5	0.8	1.1	2 130 000	12 800 000

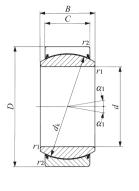
SB GE SBB

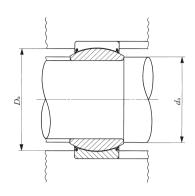
IKO

SPHERICAL BUSHINGS


Maintenance-free Spherical Bushings




Shaft dia. 15 – 70mm


Shaft dia.	(HOII)				tilting	ssible angle gree						
mm	Without seals	With seals	kg	d	D	В	C	d_{k}	$r_{1s \text{ min}}^{(1)}$	$r_{2\text{s min}}^{(1)}$	α	α_1
15	GE 15EC	—	0.032	15	26	12	9	22	0.3	0.3	8	
17	GE 17EC	_	0.049	17	30	14	10	25	0.3	0.3	10	
20	GE 20EC	_	0.065	20	35	16	12	29	0.3	0.3	9	
25	GE 25EC	_	0.115	25	42	20	16	35.5	0.6	0.6	7	
30	GE 30EC	GE 30EC-2RS	0.160	30	47	22	18	40.7	0.6	0.6	6	4
35	_	GE 35EC-2RS	0.258	35	55	25	20	47	0.6	1	_	4
40	_	GE 40EC-2RS	0.315	40	62	28	22	53	0.6	1	_	4
45	_	GE 45EC-2RS	0.413	45	68	32	25	60	0.6	1	_	4
50	_	GE 50EC-2RS	0.560	50	75	35	28	66	0.6	1	_	4
60	_	GE 60EC-2RS	1.10	60	90	44	36	80	1	1	_	3
70	_	GE 70EC-2RS	1.54	70	105	49	40	92	1	1	_	4

Notes(1) Minimum allowable value of chamfer dimensions r_1 and r_2 (2) When Spherical Bushings are used with full tilting angle, the shaft shoulder dimension must be less than the maximum value of d_a . Remark No oil hole is provided.

G	Е	•••	٠	E	С	

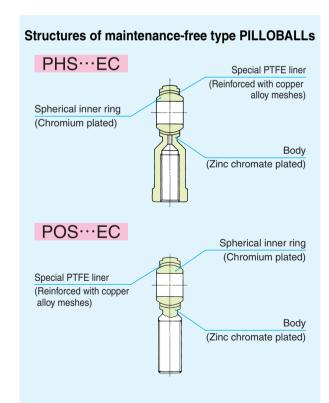
GE···EC-2RS

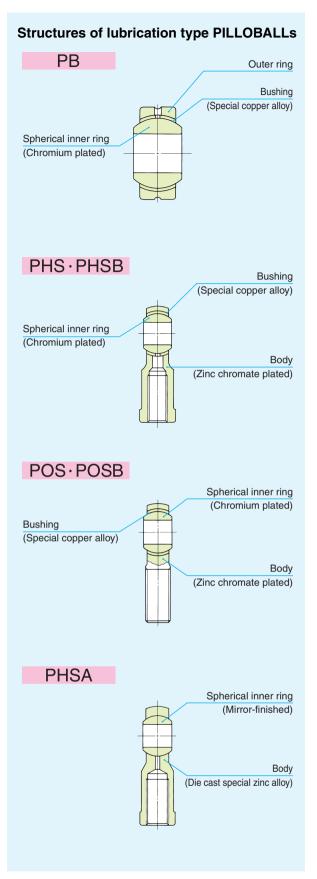
Mounting dimensions mm		Dynamic load capacity	Static load capacity			
a	a	D	a	$C_{\rm d}$	C_{s}	
Min.	Max.(2)	Max.	Min.	N	N	
17.5	18	23.5	21.5	19 400	48 500	
19.5	20.5	27.5	24.5	24 500	61 300	
22.5	24	32.5	28	34 100	85 300	
29	29	37.5	34	55 700	139 000	
34	34	42.5	41.5	71 800	180 000	
39.5	39.5	49.5	48	92 200	230 000	
44.5	45	56.5	54.5	114 000	286 000	
49.5	50.5	62.5	60	147 000	368 000	
54.5	56	69.5	66	181 000	453 000	
65.5	66.5	84.5	79	282 000	706 000	
75.5	77.5	99.5	91	361 000	902 000	

SB GE SBB

PILLOBALLS

- ●PILLOBALL Spherical Bushings Insert Type
- ●PILLOBALL Rod Ends Insert Type
- ●PILLOBALL Rod Ends Die-cast Type
- ●PILLOBALL Rod Ends Maintenance-free Type


Structure and Features


TIKE PILLOBALLs are compact self-aligning spherical bushings that can support a large radial load and a bi-directional axial load at the same time.

These bushings are classified by sliding surface types, namely, insert type, die-cast type and maintenance-free type. In the insert type, a spherical inner ring makes contact with the special copper alloy bushing with superior run-in properties. In the die-cast type, a spherical inner ring makes direct contact with the bore surface of the body of special zinc die-cast alloy. In the maintenance-free type, a spherical inner ring makes contact with the special PTFE liner of maintenance-free type. Thus, a smooth rotational and oscillatory motion can be achieved with superior anti-wear and loading properties in each type.

PILLOBALL Rod Ends have either a female thread in the body or a male thread on the body, and they can be easily assembled onto machines.

PILLOBALLs are used in control and link mechanisms in machine tools, textile machines, packaging machines, etc. The maintenance-free type is especially suitable for loading in one direction and is the best choice for machines in which oil must be avoided such as food processing machines, or machines which cannot be re-lubricated.

PB PHS PHSB POS POSB PHSA

462

In PILLOBALLs, the types shown in Table 1 are available.

Table 1 Type

	Lu	brication ty	Maintenance-free type		
Type	Spherical			Rod end	
	Bushings	shings female thread male thread		female thread	male thread
Insert type	PB	PHS · PHSB	POS · POSB	DUCEC	POS···EC
Die-cast type		PHSA	_	PHSEC	PUSEU

Lubrication Type PILLOBALL Spherical Bushings Insert Type PB

This type has superior anti-wear properties and high rigidity. It consists of a spherical inner ring, an outer ring, and a bushing of special copper alloy with superior run-in properties inserted in between. The spherical surface of the inner ring is chromium plated after heat treatment and grinding. This type is assembled with a shaft and a housing.

When especially large radial and/or axial loads are applied, Spherical Bushings with molybdenum disulfide (MoS₂) treated inner and outer rings are recommended. (See page 428.)

Lubrication Type PILLOBALL Rod Ends Insert Type PHS, POS, PHSB and POSB

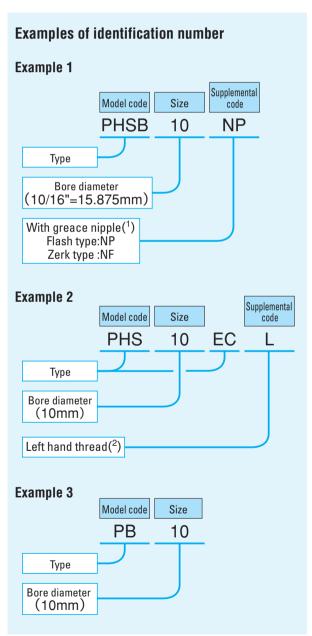
This type has superior anti-wear and anti-corrosion properties as well as high rigidity. It consists of a spherical inner ring of which spherical surface is chromium-plated after heat treatment and grinding, a body with a zinc chromate treated outer surface, and an inserted bushing of special copper alloy having superior run-in properties. This type includes PHS and PHSB, which has a female thread in the body, and POS and POSB, which has a male thread on the body

Lubrication Type PILLOBALL Rod Ends Die-cast Type PHSA

The spherical inner ring of this type is mirror-finished after heat treatment and is built in a body of die-cast special zinc alloy. The sliding surfaces of the inner ring and body are in close contact with each other. Thus, this type is an economical rod end with superior anti-wear and loading properties.

Maintenance-free Type PILLOBALL Rod Ends PHS ··· EC , POS ··· EC

This type has superior anti-corrosion properties as the body is zinc chromate treated and the spherical inner


ring is chromium plated on the sphere surface after heat treatment and grinding.

A special PTFE liner, reinforced with copper alloy meshes, which is superior in anti-wear properties with little creep deformation is used for lining on the sliding surface of the body, and this type is maintenancefree.

PHS...EC, which has a female thread in the body, and POS...EC, which has a male thread on the body, are available.

Identification number

The identification number of PILLOBALLs consists of a model code, a size and any supplemental codes as shown in the examples.

Note(1) Shapes of greace nipple are shown in Fig.1.

(2) Right hand thread is indicated with no code.

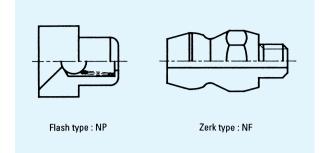


Fig. 1 Shapes of grease nipple

Accuracy

The accuracy of PILLOBALLs is shown in Tables 2 and 3. The maximum radial internal clearance of the insert type is 0.035 mm.

Table 2 Tolerance

unit: mm

Туре	Dimension	Dimension symbol	Tolerance
	Bore dia. of inner ring	d	H7
	Outside dia. of outer ring	D	h6
PB	Width of inner ring	В	0 - 0.1
	Width of outer ring	С	± 0.1
PHS	Bore dia. of inner ring	d	H7
POS PHS····EC POS····EC	Width of inner ring	В	0 - 0.1
PHSB	Bore dia. of inner ring	d	+ 0.038 - 0.013
POSB	Width of inner ring	B_1	0 - 0.127
PHSA	Bore dia. of inner ring	d	+ 0.063 - 0.012
	Width of inner ring	В	See Table 3.

Table 3 Tolerance of width B of inner ring of PHSA type unit: mm

Table 6 Telefallor of Illatin 2 of Illing of Free 1, 190								
	d lia. of inner ring	Δ Deviation of a sing	$_{B m s}$ le inner ring width					
Over	Incl.	High	Low					
_	14	0	- 0.2					
14	20	0	- 0.3					
20	22	0	- 0.4					

Recommended fits for PILLOBALLs are shown in Table 4.

Table 4 Recommended fits

Condition	Tolera	nce class
Condition	Shaft	Housing bore(1)
Normal operation	h7	H7
Directionally indeterminate loading	n6, p6	N7

Note(1) This is applicable to PILLOBALL Spherical Bushings, Insert type.

Selection of PILLOBALL

Load capacities of PILLOBALLs are determined based on the allowable contact pressure on sliding surfaces and the strength of body for each type. Thus, a suitable type and size should be selected based on the dynamic load capacity $C_{\rm d}$ and static load capacity $C_{\rm s}$ shown in the dimension tables.

Load capacity

1 Dynamic load capacity

The dynamic load capacity $C_{\rm d}$ is obtained on the basis of the contact pressure on the sliding surface. The dynamic load capacity is used for calculating the life.

The dynamic load capacity considering temperature increase is obtained from the following equation using the temperature factor, which is a correction factor for the effect of PILLOBALL temperature.

 $C_{
m dt} = f_{
m t} \ C_{
m d}$ (1)

where, $C_{
m dt}$: Dynamic load capacity considering temperature increase, N $f_{
m t}$: Temperature factor (Refer to Table 5.) $C_{
m d}$: Dynamic load capacity, N (Refer

to the dimension tables.)

Table 5 Temperature factor f_t

	Temperature °C							
Type	-30	+80	+ 90	+100	+120	+ 150		
	+80	+90	+100	+ 120	+ 150	+ 180		
PB PHS, POS PHSB, POSB	1	1	1	1	1	0.7		
PHS···EC POS···EC	1	1	0.9	0.75	0.55	_		

Static load capacity

The static load capacity $C_{\rm s}$ is the maximum static load that can be applied on the PILLOBALL without breaking the inner or outer ring of the PILLOBALL Spherical Bushing (or the inner ring or body of the PILLOBALL Rod End), and without causing severe permanent deformation that will make the PILLOBALL unusable.

Maximum Operating Load

The recommended value of bushing load is obtained by multiplying the dynamic load capacity $C_{\rm d}$ by a numerical factor, which differs depending on the bushing type and load condition. For PILLOBALL Rod Ends, the static load capacity C_s must also be considered in determining the applicable bushing load.

Table 6 shows the guidelines for maximum operating load of PILLOBALLs. When axial loads are added in addition to radial loads, bending stress occurs in the body. Pay attention to this bending stress.

Table 6 Maximum operating load

Type	Load direction				
туре	Constant	Alternate			
PB	$\leq 0.3C_{\rm d} \ (\leq C_{\rm s})$	≤ 0.6 <i>C</i> _d			
PHS,POS,PHSB,POSB	$\leq 0.3C_{\rm d} \ (\leq 0.3C_{\rm s})$	$(\leq 0.6C_{\rm d}) \leq 0.2C_{\rm s}$			
PHSA	≤ 0.16 <i>C</i> _s				
PHS···EC,POS···EC	$(\leq C_{\rm d}) \leq 0.3C_{\rm s}$	$(\leq 0.5C_{\rm d}) \leq 0.2C_{\rm s}$			

Remark $C_{\rm d}$ is the dynamic load capacity and $C_{\rm s}$ is the static load

When the magnitude of applied load is within the value shown outside the parenthesis, it is also within the value in the parenthesis.

Equivalent radial load

PILLOBALLs can take radial and axial loads at the same time. When the magnitude and direction of loads are constant, the equivalent radial load can be obtained by the following formula.

$$P = F_{\rm r} + YF_{\rm a} \cdots (2)$$

where, P: Equivalent radial load, N

 $F_{\rm r}$: Radial load, N F_a : Axial load, N

Y : Axial load factor (Refer to Table 7.)

Table 7 Axial load factor Y

$F_{ m a}/F_{ m r}$ Type	0.1	0.2	0.3	0.4	0.5	>0.5		
PB PHS,POS PHSB,POSB	1	2	3	4	5	Unusable		
PHS···EC POS···EC	1	2	3		Unusable)		

Life

The life of PILLOBALLs is defined as the total number of oscillating motions during which the PILLOBALLs can be operated without failure or malfunction due to wear, increase in internal clearance, increase in sliding torque and operating temperature, etc.

As the actual life is affected by many factors such as the material of the sliding surface, the magnitude and direction of load, lubrication, sliding velocity, etc., the calculated life can be used as a measure of expected service life.

Life of lubrication type PILLOBALLs PB · PHS · POS · PHSB · POSB

[1] Confirmation of pV value

Before attempting to calculate the life, make sure that the operating conditions are within the permissible range by referring to the pV diagram in Fig.2.

When the operating conditions are out of the permissible range, please consult IIKI .

The contact pressure p and the sliding velocity V are obtained from the following formulae.

$$p = \frac{50P}{C_{dt}}$$
 (3)
$$V = 5.82 \times 10^{-4} d_{V} \beta f$$
 (4)

where, p: Contact pressure, N/mm²

P: Equivalent radial load, N

(Refer to Formula (2).)

 $C_{\rm dt}$: Dynamic load capacity considering temperature increase. N

(Refer to Formula (1).)

V: Sliding velocity, mm/s

 d_k : Sphere diameter, mm

(Refer to the dimensional tables.) 2*B*: Oscillating angle degrees (Refer to Fig.2.)

when $\beta < 5^{\circ}$. $\beta = 5$

when rotating, $\beta = 90$

f: Number of oscillations per minute, cpm

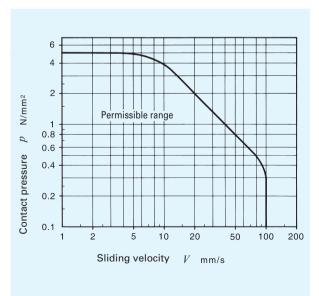


Fig. 2 pV diagram of lubrication type PILLOBALLs

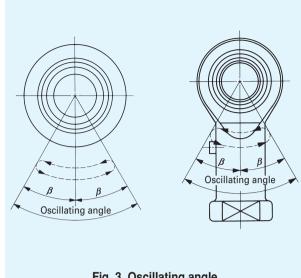


Fig. 3 Oscillating angle

[2] Life calculation

The life of lubrication type PILLOBALLs can be calculated by the following formulae.

$$G = \frac{3.18b_1b_2b_3}{\sqrt{d_k \beta}} \left(\frac{C_{dt}}{P}\right)^2 \times 10^5 \quad(5)$$

$$L_h = \frac{G}{60f} \quad(6)$$

where, G: Life (Total number of oscillations)

 b_1 : Load directional factor (Refer to Table 8.)

 b_2 : Lubrication factor (Refer to Table 8.)

 b_3 : Sliding velocity factor (Refer to Fig. 3.)

C_{dt}: Dynamic load capacity considering temperature increase, N

(Refer to Formula (1).)

P: Equivalent radial load, N

(Refer to Formula (2).)

 $L_{\rm h}$: Life in hours, h

f: Number of oscillations per minute, cpm

Table 8 Load directional factor b_1 and lubrication factor b_2 for lubrication type PILLOBALLs

Load direction	nal factor b_1	Lubrication factor b_2		
Load di	rection	Periodical	lubrication	
Constant	Alternate	None	Regular	
1	5	1	15	

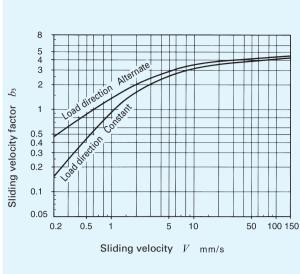


Fig. 4 Sliding velocity factor for lubrication type **PILLOBALLs**

② Life of maintenance-free type PILLOBALLs PHS···EC·POS···EC

[1] Confirmation of pV value

Before attempting to calculate the life, make sure that the operating conditions are within the permissible range by referring to the pV diagram in Fig.4.

When the operating conditions are out of the permissible range, please consult IIKI .

The contact pressure p and sliding velocity V are obtained from Formulae (3) and (4) on page 439.

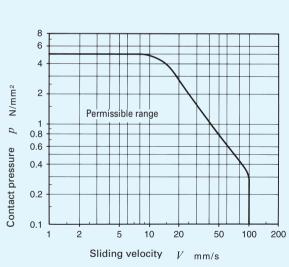


Fig. 5 pV diagram for maintenance-free type PILLOBALL Rod Ends

[2] Life calculation

The life of maintenance-free type PILLOBALL Rod Ends is obtained from the total sliding distance S which is given in Fig.5 for the contact pressure p obtained from Formula (3).

The total number of oscillations and life in hours can be obtained from the following formulae.

$$G = 16.67 \times b_1 \times \frac{Sf}{V} \quad \cdots \qquad (7)$$

$$L_{\rm h} = \frac{G}{60f}$$
 (8)

where, G: Life (Total number of oscillations)

 b_1 : Load directional factor (Refer to Table 9.)

S: Total sliding distance m

f: Number of oscillations per minute cpm

V: Sliding velocity mm/s

 $L_{\rm h}$: Life in hours h

Table 9 Load directional factor for maintenance-free type PILLOBALLs $\,b_1\,$

Load direction		Constant	Alternate
Load directional factor	$\overline{b_1}$	1	0.2(1)

Note(1) This value is applicable when the load changes comparatively slowly. When the load changes rapidly, please consult 近尾回, as the factor degreases sharply.

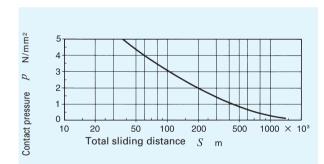


Fig. 6 Contact pressure and total sliding distance for maintenance-free type PILLOBALL Rod Ends

Lubrication

Maintenance-free type PILLOBALL Rod Ends have a sliding surface lined with a self-lubricating lining. Therefore, they can be used without lubrication.

Lubrication type PILLOBALLs are not provided with prepacked grease. Perform proper lubrication for use. Operating without lubrication will increase the wear of the sliding contact surfaces and cause seizure.

■ Oil Hole and Grease Nipple

Table 10 shows the specifications of oil hole and grease nipple on the outer ring or body. When a grease gun that fits the grease nipple is required, please contact IMO.

For PILLOBALLs without an oil hole and grease nipple, apply grease directly on the spherical surface.

Table 10 Specifications of oil hole and grease nipple

	Type Bore diameter of inner ring d mm	Specification
PB		1 oil hole + oil groove
PHS	$d \leq 4$	None
7113	4 < d	With grease nipple
	$d \leq 4$	None
POS	4 < d ≤ 6	1 oil hole
	6 < d	With grease nipple
PHSA		With grease nipple
PHS ···	EC, POS···EC	None

■ Operating Temperature Range

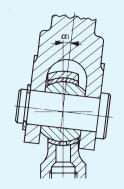
The maximum allowable temperature for Lubrication type PILLOBALLs is +180 °C for the insert type and +80 °C for the die-cast type.

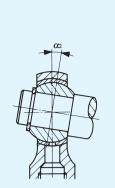
The maximum allowable temperature for Maintenance-free type PILLOBALL Rod Ends is +150 °C.

Precautions for Use

1 Tightening depth

The recommended tightening depth of the screw into the PILLOBALL Rod End body is shown below.


Insert type and maintenance-free type: 1.25 times the nominal thread dia. or more.


Die-cast type: 2 times the nominal thread dia. or more.

Allowable tilting angle

The allowable tilting angle differs depending on the mounting structure as shown in Table 11.

Table 11 Allowable tilting angle

unit: degre

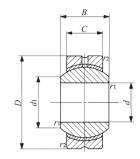
d Bore diameter	PB(1), PHS PHS····EC,	S, POS POS…EC	PH	ISA
mm	α_1	α_2	$lpha_1$	α_2
3	7	13		_
4	7	13	-	_
5	8	13	7	13
6	8	13	7	13
8	8	14	8	14
10	8	14	8	14
12	8	13	8	13
14	10	16	9	16
16	9	15	9	15
18	9	15	9	15
20	9	15	9	15
22	10	15	9	15
25	9	15		
28	9	15	_	_
30	10	17	_	_

Note(1) In the case of the PB series, α_2 is applicable in general.

Table 12 Allowable tilting angle for inch series

unit: dearee

With female thread	With male thread	α_1	α_2
PHSB 2	POSB 2	8	16
PHSB 2.5	POSB 2.5	7	12
PHSB 3	POSB 3	6	10
PHSB 4	POSB 4	7	13
PHSB 5	POSB 5	6	10
PHSB 6	POSB 6	6	11
PHSB 7	POSB 7	7	11
PHSB 8	POSB 8	6	19
PHSB 10	POSB 10	7	11
PHSB 12	POSB 12	6	10
PHSB 16	POSB 16	7	14

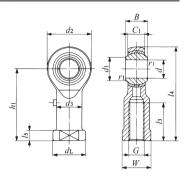

PHS PHSB POS POSB PHSA

PILLOBALL

Lubrication Type PILLOBALL Spherical Bushings Insert Type

ΡВ

		Mass (Ref.)		В	oundary	dimen	sions	mm		Dynamic load capacity	Static load capacity
	entification number	(nei.)						(1)	Ball dia.	$C_{\rm d}$	$C_{\rm s}$
		g	d	D	C	В	d_1	$r_{\rm s min}$	mm (inch)	N	N
ı	PB 5	8.5	5	16	6	8	7.7	0.2	11.112 (½)	3 270	7 850
ı	PB 6	13	6	18	6.75	9	9	0.2	12.700 (½)	4 200	10 100
ı	PB 8	24	8	22	9	12	10.4	0.2	15.875 (⁵ ⁄ ₈)	7 010	16 800
ı	PB 10	39	10	26	10.5	14	12.9	0.2	19.050 (¾ ₄)	9 810	23 500
ı	PB 12	58	12	30	12	16	15.4	0.2	22.225 (½)	13 100	31 400
ı	PB 14	84	14	34	13.5	19	16.9	0.3	25.400 (1)	16 800	40 400
ı	PB 16	111	16	38	15	21	19.4	0.3	28.575 (1 ½)	21 000	50 400
ı	PB 18	160	18	42	16.5	23	21.9	0.3	31.750 (1 ½)	25 700	61 600
ı	PB 20	210	20	46	18	25	24.4	0.3	34.925 (1 ³ / ₈)	30 800	74 000
ı	PB 22	265	22	50	20	28	25.8	0.3	38.100 (1 ½)	37 400	89 700
ı	PB 25	390	25	56	22	31	29.6	0.6	42.862 (1½)	46 200	111 000
ı	PB 28	410	28	62	25	35	32.3	0.6	47.625 (1 ½)	58 400	140 000
ı	PB 30	610	30	66	25	37	34.8	0.6	50.800 (2)	62 300	149 000


Minimum allowable value of chamfer dimensions $r_1\,$ and $r_2\,$

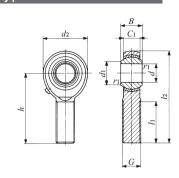
Remarks1. The outer ring has an oil groove and an oil hole.

2. Not provided with prepacked grease. Perform proper lubrication for use.

Lubrication Type PILLOBALL Rod Ends Insert Type/With Female Thread

PHS

	Mass (Ref.)					В	ounda	ary di	mens	sion	s m	m					Dynamic load capacity	Static load capacity
Identification number	(1101.)		Thread					_	_					ا ا	(1)	Ball dia.	$C_{\rm d}$	$C_{\rm s}$
	g	d	G	d_2	C_1	В	d_1	l_4	h_1	l_3	l_5	W	d_3	d_{L}	$r_{1 \text{s min}}$		N	N
PHS 3	5.7	3	M 3×0.5	12	4.5	6	5.2	27	21	10	3	5.5	5	6.5	0.2	7.938 (½)	1 750	3 670
PHS 4	11.9	4	M 4×0.7	14	5.3	7	6.5	31	24	12	4	8	8	9.5	0.2	9.525 (³ / ₈)	2 480	4 680
PHS 5	16.5	5	M 5×0.8	16	6	8	7.7	35	27	14	4	9	9	11	0.2	11.112 (½)	3 270	5 730
PHS 6	25	6	M 6×1	18	6.75	9	9	39	30	14	5	11	10	13	0.2	12.700 (½)	4 200	6 910
PHS 8	43	8	M 8×1.25	22	9	12	10.4	47	36	17	5	14	12.5	16	0.2	15.875 (⁵ / ₈)	7 010	10 200
PHS 10	72	10	M10×1.5	26	10.5	14	12.9	56	43	21	6.5	17	15	19	0.2	19.050 (³ ⁄ ₄)	9 810	13 300
PHS 12	107	12	M12×1.75	30	12	16	15.4	65	50	24	6.5	19	17.5	22	0.2	22.225 (½ ₈)	13 100	16 900
PHS 14	160	14	M14×2	34	13.5	19	16.9	74	57	27	8	22	20	25	0.2	25.400 (1)	16 800	20 900
PHS 16	210	16	M16×2	38	15	21	19.4	83	64	33	8	22	22	27	0.2	28.575 (1 ½)	21 000	25 400
PHS 18	295	18	M18×1.5	42	16.5	23	21.9	92	71	36	10	27	25	31	0.2	31.750 (1 ½)	25 700	30 200
PHS 20	380	20	M20×1.5	46	18	25	24.4	100	77	40	10	30	27.5	34	0.2	34.925 (1 ³ / ₈)	30 800	35 500
PHS 22	490	22	M22×1.5	50	20	28	25.8	109	84	43	12	32	30	37	0.2	38.100 (1 ½)	37 400	41 700
PHS 25	750	25	M24×2	60	22	31	29.6	124	94	48	12	36	33.5	42	0.6	42.862 (1 ¹¹ / ₁₆)	46 200	72 700
PHS 28	950	28	M27×2	66	25	35	32.3	136	103	53	12	41	37	46	0.6	47.625 (1 ½)	58 400	87 000
PHS 30	1 130	30	M30×2	70	25	37	34.8	145	110	56	15	41	40	50	0.6	50.800 (2)	62 300	92 200


Note(1) Minimum allowable value of chamfer dimension r_1 Remarks1. Neither oil hole nor grease nipple is provided for PHS with an inner ring bore diameter d of 4 mm or less. For others, a grease nipple is provided on the body.

- Not provided with prepacked grease. Perform proper lubrication for use.
 When a metric fine thread specification is required, please contact (1) (0).

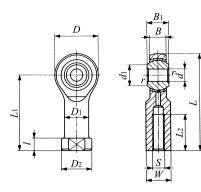
PILLOBALL

Lubrication Type PILLOBALL Rod Ends Insert Type/With Male Thread

POS

						D		•						Dynamic load	Static load
Identificati	ion	Mass (Ref.)				Bound	ary d	imensio	ns m	m				capacity	capacity
number	.		d	G	d_2	C_1	B	d_1	l_2	h	l_1	$r_{1 \text{s min}}^{(1)}$	Ball dia.	$C_{\rm d}$	$C_{\rm s}$
		g		0		- 1		1	- 2		* 1	1811111	(inch)	N	N
POS	3	5.0	3	M 3×0.5	12	4.5	6	5.2	33	27	15	0.2	7.938 (½)	1 750	1 220
POS	4	8.1	4	M 4×0.7	14	5.3	7	6.5	37	30	17	0.2	9.525 (³ / ₈)	2 480	2 060
POS	5	12.5	5	M 5×0.8	16	6	8	7.7	41	33	20	0.2	11.112 (½)	3 270	3 340
POS	6	19	6	M 6×1	18	6.75	9	9	45	36	22	0.2	12.700 (½)	4 200	4 730
POS	8	32	8	M 8×1.25	22	9	12	10.4	53	42	25	0.2	15.875 (½)	7 010	8 640
POS 1	0	54	10	M10×1.5	26	10.5	14	12.9	61	48	29	0.2	19.050 (³ ⁄ ₄)	9 810	13 300
POS 1	2	85	12	M12×1.75	30	12	16	15.4	69	54	33	0.2	22.225 (½)	13 100	16 900
POS 1	4	126	14	M14×2	34	13.5	19	16.9	77	60	36	0.2	25.400 (1)	16 800	20 900
POS 1	6	185	16	M16×2	38	15	21	19.4	85	66	40	0.2	28.575 (1 ½)	21 000	25 400
POS 1	8	260	18	M18×1.5	42	16.5	23	21.9	93	72	44	0.2	31.750 (1 ½)	25 700	30 200
POS 2	20	340	20	M20×1.5	46	18	25	24.4	101	78	47	0.2	34.925 (1 ³ / ₈)	30 800	35 500
POS 2	2	435	22	M22×1.5	50	20	28	25.8	109	84	51	0.2	38.100 (1½)	37 400	41 700
POS 2	25	650	25	M24×2	60	22	31	29.6	124	94	57	0.6	42.862 (1½)	46 200	72 700
POS 2	8	875	28	M27×2	66	25	35	32.3	136	103	62	0.6	47.625	58 400	87 000
POS 3	0	1 070	30	M30×2	70	25	37	34.8	145	110	66	0.6	50.800 (2)	62 300	92 200

Note(1) Minimum allowable value of chamfer dimension r_1 Remarks1. Neither oil hole nor grease nipple is provided for POS with an inner ring bore diameter d of 4 mm or less.


For those with an inner ring bore diameter d of 5 to 6 mm, an oil hole is provided on the body. For others, a grease nipple is provided on the body.

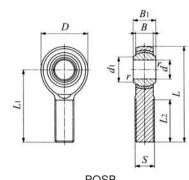
2. Not provided with prepacked grease. Perform proper lubrication for use.

- 3. When a metric fine thread specification is required, please contact IXI .

Inch series PILLOBALL Rod Ends Insert Type/With Female Thread

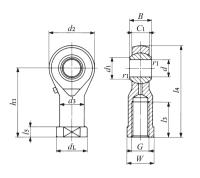
PHSB

Identification	Mass (Ref.)		I = 1	I	ı	ı	Воц	undar mr	y dim n(incl		ns	ı		I	1	مناد المال	Dynamic load capacity $C_{ m d}$	Static load capacity $C_{ m S}$
number	g	d	Thread S class 3B	D	В	B_1	d_1	L	l	L_1	L_2	W	D_1	D_2	$r_{\rm smin}^{(1)}$	Ball dia. mm (inch)	N	N N
PHSB 2	6.8		-32UNC (.1380)		4.75 (.187)	6.35 (.250)	4.75 (.187)	26.57 (1.046)	4.75 (.187)	20.62		6.35	6.35 (.250)	7.92 (.312)	0.3	7.938 (⁵ / ₁₆)	1 850	5 840
PHSB 2.5	11		-32UNC (.1640)		5.56 (.219)	7.14 (.281)	6.32			22.23 (.875)		7.14 (.281)	7.14 (.281)	8.74 (.344)	0.3	9.525 (³ ⁄ ₈)	2 600	8 210
PHSB 3	14	4.826 (.1900)	-32UNF (.1900)		6.35 (.250)	7.92 (.312)	7.77 (.306)	34.93 (1.375)		26.97 (1.062)		7.92 (.312)	7.92 (.312)	10.31	0.3	11.112 (½)	3 460	9 090
PHSB 4	23	6.350 (.2500)	-28UNF (.2500)	19.05 (.750)	7.14 (.281)	9.53 (.375)	9.02 (.355)	42.85 (1.687)			19.05 (.750)	9.53 (.375)	9.53 (.375)	11.89 (.468)	0.5	13.097 (33/64)	4 590	13 200
PHSB 5	36		-24UNF (.3125)					46.02 (1.812)	4.75 (.187)		19.05 (.750)		11.10 (.437)		0.5	15.875 (⁵ ⁄ ₈)	6 800	16 500
PHSB 6	59		-24UNF (.3750)		10.31	12.70 (.500)	13.13 (.517)				23.80 (.937)	14.27 (.562)	14.27 (.562)	17.45 (.687)	0.5	18.256 (²³ / ₃₂)	9 230	21 600
PHSB 7	82	11.112 (.4375)	-20UNF (.4375)				14.88 (.586)	60.33 (2.375)			26.97 (1.062)	15.88 (.625)	15.88 (.625)		0.5	20.638 (¹³ / ₁₆)	11 200	26 100
PHSB 8	132	12.700 (.5000)	-20UNF (.5000)			15.88 (.625)	17.73 (.698)	70.64 (2.781)			30.15 (1.187)	19.05 (.750)		22.23 (.875)	0.5	23.812 (¹⁵ / ₁₆)	14 800	36 200
PHSB 10	191	15.875 (.6250)	-18UNF (.6250)				21.31 (.839)	82.55 (3.250)			38.10 (1.500)	22.23 (.875)			0.5	28.575 (1½)	20 000	39 300
PHSB 12	286		-16UNF (.7500)				24.84 (.978)					25.40 (1.000)			0.5	33.338 (1 ½)	28 500	55 000
PHSB 16	998		-12UNF (1.2500)												0.5	47.625 (1 ½ ₈)	59 300	86 800


Note(1) r_s min stands for minimum allowable value of chamfer r.

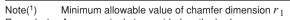
PILLOBALL

Inch series PILLOBALL Rod Ends Insert Type/With Male Thread


POSB

	Mass (Ref.)				Bou	ndary d mm(i	limensi inch)	ons					Dynamic load	Static load
Identification number	(ITCI.)		Thread				1				(¹)	Ball dia.	capacity $C_{ m d}$	capacity $C_{\rm s}$
	g	d	S class 3A	D	В	B_1	d_1	L	L_1	L_2	$r_{\rm smin}$	mm (inch)	N	N
POSB 2	5.4	3.175 (.1250)	-32UNC (.1380)	11.91 (.469)	4.75 (.187)	6.35 (.250)	4.75 (.187)	29.77 (1.172)	23.80 (.937)	12.70 (.500)	0.3 (.012)	7.938 (½)	1 850	2 160
POSB 2.5	9.1	3.967 (.1562)	-32UNC (.1640)	14.27 (.562)	5.56 (.219)	7.14 (.281)	6.32 (.249)	35.71 (1.406)	28.58 (1.125)	15.88 (.625)	0.3 (.012)	9.525 (³ ⁄ ₈)	2 600	3 370
POSB 3	14	4.826 (.1900)	-32UNF (.1900)	15.88 (.625)	6.35 (.250)	7.92 (.312)	7.77 (.306)	39.70 (1.563)	31.75 (1.250)	19.05 (.750)	0.3 (.012)	11.112 (½)	3 460	4 850
POSB 4	23	6.350 (.2500)	-28UNF (.2500)	19.05 (.750)	7.14 (.281)	9.53 (.375)	9.02	49.20 (1.937)	39.67 (1.562)	25.40 (1.000)	0.5 (.020)	13.097 (³³ / ₆₄)	4 590	8 870
POSB 5	36	7.938 (.3125)	-24UNF (.3125)	22.23 (.875)	8.74 (.344)	11.10	11.35 (.447)	58.72 (2.312)	47.63 (1.875)	31.75 (1.250)	0.5 (.020)	15.875 (⁵ ⁄ ₈)	6 800	14 200
POSB 6	54	9.525 (.3750)	-24UNF (.3750)	25.40 (1.000)	10.31	12.70 (.500)	13.13 (.517)	61.93 (2.438)	49.23 (1.938)	31.75 (1.250)	0.5 (.020)	18.256 (²³ / ₃₂)	9 230	21 600
POSB 7	77	11.112 (.4375)	-20UNF (.4375)	28.58 (1.125)	11.10	14.27 (.562)	14.88 (.586)	68.28 (2.688)	53.98 (2.125)	34.93 (1.375)	0.5 (.020)	20.638 (¹³ / ₁₆)	11 200	26 100
POSB 8	122	12.700 (.5000)	-20UNF (.5000)	33.32 (1.312)	12.70 (.500)	15.88 (.625)	17.73 (.698)	78.59 (3.094)	61.93 (2.438)	38.10 (1.500)	0.5 (.020)	23.812 (¹⁵ ⁄ ₁₆)	14 800	36 200
POSB 10	186	15.875 (.6250)	-18UNF (.6250)	38.10 (1.500)	14.27 (.562)	19.05 (.750)	21.31 (.839)	85.73 (3.375)	66.68 (2.625)	41.28 (1.625)	0.5 (.020)	28.575 (1 ½)	20 000	39 300
POSB 12	295	19.050 (.7500)	-16UNF (.7500)	44.45 (1.750)	17.45 (.687)	22.23	24.84	95.25 (3.750)	73.03 (2.875)	44.45 (1.750)	0.5 (.020)	33.338 (1 ½)	28 500	55 000
POSB 16	1 129	25.400 (1.0000)	-12UNF (1.2500)	69.85 (2.750)	25.40 (1.000)	34.93 (1.375)	32.23 (1.269)	139.70 (5.500)	104.78 (4.125)	53.98 (2.125)	0.5 (.020)	47.625 (1 $\frac{7}{8}$)	59 300	112 000

 ${
m Note}(^{
m 1})$ $r_{
m S}$ min stands for minimum allowable value of chamfer r.

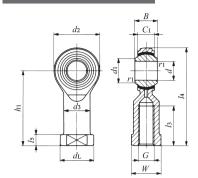

Lubrication Type PILLOBALL Rod Ends Die-cast Type/With Female Thread

PHSA

Identification	Mass (Ref.)					Воц	undary	/ dimei	nsion	ıs n	nm						Static load capacity
number	g	d	Thread G	d_2	C_1	В	d_1	l_4	h_1	l_3	l_5	W	d_3	$d_{ m L}$	$r_{1\mathrm{smin}}^{(1)}$	Ball dia. mm (inch)	$C_{ m s}$ N
PHSA 5	17	5	M 5×0.8	17	6	8	7.7	35.5	27	16	4	9	9	11	0.2	11.112 (½)	5 470
PHSA 6	25	6	M 6×1	19.5	6.75	9	9	39.7	30	16	5	11	10	13	0.2	12.700 (½)	6 760
PHSA 8	45	8	M 8×1.25	24	9	12	10.4	48	36	19	5	14	12.5	16	0.2	15.875 (⁵ / ₈)	10 200
PHSA 10	70	10	M10×1.5	28	10.5	14	12.9	57	43	23	6.5	17	15	19	0.2	19.050 (³ ⁄ ₄)	13 100
PHSA 12	105	12	M12×1.75	32	12	16	15.4	66	50	27	6.5	19	17.5	22	0.2	22.225 (½)	16 400
PHSA 14	155	14	M14×2	36	13.5	19	16.9	75	57	30	8	22	20	25	0.3	25.400 (1)	20 000
PHSA 16	190	16	M16×2	40	15	21	19.4	84	64	36	8	22	22	27	0.3	28.575 (1 ½)	23 900
PHSA 18	290	18	M18×1.5	45	16.5	23	21.9	93.5	71	40	10	27	25	31	0.3	31.750 (1 ½)	28 800
PHSA 20	400	20	M20×1.5	49	18	25	24.4	101.5	77	43	10	30	27.5	34	0.3	34.925 (1 ³ / ₈)	33 400
PHSA 22	500	22	M22×1.5	54	20	28	25.8	111	84	47	12	32	30	37	0.3	38.100 (1 ½)	40 400

Remarks1. A grease nipple is provided on the body.

2. Not provided with prepacked grease. Perform proper lubrication for use.


3. When a metric fine thread specification is required, please contact [1]([]).

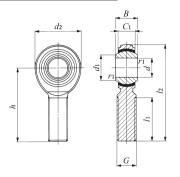
KKI

PILLOBALL

Maintenance-free Type PILLOBALL Rod Ends With Female Thread

PHS···EC

	Mass (Ref.)					В	ounda	ary di	mei	nsion	s m	m					Dynamic load capacity	Static load capacity
Identification number		d	Thread G	d_2	C_1	В	$\begin{vmatrix} d_1 \end{vmatrix}$	l_4	h_1	l_3	l_5	W	d_3	d_{T}	$r_{1 \mathrm{s} \mathrm{min}}^{(1)}$	Ball dia. mm	$C_{\rm d}$	$C_{\rm s}$
	g						1	,	1	3	,		3	L	1311111	(inch)	N	N
PHS 3EC	5.7	3	M 3×0.5	12	4.5	6	5.2	27	21	10	3	5.5	5	6.5	0.2	7.938 (½)	3 500	2 480
PHS 4EC	11.9	4	M 4×0.7	14	5.3	7	6.5	31	24	12	4	8	8	9.5	0.2	9.525 (³ / ₈)	4 950	3 260
PHS 5EC	16.5	5	M 5×0.8	16	6	8	7.7	35	27	12.5	4	9	9	11	0.2	11.112 (½)	6 540	4 010
PHS 6EC	25	6	M 6×1	18	6.75	9	9	39	30	13.5	5	11	10	13	0.2	12.700 (½)	8 410	4 940
PHS 8EC	43	8	M 8×1.25	22	9	12	10.4	47	36	16	5	14	12.5	16	0.2	15.875 (⁵ ⁄ ₈)	14 000	7 760
PHS 10EC	72	10	M10×1.5	26	10.5	14	12.9	56	43	19.5	6.5	17	15	19	0.2	19.050 (³ ⁄ ₄)	19 600	10 500
PHS 12EC	107	12	M12×1.75	30	12	16	15.4	65	50	24	6.5	19	17.5	22	0.2	22.225 (½)	26 200	13 700
PHS 14EC	160	14	M14×2	34	13.5	19	16.9	74	57	27	8	22	20	25	0.2	25.400 (1)	33 600	17 200
PHS 16EC	210	16	M16×2	38	15	21	19.4	83	64	33	8	22	22	27	0.2	28.575 (1 ½)	42 000	21 100
PHS 18EC	295	18	M18×1.5	42	16.5	23	21.9	92	71	36	10	27	25	31	0.2	31.750 (1 ½)	51 400	25 100
PHS 20EC	380	20	M20×1.5	46	18	25	24.4	100	77	40	10	30	27.5	34	0.2	34.925 (1 ³ / ₈)	61 600	30 000
PHS 22EC	490	22	M22×1.5	50	20	28	25.8	109	84	41	12	32	30	37	0.2	38.100 (1 ½)	74 700	36 400


Note(1) Minimum allowable value of chamfer dimension r_1

Remarks1. Neither oil hole nor grease nipple is provided.

2. When a metric fine thread specification is required, please contact IIKI

Maintenance-free Type PILLOBALL Rod Ends With Male Thread

 $\mathsf{POS} \cdots \mathsf{EC}$

Identification	Mass (Ref.)	Boundary dimensions mm										Dynamic load capacity	Static load capacity	
number	g	d	Thread G	d_2	C_1	В	d_1	l_2	h	l_1	$r_{1 \mathrm{s} \mathrm{min}}^{(1)}$	Ball dia. mm (inch)	$C_{ m d}$ N	$C_{ m s}$ N
POS 3EC	5.0	3	M 3×0.5	12	4.5	6	5.2	33	27	15	0.2	7.938 (½)	3 500	1 220
POS 4EC	8.1	4	M 4×0.7	14	5.3	7	6.5	37	30	17	0.2	9.525 (³ / ₈)	4 950	2 060
POS 5EC	12.5	5	M 5×0.8	16	6	8	7.7	41	33	20	0.2	11.112 (½)	6 540	3 340
POS 6EC	19	6	M 6×1	18	6.75	9	9	45	36	22	0.2	12.700 (½)	8 410	4 730
POS 8EC	32	8	M 8×1.25	22	9	12	10.4	53	42	25	0.2	15.875 (⁵ / ₈)	14 000	7 760
POS 10EC	54	10	M10×1.5	26	10.5	14	12.9	61	48	29	0.2	19.050 (³ ⁄ ₄)	19 600	10 500
POS 12EC	85	12	M12×1.75	30	12	16	15.4	69	54	33	0.2	22.225	26 200	13 700
POS 14EC	126	14	M14×2	34	13.5	19	16.9	77	60	36	0.2	25.400 (1)	33 600	17 200
POS 16EC	185	16	M16×2	38	15	21	19.4	85	66	40	0.2	28.575 (1 ½)	42 000	21 100
POS 18EC	260	18	M18×1.5	42	16.5	23	21.9	93	72	44	0.2	31.750 (1 ½)	51 400	25 100
POS 20EC	340	20	M20×1.5	46	18	25	24.4	101	78	47	0.2	34.925 (1 ³ / ₈)	61 600	30 000
POS 22EC	435	22	M22×1.5	50	20	28	25.8	109	84	51	0.2	38.100 (1 ½)	74 700	36 400

Note(1) Minimum allowable value of chamfer dimension r_1 Remarks1. Neither oil hole nor grease nipple is provided.

2. When a metric fine thread specification is required, please contact 1.

L-BALLS

L-Balls

●L-Ball Dust Cover

Structure and Features

L-Balls are self-aligning rod-ends consisting of a special die-cast zinc alloy body and a studded ball which has its axis at right angles to the body.

They can perform tilting movement, oscillating movement and rotation with low torque, and transmit power smoothly due to uniform clearance between the sliding surfaces.

Their superior wear resistance assures stable accuracy for long periods of time, and maintenance is simple. They are very economical bearings.

For these reasons, they are widely used in link mechanisms in automobiles, construction machinery, farm and packaging machines, etc.

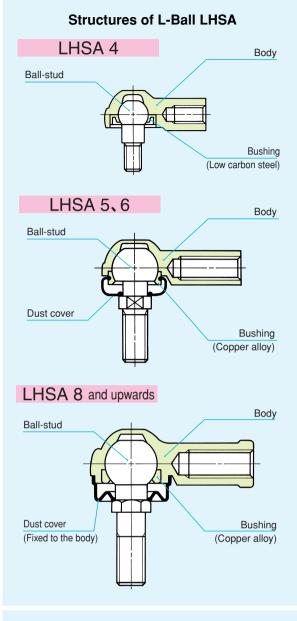
Types

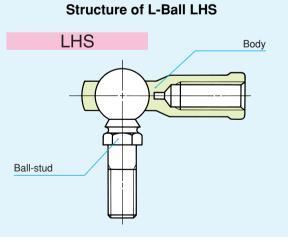
IMD L-Balls are available in various types as shown in Table 1.

Table 1 Type of L-Balls

Туре	L-E	L-Ball dust cover	
Model code	LHSA	LHS	PRC

L-Ball LHSA


These are compact rod-ends in which the spherical part of the ball-stud are held by the special die-cast zinc alloy body. There is a dust cover on the stud side and good quality lithium soap base grease is prepacked. They can be run for long periods of time without re-lubrication and have excellent lubrication and anti-dust properties.


As shown in the structural drawing, these rod-ends are classified into 3 types by size. In addition, the ball-studs of LHSA 10 and lower are formed in one solid body, but those of LHSA 12 and higher, which are used under large loads, have the stud friction-welded to a high precision steel ball to give greater resistance to wear.

L-Ball LHS

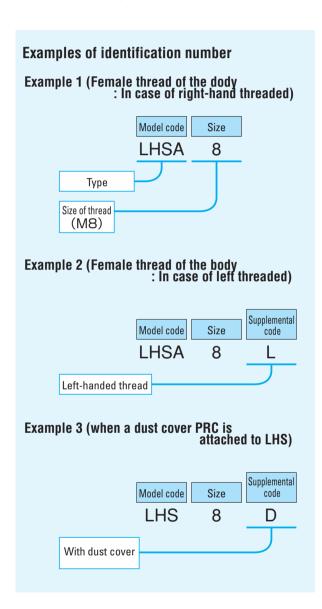
These rod-ends have a friction-welded ball-stud, and a special die-cast zinc alloy body which houses the spherical surface of the high precision steel ball. There is an almost complete contact across the sliding surfaces, and the uniform clearance guarantees a stable bearing life.

An L-Ball dust cover can be attached to these rodends. If the rod-ends are lubricated with lithium soap

base grease, they have excellent lubrication and antidust properties and can run for long periods of time without re-lubrication.

When the L-Ball LHS is delivered with a dust cover on request, lithium soap base grease is prepacked.

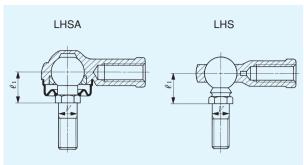
LHSA LHS


478

L-Ball Dust Cover PRC

This is for the L-Ball LHS series. It is made of special synthetic rubber which has excellent resistance to oil and ozone. The cover offers very effective dust protection and prevents grease leakage.

Identification Number


The identification number of L-Balls consists of a model code, a size and any supplemental codes as shown in the examples.

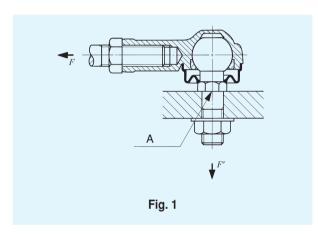
Accuracy

The accuracy of L-Balls is shown in Table 2.

Table 2 Tolerance

unit: mm

Туре	Dimension symbol	Tolerance
	ℓ_1	± 0.5
LHSA	V	$0 - 0.2(^1)$
LHS	ℓ_1	± 0.4
	V	h9


Note(1) This dimensional tolerance applies to LHSA 5 and higher.

■ Selection of L-Balls

The static load capacity and maximum operating load of L-Balls are determined in consideration of the strength of the ball stud and the body. Accordingly, L-Balls are selected on the basis of the static load capacity $C_{\rm s}$ shown in the dimension table and the maximum operating load shown in Table 3.

Static load capacity

The static load capacity $C_{\rm s}$ shown in the dimension table represents the allowable axial force F which is determined by the mechanical strength of the ball-stud at the section 'A' under the bending moment due to the force F as illustrated in Fig. 1. If F increases beyond the static load capacity, deformation will begin at A, leading to breakage.

Maximum operating load

The strength of the body must also be taken into consideration when L-Balls are operated in a high-temperature or low-temperature atmosphere or receive repetitive loads of long duration or shock loads. A guideline for maximum operating load of L-Balls is shown in Table 3. When the fixing bolt in the main body is fixed and a load is applied in the direction of F^{\prime} , the bending stress in the fixing bolt must be taken into consideration.

Table 3 Maximum operating load

IIIIL. IN	ınit:	Ν	
-----------	-------	---	--

Identification number	Maximum operating load	Identification number	Maximum operating load
LHSA 4	840	LHS 5	880
LHSA 5	1 180	LHS 6	1 080
LHSA 6	1 080	LHS 8	1 630
LHSA 8	1 900	LHS10	2 100
LHSA10	2 170	LHS12	2 620
LHSA10M	2 170	LHS14	3 190
LHSA12	2 790	LHS16	3 820
LHSA14	3 540	LHS18	4 610
_	_	LHS20	5 340
_	_	LHS22	6 460

Lubrication

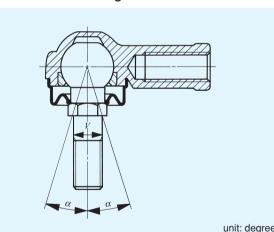
LHSA is prepacked with lubricating grease ALVANIA GREASE 2 (SHELL). LHS is not provided with prepacked grease. Perform proper lubrication for use.

Operating LHS without lubrication will increase the wear of the sliding contact surface or cause seizure.

Operating Temperature Range

The maximum allowable temperature for L-Balls is $+80\,^{\circ}\mathrm{C}$.

Precautions for Use


1 Depth of thread

It is recommended that the depth of thread engagement into the body is more than twice the nominal diameter of thread.

2 Permissible angle of tilt

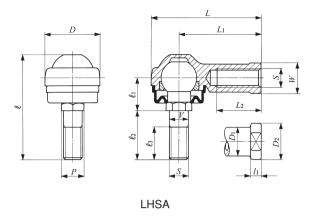
The permissible angle of tilt is shown in Table 4.

Table 4 Permissible angle of tilt

unit: degree

Nominal dia. mm	LHSA	LHS		
V	α	α		
4	15	_		
5	17	15		
6	17	17		
8	18	18		
10	19	19		
12	19	19		
14	20	20		
16	_	20		
18	_	21		
20	_	20		
22	_	21		

LHSA LHS

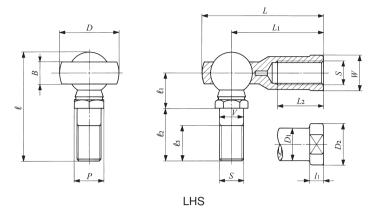


L-BALL

			Boundary dimensions mm											
	Mass (Ref.)				В	oundar	y dime	ensions	s mm					
Identification number		Thread				_	_	,		_	_			
	g	S	V	D	L	L_1	L_2	l_1	W	D_1	D_2	l	P	ℓ_1
LHSA 4	11	M 4×0.7	* 4	14	25.5	18	8	4	8	8	10	19.5	* * 5.5	7
LHSA 5	27	M 5×0.8	5	17	38.5	30	16	5	10	10	12	32.5	8	12
LHSA 6	27	M 6×1	6	19	39.5	30	16	5	10	10	12	32.5	8	12
LHSA 8	64	M 8 × 1.25	8	24	48	36	19	5	14	13	16	41.5	10	14.5
LHSA 10	106	M10 × 1.25	10	28	57	43	23	6.5	17	15	19	49	12	16
LHSA 10M	106	M10 × 1.5	10	28	57	43	23	6.5	17	15	19	49	12	16
LHSA 12	180	M12 × 1.75	12	34	67	50	27	6.5	19	17.5	22	64	14	20
LHSA 14	260	M14 × 2	14	38	76	57	30	8	22	20	25	72	17	22.5

Remarks1. The item marked * is manufactured with a neck diameter of φ 3.4. The item marked * is manufactured with a diameter of φ 5.5 instead of a width across flats.
2. Provided with prepacked grease.

			Static load
			capacity
		Ball dia.	$C_{\rm s}$
ℓ_2	ℓ_3		
			N
7	5	8	880
13	10	11.112	1 180
13	10	11.112	1 670
17	12.5	15	4 380
21	17	19.05	7 400
21	17	19.05	7 400
30	20	22.225	9 900
33.5	22	25.4	14 600

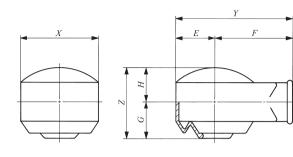

LHSA LHS

L-BALL

	Mass (Ref.)	Boundary dimensions mm												
Identification number	g	Thread S	V	D	В	L	L_1	L_2	l_1	W	D_1	D_2	l	P
LHS 5	22	M 5×0.8	5	17	6	35.5	27	16	4	9	9	11	30.5	8
LHS 6	32	M 6×1	6	19.5	6.75	39.7	30	16	5	11	10	13	36.5	10
LHS 8	60	M 8×1.25	8	24	9	48	36	19	5	14	12.5	16	44	11
LHS 10	102	M10 × 1.5	10	28	10.5	57	43	23	6.5	17	15	19	52.5	13
LHS 12	160	M12 × 1.75	12	32	12	66	50	27	6.5	19	17.5	22	61	17
LHS 14	227	M14 × 2	14	36	13.5	75	57	30	8	22	20	25	69	17
LHS 16	300	M16 × 2	16	40	15	84	64	36	8	22	22	27	74	19
LHS 18	445	M18 × 1.5	18	45	16.5	93.5	71	40	10	27	25	31	84	22
LHS 20	580	M20 × 1.5	20	49	18	101.5	77	43	10	30	27.5	34	90.5	24
LHS 22	765	M22 × 1.5	22	54	20	111	84	47	12	32	30	37	99	27

Remark Not provided with prepacked grease. Perform proper lubrication for use.

				Static load
				capacity
	1 1		Ball dia.	$C_{\rm s}$
ℓ_1	ℓ_2	ℓ_3	Dali dia.	5
<i>v</i> 1	2 2	2 3		N
10	15	11	11.112	2 080
11.5	18.5	14	12.7	3 290
14.5	21.5	15	15.875	4 900
17	26	18	19.05	7 640
20	30	20	22.225	12 400
22.5	33.5	22	25.4	14 600
24.5	35.5	23	28.575	19 500
27.5	40.5	25	31.75	25 600
30	43	27	34.925	31 600
32.5	47.5	30	38.1	39 800


LHSA LHS

486

L-BALL

L-Ball Dust Cover

PRC

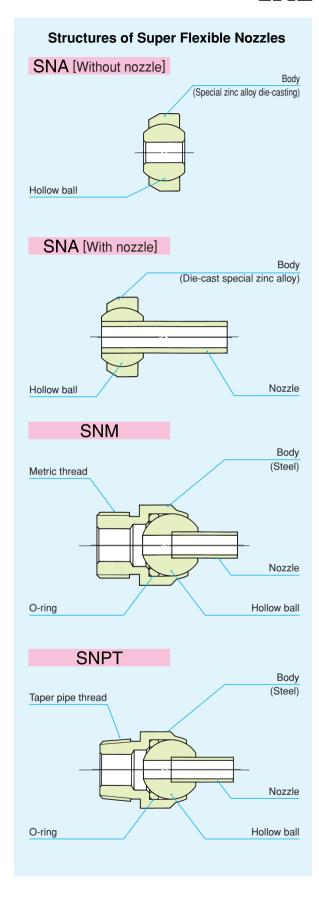
		Bou	ndary (dimens	sions	mm	
Identification number	X	Y	$\mid E \mid$	F	Z	G	H
PRC 5	20	29	10	19	16	8	8
PRC 6	22	31	11	20	19	9.5	9.5
PRC 8	27	38.5	13.5	25	24	12	12
PRC 10	31	45.5	15.5	30	27	14	13
PRC 12	36	53	18	35	32	16.5	15.5
PRC 14	40	60	20	40	36.5	19	17.5
PRC 16	44	68	22	46	40	20.5	19.5
PRC 18	49	74.5	24.5	50	46	23.5	22.5
PRC 20	54	82	27	55	50	25.5	24.5
PRC 22	59	89.5	29.5	60	53.5	27.5	26

LHSA LHS

487

SUPER FLEXIBLE NOZZLES

Structure and Features


Super Flexible Nozzle is a compact nozzle for use on a machine tool to supply and spray cutting oil exactly at the required positions.

The angle of the nozzle can be changed easily and freely. Therefore, oil supply can be concentrated upon the working area, and cooling and lubrication can be performed effectively. As a result, cutting resistance is reduced and superior finish is obtained, achieving high machining accuracy. Also, tool life is longer.

The Super Flexible Nozzle is used in many places such as at the spindle end of Machining Center and at the tool holder of N/C lathe.

The features of Super Flexible Nozzle are as follows.

- **1** A spherical bushing is incorporated to adjust the tilting angle of nozzle easily.
- ②The Super Flexible Nozzle is compact in size, and the design on parts around the spindle and tool can be made simple.
- **3** The nozzle length is short, and winding of cutting chips around the nozzle will not occur.
- 4 By using a number of Super Flexible Nozzles, cutting oil can be supplied and cutting chips can be removed more effectively.
- **6** The press fitting type and screw fitting type are available. The press fitting type is economical.

SNA SNM SNPT

488

Types

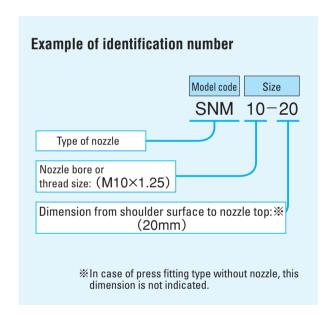

Super Flexible Nozzles shown in Table 1 are available.

Table 1 Type of Super Flexible Nozzle

	Model code	
Press fitting type	Without nozzle With nozzle	SNA
Screw fitting	With metric threads	SNM
type	With taper pipe threads	SNPT

Identification Number

The identification number of Super Flexible Nozzle consists of a model code and a size. An example is shown as follows.

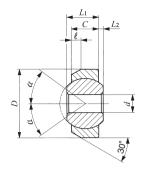
Precautions for Use

When the press fitting type Super Flexible Nozzle is used, a ϕ 15 (H8) $^{+0.027}_{_0}$ bore for fitting hole must be prepared and fitting is made from the 30° chamfered end of the outer body. In this case, the body portion should be pushed for press fitting.

When the screw fitting type Super Flexible Nozzle is used and prevention of oil leakage from the fitting part is required, it is recommended to wind sealing tape on the thread portion or use rubber packing for the shoulder face of the outer body.

The direction of lubrication can be adjusted by inserting a screwdriver, etc. in the bore of the nozzle.

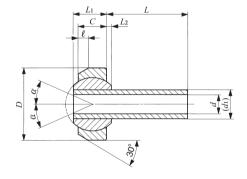
Special Specifications


Super Flexible Nozzles with special length are also available. In this case, specify the necessary nozzle length in units of 1 mm, but do not exceed the maximum length shown in the dimension table as "L".

Super Flexible Nozzles with curved nozzle end or with special bore diameter are also available. In this case, please contact IDCO by preparing a drawing or sketch with necessary specifications.

SUPER FLEXIBLE NOZZLE

Press Fitting Type Without Nozzle



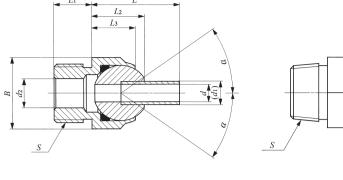
SNA

Identification	Во	undaı	ry dim	ensio	ns n	nm	Ball dia.	Allowable tilting angle
number	d	D	L_1	L_2	C	l	mm (inch)	lpha degree
SNA 4	4	15	7	1	6	2	11.112	36
SNA 6	6	15	/	ı	6	2	(7/16)	24

Press Fitting Type With Nozzle

SNA

ldentification number		I	Во	undar	y dim	ensio	ns n	Ball dia.	Allowable tilting angle			
	d	D		L		L_1	L_2	C	ℓ	d_1	mm (inch)	lpha degree
SNA 3- <i>L</i>	3	15	6	15	32	7	1	6	2		11.112	24
SNA 4- <i>L</i>	4	15	6	16	40	/	1	6	2	6	(7/16)	24


SNA SNM SNPT

SUPER FLEXIBLE NOZZLE

Screw Fitting Type

SNPT

Identification number	d	Thread S		Bou	ndar	y dim L_1	nensi L_2		mm d_1	d_2	Width across flats B	Width across corners (Ref.)	Ball dia. mm (inch)	Allowable tilting angle α degree
SNM 10- <i>L</i>	4	M10 × 1.25	20	40	60	9	13	10.5	6	6	17	19.6	12.700	
SNPT 1/4- <i>L</i>		PT 1/4											(1/2)	
SNM 20- <i>L</i>	6	M20 × 1.5	30	50	70	13	18	15	8	10	24	27.7	19.050	35
SNPT 3/8- <i>L</i>	0	PT 3/8	30	50	70	13	10	15	0	10	24	27.7	(3/4)	33
SNM 24-L	0	M24 × 2.0	40	60	90	10	22	10	10	10	22	27	25.400	
SNPT 1/2- <i>L</i>		40 60 8		80	18	23	19	10 12	12	12 32	37	(1)		

PARTS FOR NEEDLE ROLLER BEARINGS

- **●**Seals for Needle Roller Bearings
- **●**Cir-clips for Needle Roller Bearings
- Needle Rollers

Seals for Needle Roller Bearings

Features

INCO Seals for Needle Roller Bearings have a low sectional height and consist of a sheet metal ring and special synthetic rubber.

As these seals are manufactured to the same sectional height as INCO Needle Roller Bearings, grease leakage and the penetration of foreign particles can be effectively prevented by fitting them directly to the sides of combinable bearings shown in the dimension table.

When fitting seals to needle roller bearings with inner ring, wide inner rings (see page 295) must be used, as shown in the mounting examples.

Types

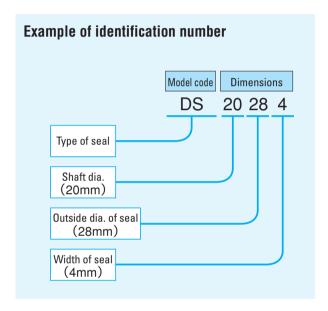

Seals for Needle Roller Bearings are available as shown in Table 1.

Table 1 Seal type

	.,,,,,	
Туре	Single lip	Double lips
Structure	Metal ring Lip	Metal ring Secondary lip Main lip
Model code	os	DS

Identification Number

The identification number of Seals for Needle Roller Bearings consists of a model code and dimensions. An example of an identification number is shown as follows.

Accuracy

Tolerances of Seals for Needle Roller Bearings are based on JIS B 2402:1996.

Tolerances of outside diameter and width are based on Tables 2 and 3, respectively.

Table 2 Tolerance of outside diameter

	ait	٠.	n
uı	าเา		ш

Nominal outs	side diameter	Toler	ance
Over	Incl.	High	Low
_	30	+ 0.09	+0.04
30	50	+0.11	+ 0.05
50	80	+0.14	+0.06
80	120	+0.17	+ 0.08

Table 3 Tolerance of width

Nominal si	ze of width	Toler	ance
Over	Incl.	High	Low
_	6	+0.2	- 0.2
6	10	+0.3	- 0.3

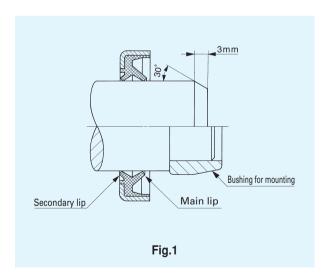
Precautions for Use

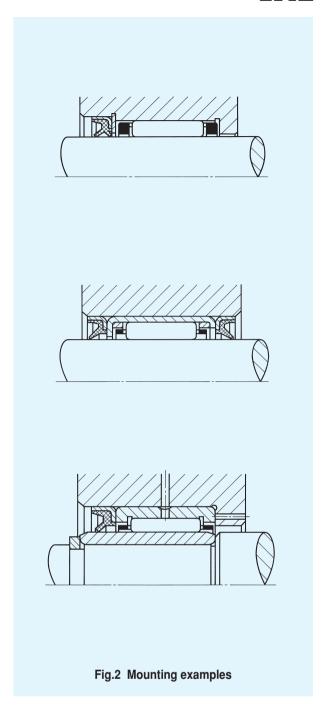
For the single lip OS type, the lip has to face inward when using the seal to prevent grease leakage, and outward to prevent the penetration of foreign particles. The DS type of double-lips is effective for prevention of grease leakage and dust penetration. However, when the main purpose is to prevent grease leakage, the main lip should face inward, and when used mainly to prevent dust penetration, it should face outward.

2 The permissible temperature range is -20 \sim +120 $^{\circ}$ C.

For use at higher or lower temperatures, a special seal is required. Please contact IIC for further information

The limiting peripheral speed of shaft depends on the conditions of use, but is normally 6 to 8 m/s. Double this speed is possible if the conditions (lubri-


cation, temperature, shaft finish, etc.) are good.

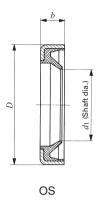

Mounting

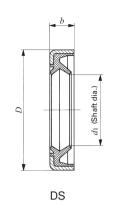
When inserting the shaft, damage to the lip should be prevented by chamfering the end of the shaft, as shown in the upper part of Fig. 1. When this cannot be performed, a mounting bushing should be used, as shown in the lower part of Fig.1.

When press fitting the seal to the housing, do not strike it directly, but fit it gently, using a suitable tool.

To prevent early wear and heat generation at the seal surface, it is necessary to thickly coat the tip of the lip for the OS type, or to fill the space between the two lips for the DS type, with bearing grease.

05

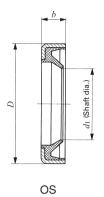

SEALS FOR NEEDLE ROLLER BEARINGS

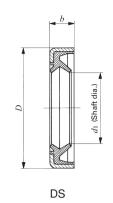


Shaft dia. 6 - 15mm

Shaft	1	dentificati	on number		ound nsion	ary s mm			Combinable	e bearings	
dia. mm	Siı	ngle lip	Double lips	d_1	D	b	TA…Z TLA…	Z YT Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
6	os	6102.5	_	6	10	2.5	TLA	69Z		_	_
7	os	7112.5		7	11	2.5	TLA	79Z		_	_
	os	8123	_	8	12	3	TLA	810Z			
8	os	8153	_ _	8	15	3	TA TA TA YT	810Z 815Z 820Z 810	RNA 496 TAF 81512 TAF 81516	RNAF 81510	_
	os	9133	_	9	13	3		910Z 912Z	_	_	_
9	os	9163	_	9	16	3	TA TA YT	912Z 916Z 912	TAF 91612 TAF 91616		_
	os	10143	_	10	14	3	TLA	1010Z 1012Z 1015Z			_
10	os	10173	_	10	17	3	TA TA	1010Z 1012Z 1015Z 1020Z	TAF 101712 TAF 101716	RNAF 101710	_

Cl ft	Identification	on number		Bounda	ary s mm		Combinabl	e bearings	
Shaft dia.			uiiiie				DNIA TO		NI ANG
mm	Single lip	Double lips	d_1	D	b	TA····Z YT TLA····Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
	OS 12163	_	12	16	3	TLA 1210Z YTL 1210	_		_
	OS 12183		12	18	3	TLA 1212Z			_
12	OS 12193	_	12	19	3	TA 1212Z TA 1215Z TA 1220Z TA 1225Z YT 1212	TAF 121912 TAF 121916		_
13	OS 13193		13	19	3	TLA 1312Z			_
	OS 14203	DS 14203	14	20	3	TLA 1412Z TLA 1416Z	_		_
14	OS 14223	DS 14223	14	22	3	TA 1416Z TA 1420Z	RNA 4900 TAF 142216 TAF 142220	RNAF 142213 RNAFW 142220	_
	OS 15213	DS 15213	15	21	3	TLA 1512Z TLA 1516Z TLA 1522Z	_	_	_
15	OS 15223	DS 15223	15	22	3	TA 1510Z TA 1512Z TA 1515Z TA 1520Z TA 1525Z	_	_	_
	OS 15235	DS 15235	15	23	5		TAF 152316 TAF 152320	RNAF 152313 RNAFW 152320	

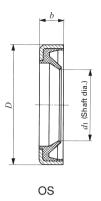

SEALS FOR NEEDLE ROLLER BEARINGS

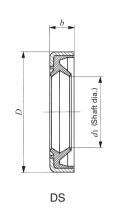


Shaft dia. 16 — 19mm

Shaft	Identificati	on number		indary ions m	n	Combinabl	e bearings	
dia.	Single lip	Double lips	$\begin{vmatrix} d_1 \end{vmatrix}$	$D \mid b$	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
	OS 16223	DS 16223	16 2	2 3	TLA 1612Z TLA 1616Z TLA 1622Z	_	_	_
16	OS 16243	DS 16243	16 2	24 3	TA 1616Z TA 1620Z	RNA 4901 RNA 6901 TAF 162416 TAF 162420	RNAF 162413 RNAFW 162420	_
	OS 16285	DS 16285	16 2	8 5	_	_	RNAF 162812	
	OS 17233	DS 17233	17 2	3 3	TLA 1712Z	_	_	_
17	OS 17243	DS 17243	17 2	24 3	TA 1715Z TA 1720Z TA 1725Z YT 1715 YT 1725	_	_	_
	OS 17253	DS 17253	17 2	25 3		TAF 172516 TAF 172520	RNAF 172513 RNAFW 172520	_

Shaft	Identificati	on number		ounda	ary s mm		Combinabl	e bearings	
dia.	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
	OS 18243	DS 18243	18	24	3	TLA 1812Z TLA 1816Z	_	_	_
18	OS 18253	DS 18253	18	25	3	TA 1813Z TA 1815Z TA 1817Z TA 1819Z TA 1820Z TA 1825Z	_		_
	OS 18264	DS 18264	18	26	4	_	RNA 49/14 TAF 182616 TAF 182620	RNAF 182613 RNAFW 182620	_
19	OS 19274	DS 19274	19	27	4	TA 1916Z TA 1920Z	TAF 192716 TAF 192720		


SEALS FOR NEEDLE ROLLER BEARINGS

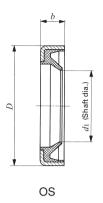


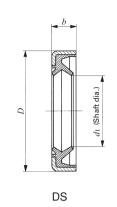
Shaft dia. 20 — 24mm

01 (on number	1	ounda	ary s mm		Combinabl	e bearings	
Shaft dia. mm	Single lip	Double lips	d_1		<i>b</i>	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
	OS 20264	DS 20264	20	26	4	TLA 2012Z TLA 2016Z TLA 2020Z TLA 2030Z	_	_	_
	OS 20274	DS 20274	20	27	4	TA 2015Z TA 2020Z TA 2025Z TA 2030Z YT 2015 YT 2025	_	_	_
20	OS 20284	DS 20284	20	28	4	TA 202820Z YT 202820	RNA 4902 RNA 6902 TAF 202816 TAF 202820	RNAF 202813 RNAFW 202826	_
	OS 20304	DS 20304	20	30	4	_	_	_	NAX 2030 NBX 2030
	OS 20324	DS 20324	20	32	4	_	_	RNAF 203212 RNAFW 203224	_
	OS 20326	DS 20326	20	32	6	_	_	RNAF 203212 RNAFW 203224	_
21	OS 21294	DS 21294	21	29	4	TA 2116Z TA 2120Z YT 2116 YT 2120	TAF 212916 TAF 212920	_	_

Shaft	Identification number		Boundary dimensions mm			Combinable bearings			
dia. mm	Single lip	Double lips	$ d_1 $	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
22	OS 22284	DS 22284	22	28	4	TLA 2212Z TLA 2216Z TLA 2220Z	_	_	_
	OS 22294	DS 22294	22	29	4	TA 2210Z TA 2215Z TA 2220Z TA 2225Z TA 2230Z	_	<u> </u>	_
	OS 22304	DS 22304	22	30	4	TA 223016Z TA 223020Z YT 223016 YT 223020	RNA 4903 RNA 6903 TAF 223016 TAF 223020	RNAF 223013 RNAFW 223026	_
	OS 24314	DS 24314	24	31	4	TA 2420Z TA 2428Z YT 2428	_	_	_
24	OS 24324	DS 24324	24	32	4	TA 243216Z TA 243220Z YT 243216 YT 243220	TAF 243216 TAF 243220	-	

IKO

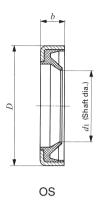

SEALS FOR NEEDLE ROLLER BEARINGS

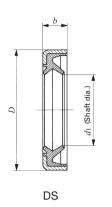


Shaft dia. 25 – 29mm

Shaft	Identification number			Boundary dimensions mm		Combinable bearings					
dia.	Single lip	Double lips		D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX		
25	OS 25324	DS 25324	25	32	4	TLA 2512Z TLA 2516Z TLA 2520Z TLA 2526Z TLAW 2538Z YTL 2526	_		_		
	OS 25334	DS 25334	25	33	4	TA 2510Z TA 2515Z TA 2520Z TA 2525Z TA 2530Z YT 2510 YT 2515 YT 2520 YT 2525	TAF 253316 TAF 253320		_		
	OS 25356	DS 25356	25	35	6		_	RNAF 253517 RNAFW 253526			
	OS 25376	DS 25376	25	37	6	_	RNA 4904 RNA 6904	RNAF 253716 RNAFW 253732	NAX 2530 NBX 2530		
26	OS 26344	DS 26344	26	34	4	TA 2616Z TA 2620Z YT 2616 YT 2620	TAF 263416 TAF 263420	_	_		

	Identification number		Boundary dimensions mm			Combinable bearings					
Shaft			dime	nsion	s mm						
dia.	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX		
	OS 28354	DS 28354	28	35	4	TLA 2816Z TLA 2820Z	_	_			
28	OS 28374	DS 28374	28	37	4	TA 2820Z TA 2830Z YT 2820	TAF 283720 TAF 283730	_	_		
	OS 28396	DS 28396	28	39	6		RNA 49/22 RNA 69/22				
	OS 28406	DS 28406	28	40	6		_	RNAF 284016 RNAFW 284032			
29	OS 29384	DS 29384	29	38	4	TA 2920Z TA 2930Z YT 2920	TAF 293820 TAF 293830				


SEALS FOR NEEDLE ROLLER BEARINGS

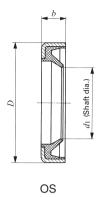


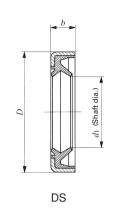
Shaft dia. 30 — 38mm

Shaft	Identification	on number		undary sions i			Combinabl	e bearings	
dia.	Single lip	Double lips			b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
	OS 30374	DS 30374	30 3	37	4	TLA 3012Z TLA 3016Z TLA 3018Z TLA 3020Z TLA 3026Z TLAW 3038Z	_		_
30	OS 30404	DS 30404	30	40	4	TA 3013Z TA 3015Z TA 3020Z TA 3025Z TA 3030Z	TAF 304020 TAF 304030	RNAF 304017 RNAFW 304026	_
	OS 30426	DS 30426	30	42 (6	_	RNA 4905 RNA 6905	RNAF 304216 RNAFW 304232	NAX 3030 NBX 3030
00	OS 32424	DS 32424	32	42	4	TA 3220Z TA 3230Z YT 3220	TAF 324220 TAF 324230	_	_
32	OS 32456	DS 32456	32 4	45 (6		RNA 49/28 RNA 69/28 GTR 324530		

Shaft	Identification	on number		lounda nsions	ary s mm		Combinable	e bearings	
dia.	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
	OS 35424	DS 35424	35	42	4	TLA 3512Z TLA 3516Z TLA 3520Z	_	_	_
35	OS 35454	DS 35454	35	45	4	TA 3512Z TA 3515Z TA 3520Z TA 3525Z TA 3530Z	TAF 354520 TAF 354530	RNAF 354517 RNAFW 354526	_
	OS 35476 DS 35476		35 47 6		6	_	RNA 4906 RNA 6906	RNAF 354716 RNAFW 354732	NAX 3530 NBX 3530
37	OS 37474	DS 37474	37	47	4	TA 3720Z TA 3730Z YT 3720	TAF 374720 TAF 374730	_	_
38	OS 38484	DS 38484	38	48	4	TA 3815Z TA 3820Z TA 3825Z TA 3830Z TAW 3845Z	TAF 384820 TAF 384830		_
	OS 38506	DS 38506	38	50	6			_	

IKO

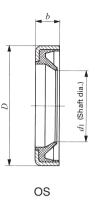

SEALS FOR NEEDLE ROLLER BEARINGS



Shaft dia. 40 — 50mm

Shaft	Identificati	on number		Sounda nsions	ary s mm	Combinable bearings				
dia. mm	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX	
	OS 40474	DS 40474	40	47	4	TLA 4012Z TLA 4016Z TLA 4020Z	_	_	_	
40	OS 40504	DS 40504	40	50	4	TA 4015Z TA 4020Z TA 4025Z TA 4030Z TA 4040Z YT 4015 YT 4025	TAF 405020 TAF 405030	RNAF 405017 RNAFW 405034	_	
	OS 40526	DS 40526	40	52	6	_	RNA 49/32 RNA 69/32		NAX 4032 NBX 4032	
	OS 40556	DS 40556	40	55	6	_	TR 405520 GTR 405520	RNAF 405520 RNAFW 405540	_	
42	OS 42557	DS 42557	42	55	7	_	RNA 4907 RNA 6907		_	

Shaft	Identificati	on number		ounda nsions	ary s mm		Combinable bearings					
dia. mm	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX			
	OS 45524	DS 45524	45	52	4	TLA 4516Z TLA 4520Z	_	_	_			
45	OS 45554	DS 45554	45	55	4	TA 4520Z TA 4525Z TA 4530Z TA 4540Z YT 4520 YT 4525	TAF 455520 TAF 455530	RNAF 455517 RNAFW 455534				
	OS 45627	DS 45627	45	62	7	_	_	RNAF 456220 RNAFW 456240				
48	OS 48627	DS 48627	48	62	7	_	RNA 4908 RNA 6908 TR 486230 GTR 486230	_	_			
	OS 50584	DS 50584	50	58	4	TLA 5020Z TLA 5025Z			_			
50	OS 50624	DS 50624	50	62	4	TA 5012Z TA 5015Z TA 5020Z TA 5025Z TA 5030Z TA 5040Z TAW 5045Z	TAF 506225 TAF 506235	RNAF 506220 RNAFW 506240	NAX 5035 NBX 5035			
	OS 50657	DS 50657	50	65	7	_	RNA 49/42	RNAF 506520 RNAFW 506540	_			


SEALS FOR NEEDLE ROLLER BEARINGS



Shaft dia. 52 - 72mm

Shaft	Identificati	on number		ounda	ary s mm				
dia. mm	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
52	OS 52687	DS 52687	52	68	7	_	RNA 4909 RNA 6909	_	_
55	OS 55674	DS 55674	55	67	4	TA 5520Z TA 5525Z TA 5530Z TA 5540Z TAW 5545Z TAW 5550Z	_	_	_
	OS 55687	DS 55687	55	68	7	_	TAF 556825 TAF 556835	RNAF 556820 RNAFW 556840	_
	OS 55727	_	55	72	7	_	_	RNAF 557220 RNAFW 557240	
58	OS 58727	DS 58727	58	72	7	_	RNA 4910 RNA 6910	_	
60	OS 60724	DS 60724	60	72	4	TA 6025Z TA 6030Z TA 6040Z TAW 6045Z TAW 6050Z	TAF 607225 TAF 607235	_	NAX 6040 NBX 6040
	OS 60787	DS 60787	60	78	7	_	_	RNAF 607820 RNAFW 607840	_
62	OS 62744	DS 62744	62	74	4	TA 6212Z	_	_	_
02	OS 62747	DS 62747	62	74	7	TA 6212Z		<u>—</u>	
63	OS 63807	DS 63807	63	80	7	_	RNA 4911 RNA 6911	_	_

Shaft	Identificati	on number		ounda nsions	dary Combinable bearings				
dia. mm	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
65	OS 65774	DS 65774	65	77	4	TA 6525Z TA 6530Z TAW 6545Z TAW 6550Z	_	_	_
	OS 65857	DS 65857	65	85	7	_	_	RNAF 658530 RNAFW 658560	
68	OS 68857	DS 68857	68	85	7	_	RNA 4912 RNA 6912	_	
70	OS 70824	DS 70824	70	82	4	TA 7025Z TA 7030Z TA 7040Z TAW 7050Z YT 7025 YT 7030 YT 7040			
	OS 70907	DS 70907	70	90	7	_	_	RNAF 709030 RNAFW 709060	_
72	OS 72907	DS 72907	72	90	7		RNA 4913 RNA 6913		

Cir-clips for Needle Roller Bearings

Features

IIM Cir-clips for Needle Roller Bearings have been specially designed for needle roller bearings on which, in many cases, generally available Cir-clips cannot be used. They have a low sectional height and are very rigid. They are made of spring steel.

There are Cir-clips for shafts and for bores, and they are used for positioning to prevent bearing movement in the axial direction.

Types

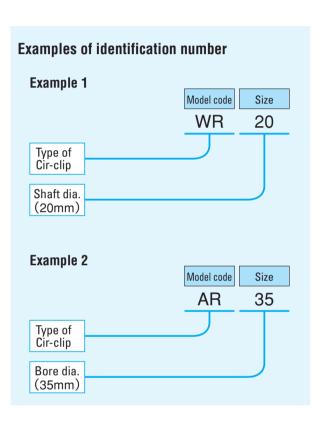
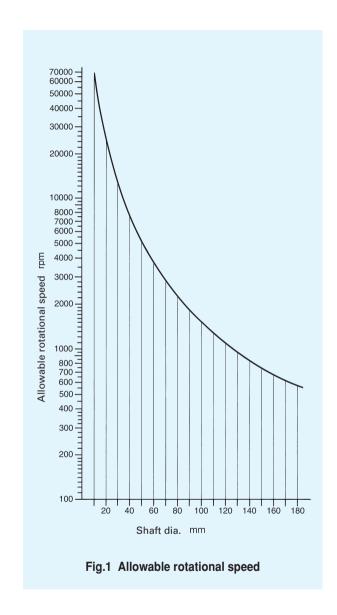

Cir-clips for Needle Roller Bearings are available as shown in Table. 1.

Table 1 Type of Cir-clip

Type	For shaft	For bore
Shape		
Model code	WR	AR


Identification number

The identification number of Cir-clips consists of a model code and a size as shown below.

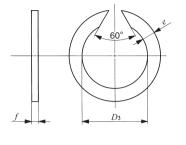
Allowable Rotational Speed

Cir-clips for Needle Roller Bearings are fixed in the groove with a certain amount of pressure on the bottom of the groove. In the case of Cir-clips for shaft WR type, the centrifugal force causes a decrease in the gripping pressure. Therefore, when using them at high rotational speeds, it is necessary to first check the allowable rotational speed shown in Fig.1.

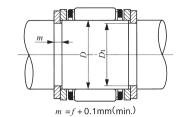
Mounting

The mounting dimensions for Cir-clips for Needle Roller Bearings are shown in the dimension table.

When using these Cir-clips to restrict the movement of the needle roller cage in the axial direction, it is recommended that a spacer be used between the Circlip and the cage. Spacers are not required at low rotational speeds.


When it is difficult to reach Cir-clips with dismounting tools and disassembly is difficult, or when the frequency of dismounting is high, it is necessary to consider the use of a C type retaining ring (JIS B 2804:1978) or C type concentric retaining ring (JIS B 2806:1978), although they have a higher sectional height.

WR AR


CIR-CLIPS FOR NEEDLE ROLLER BEARINGS

For Shaft

WR

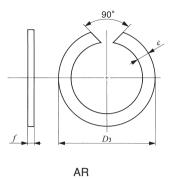
Shaft dia. 4 — 390mm

		Round	lany dia	mensic	ne m	m
Identification number	Shaft dia. $$	D_3	e	f f		ve dia.
		(Max.)				
WR 4 WR 5 WR 6 WR 7	4 5 6 7	3.7 4.7 5.6 6.5	0.8 1 1.1 1.2	0.5 0.5 0.7 0.7	3.8 4.8 5.7 6.7	0 -0.09
WR 8 WR 9 WR 10 WR 11	8 9 10 11	7.4 8.4 9.4 10.2	1.3 1.3 1.3 1.3	1 1 1 1	7.6 8.6 9.6	
WR 12 WR 13 WR 14 WR 15 WR 16 WR 17 WR 18	12 13 14 15 16 17	10.2 12.2 12.1 13.1 14 15 16 17	1.3 1.3 1.5 1.75 1.75 1.75 1.75	1 1 1.2 1.2 1.2 1.2	10.5 11.5 12.5 13.5 14.4 15.4 16.4 17.4	0 - 0.11
WR 19 WR 20 WR 21 WR 22 WR 23 WR 24 WR 25 WR 26 WR 28 WR 29 WR 30	19 20 21 22 23 24 25 26 28 29 30	17.9 18.7 19.7 20.7 21.7 22.5 23.5 24.5 26.5 27.5 28.5	1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75	1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.5 1.5	18.4 19.2 20.2 21.2 22.2 23 24 25 27 28 29	0 -0.13
WR 32 WR 35 WR 36 WR 37 WR 38 WR 40	32 35 36 37 38 40	30.2 33.2 34.2 35.2 36.2 37.8	2.3 2.3 2.3 2.3 2.3 2.3 2.3	1.5 1.5 1.5 1.5 1.5 1.5	30.8 33.8 34.8 35.8 36.8 38.5	0 - 0.16

		Bound	dary di	mensic	ns mr	m
Identification	Shaft dia.				Groo	ve dia.
number	D	D_3	e	f	D_1	Tolerance
		(Max.)				
WR 42	42	39.8	2.3	1.5	40.5	
WR 43	43	40.8	2.3	1.5	41.5	0
WR 45	45	42.8	2.3	1.5	43.5	- 0.16
WR 47	47	44.8	2.3	1.5	45.5	0.10
WR 50	50	47.8	2.3	1.5	48.5	
WR 52	52	49.8	2.3	1.5	50.5	
WR 55	55	52.6	2.3	1.5	53.5	
WR 60	60	57.6	2.3	1.5	58.5	
WR 63	63	60.6	2.3	1.5	61.5	0
WR 65 WR 68	65	62.6	2.3	1.5	63.5	-0.19
WR 70	68 70	65.4 67.4	2.8 2.8	2	66.2 68.2	
WR 75	75	72.4	2.8	2	73.2	
WR 80	80	77.4	2.8	2	78.2	
WR 82	82	79.3	3.4	2.5	80.2	
WR 85	85	82	3.4	2.5	83	
WR 90	90	87	3.4	2.5	88	
WR 95	95	92	3.4	2.5	93	0
WR 100	100	97	3.4	2.5	98	0 - 0.22
WR 105	105	101.7	3.4	2.5	102.7	-0.22
WR 110	110	106.7	3.4	2.5	107.7	
WR 115	115	111.7	3.4	2.5	112.7	
WR 120	120	116.7	3.4	2.5	117.7	
WR 125	125	121.7	3.4	2.5	122.7	
WR 130	130	126.7	3.4	2.5	127.7	
WR 135	135	131.6	4	2.5	132.4	
WR 140	140	136.6 141.6	4	2.5	137.4	0
WR 145 WR 150	145 150	141.6	4	2.5 2.5	142.4 147.4	-0.25
WR 150	155	151.6	4	2.5	152.4	
WR 160	160	151.6	4	2.5	157.4	
WR 165	165	161.6	4	2.5	162.4	
WH 105	103	101.0	+	2.0	102.4	

		Bound	dary di	mensio	ns mr	m
Identification number	Shaft dia. $$	D_3 (Max.)	e	f	Groo	ve dia. Tolerance
WR 170 WR 175 WR 180	170 175 180	166.6 171.6 175.6	4 4 5	2.5 2.5 3	167.4 172.4 177	0 - 0.25
WR 185 WR 190 WR 195 WR 200 WR 210 WR 220 WR 230 WR 240	185 190 195 200 210 220 230 240	180.6 185.6 190.6 195.6 205.6 215.6 225.6 235.6	5 5 5 5 5 5 5 5	3 3 3 3 3 3 3 3	182 187 192 197 207 217 227 237	0 - 0.29
WR 260 WR 265 WR 270 WR 280 WR 285 WR 300 WR 305 WR 320	260 265 270 280 285 300 305 320	253 258 263 273 278 293 298 313	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	4 4 4 4 4 4	255 260 265 275 280 295 300 315	0 -0.32
WR 330 WR 340 WR 350 WR 360 WR 370 WR 390	330 340 350 360 370 390	323 333 343 353 363 383	7.5 7.5 7.5 7.5 7.5 7.5	4 4 4 4 4	325 335 345 355 365 385	0 - 0.36

CIR-CLIPS FOR NEEDLE ROLLER BEARINGS


For Bore

		Bound	dary dii	mensic	ns mr	m
Identification	Bore dia.				Groo	ve dia.
number	D	D_3	e	f	D_1	Tolerance
		(Min.)				
AR 7	7	7.5	1	0.8	7.3	
AR 8	8	8.5	1	0.8	8.3	+ 0.09
AR 9	9	9.5	1.1	8.0	9.3	0
AR 10	10	10.6	1.2	0.8	10.4	
AR 11	11	11.6	1.3	1	11.4	
AR 12	12	12.7	1.3	1	12.4	
AR 13	13	13.8	1.3	1	13.5	+ 0.11
AR 14 AR 15	14 15	14.8 15.8	1.3 1.3	1	14.5	0
AR 15	16	16.8	1.6	1.2	15.5 16.5	
AR 17	17	17.8	1.6	1.2	17.5	
AR 18	18	18.9	1.75	1.2	18.5	
AR 19	19	19.9	1.75	1.2	19.6	
AR 20	20	21	1.75	1.2	20.6	
AR 21	21	22	1.75	1.2	21.6	
AR 22	22	23	1.75	1.2	22.6	
AR 23	23	24	1.75	1.2	23.6	+ 0.13
AR 24	24	25.2	1.75	1.2	24.8	0
AR 25	25	26.2	1.75	1.2	25.8	
AR 26	26	27.2	1.75	1.2	26.8	
AR 27 AR 28	27 28	28.2 29.2	1.75	1.2	27.8	
AR 29	29	30.2	1.75 1.75	1.2 1.2	28.8 29.8	
AR 29 AR 30	30	31.4	2.3	1.5	31	
AR 31	31	32.4	2.3	1.5	32	
AR 32	32	33.4	2.3	1.5	33	
AR 33	33	34.4	2.3	1.5	34	
AR 34	34	35.4	2.3	1.5	35	+ 0.16
AR 35	35	36.4	2.3	1.5	36	0
AR 37	37	38.8	2.3	1.5	38.2	
AR 38	38	39.8	2.3	1.5	39.2	
AR 39	39	40.8	2.3	1.5	40.2	

		Bound	lary di	mensic	ns mr	m
ldentification number	Bore dia. D	<i>D</i> ₃ (Min.)	e	f	D_1	ve dia. Tolerance
AR 40 AR 42 AR 43 AR 44 AR 45 AR 47 AR 48	40 42 43 44 45 47 48	41.8 43.8 44.8 45.8 46.8 48.8 49.8	2.3 2.3 2.3 2.3 2.3 2.3 2.3	1.5 1.5 1.5 1.5 1.5	41.2 43.2 44.2 45.2 46.2 48.2 49.2	+ 0.16
AR 50 AR 52 AR 53 AR 55 AR 57 AR 58 AR 60 AR 62 AR 65 AR 68 AR 70 AR 72 AR 73 AR 75 AR 76	50 52 53 55 57 58 60 62 65 68 70 72 73	51.8 54.3 55.3 57.3 59.3 60.3 62.3 64.3 70.3 72.3 74.6 75.6 77.6	2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2 2 2	51.2 53.5 54.5 56.5 58.5 59.5 61.5 63.5 66.5 71.5 73.8 74.8	+0.19
AR 78 AR 80 AR 81 AR 82 AR 83 AR 85 AR 86 AR 88 AR 90 AR 92	78 80 81 82 83 85 86 88 90 92	80.6 82.6 83.6 84.6 85.6 87.6 88.6 91 93	2.8 2.8 2.8 2.8 2.8 2.8 3.4 3.4 3.4	2 2 2 2 2 2 2 2.5 2.5 2.5 2.5	79.8 81.8 82.8 83.8 84.8 86.8 87.8 90 92 94	+0.22

	Boundary dimensions mm						
Identification number	_					ve dia.	
namoor	D	D_3 (Min.)	e	f	D_1	Tolerance	
AR 93 AR 95	93 95	96 98	3.4 3.4	2.5 2.5	95 97		
AR 97	97	100	3.4	2.5	99		
AR 98	98	101	3.4	2.5	100		
AR 100	100	103	3.4	2.5	102		
AR 102	102	105.3	3.4	2.5	104.3		
AR 103 AR 105	103 105	106.3 108.3	3.4 3.4	2.5 2.5	105.3 107.3	+ 0.22	
AR 103	105	110.3	3.4	2.5	107.3	0	
AR 108	107	111.3	3.4	2.5	110.3		
AR 110	110	113.3	3.4	2.5	112.3		
AR 112	112	115.3	3.4	2.5	114.3		
AR 113	113	116.3	3.4	2.5	115.3		
AR 115	115	118.3	3.4	2.5	117.3		
AR 117	117	120.3	3.4	2.5	119.3		
AR 118	118	121.3	3.4	2.5	120.3		
AR 120 AR 123	120 123	123.3 126.3	3.4 3.4	2.5	122.3 125.3		
AR 125	125	128.3	3.4	2.5 2.5	125.3		
AR 127	127	130.3	3.4	2.5	129.3		
AR 130	130	133.3	3.4	2.5	132.3		
AR 133	133	136.3	3.4	2.5	135.3		
AR 135	135	138.3	3.4	2.5	137.3	1025	
AR 137	137	140.3	3.4	2.5	139.3	+ 0.25 0	
AR 140	140	143.6	4	2.5	142.6	0	
AR 143	143	146.6	4	2.5	145.6		
AR 145	145	148.6	4	2.5	147.6		
AR 150 AR 153	150 153	153.6 156.6	4	2.5 2.5	152.6 155.6		
AR 160	160	163.6	4 4	2.5	162.6		
AR 163	163	166.6	4	2.5	165.6		
AR 165	165	168.6	4	2.5	167.6		

	Boundary dimensions mm						
Identification	Bore dia.				Groo	ve dia.	
number	D	D_3 (Min.)	e	f	D_1	Tolerance	
AR 170 AR 173 AR 175 AR 180 AR 183	170 173 175 180 183	173.6 176.6 178.6 183.6 186.6	4 4 4 4	2.5 2.5 2.5 2.5 2.5	172.6 175.6 177.6 182.6 185.6	+ 0.25 0	
AR 190 AR 195 AR 200 AR 205 AR 210 AR 215 AR 220 AR 225 AR 230 AR 235	190 195 200 205 210 215 220 225 230 235	194.5 199.5 204.5 209.5 214.5 219.5 224.5 229.5 234.5 239.5	555555555555	3 3 3 3 3 3 3 3 3 3	193 198 203 208 213 218 223 228 233 238	+ 0.29	
AR 240 AR 245 AR 250 AR 260 AR 270 AR 280 AR 300	240 245 250 260 270 280 300	244.5 249.5 254.5 267 277 287 307	5 5 7.5 7.5 7.5 7.5	3 3 4 4 4	238 243 248 253 265 275 285 305	+ 0.32	
AR 320 AR 325 AR 355 AR 375 AR 395	320 325 355 375 395	327 332 362 382 402	7.5 7.5 7.5 7.5 7.5	4 4 4 4	325 330 360 380 400	+ 0.36	
AR 415 AR 420 AR 440	415 420 440	422 427 447	7.5 7.5 7.5	4 4 4	420 425 445	+ 0.4	

Needle Rollers

Features

INcedle Rollers are made of high carbon chromium bearing steel. They are rigid and highly accurate and are finished to a hardness of 58HRC or more (See Table 1.) and a surface roughness of 0.1 μ m R_a or less.

These needle rollers are widely used as rolling elements for bearings, and also as pins and shafts.

Please contact IXII, if Needle Rollers made of stainless steel are required.

Table 1 Hardness

Nominal diam	neter $D_{ m w}$ mm	Hardness		
Over Incl.		HRC	HV	
_	3	(60~67)	697~900	
3	_	58~66	(653~865)	

Remarks1. Hardness is flat surface hardness.

The values in parentheses are converted values for reference.

End Shapes

Needle Rollers come in spherical and flat end shapes, as shown in Table 2.

Please contact IKO, if other shapes are required.

Table 2 Shapes of ends

	Chapes of chas	
Туре	Spherical end	Flat end
Shapes		
Symbol	Α	F

Accuracy

The dimensional accuracy of Needle Rollers conforms to JIS B 1506:1991 (Rollers for Roller Bearings), and is shown in Table 3.

The selective classification for the mean diameter tolerance is shown in Table 4. The selective classification rollers according to Table 4 can be provided as requested.

Table 3 Dimensional accuracy of needle rollers

unit: μ

Class	Diameter variation in a single radial plane (1)	Circularity (1)	Gauge lot diameter variation (1)	Deviation of a single length (²)
	$V_{D m wp}$ (Max.)	$arDelta_R$ (Max.)	$V_{D m wL}$ (Max.)	$\it \Delta_{L m ws}$
2	1	1	2	h13
3	1.5	1.5	3	h13
5	2	2.5	5	h13

Notes(1) Applicable to the measurement at the center of roller length

(2) Tolerance is based on the classification according to the nominal length $L_{\rm sv}$.

Remark Any measured diameter along the total length of roller must not be larger than the actual maximum diameter at the center of roller length by the amount exceeding the values given below.

 $0.5 \,\mu$ m for Class 2

0.8 μ m for Class 3

1 μ m for Class 5

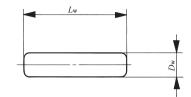
Table 4 Classification of needle rollers

unit: μ r

Classification symbol	Tolerance for mean dia.
С 3	0∼− 3
B 2	0∼− 2
B 4	-2~- 4
B 6	-4~- 6
B 8	-6~- 8
B10	-8~-10

Use as Full-complement Bearings

For normal rotation, Needle Roller Bearings with cage are most suitable, but for low rotational speeds and for oscillating movement, full-complement bearings are also used.


If Needle Rollers are combined with a shaft and a housing which have been hardened and ground to form a suitable raceway surface, the combined assembly can be used as a full-complement bearing which has a large load capacity and a low sectional height. (See page 47, Design of shaft and housing.) Normally in this case, the radial clearance is made a little larger than that of a bearing with cage and the circumferential clearance is made to be approximately 1/10 of the diameter of needle rollers. When the bearing is used under severe conditions, please contact INCO for further information.

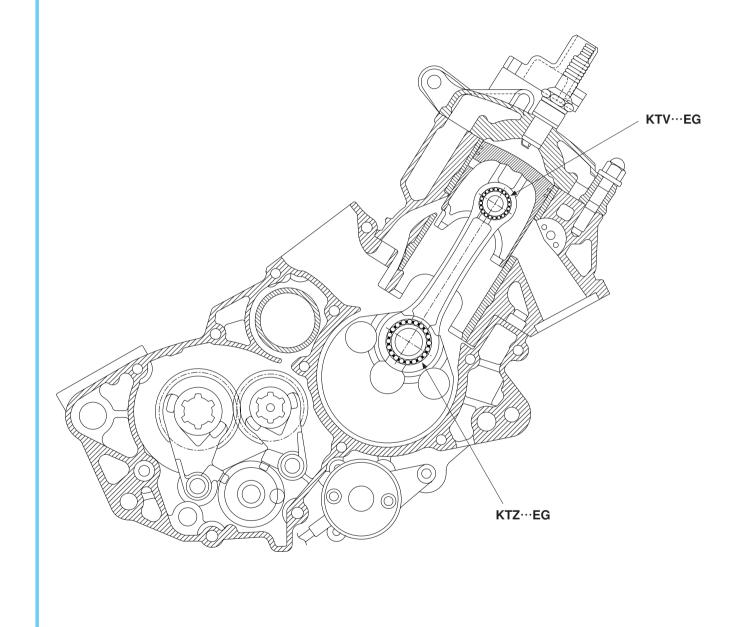
Needle Rollers

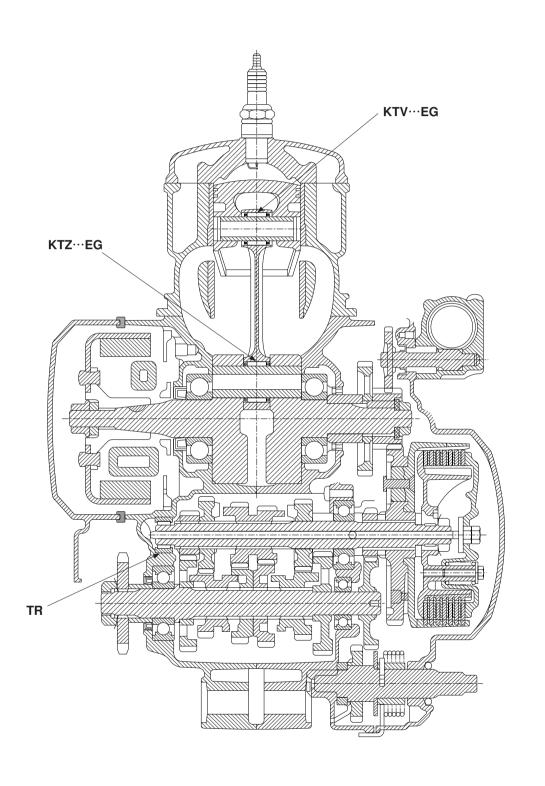
Roller dia. 1.5 – 5mm

Nominal dimen	sions mm	Mass (Ref.)	Nominal dimer	nsions mm	Mass (Ref.)	Non	Nominal dimensions mm		Mass (Ref.)
$D_{ m W}$	$L_{ m w}$	g	$D_{ m w}$	$L_{ m w}$	g		$D_{ m w}$	$L_{ m w}$	g
1.5	6.8 7.8 9.8 11.8 13.8	0.09 0.1 0.13 0.16 0.18	3.5	11.8 13.8 15.8 17.8 19.8	0.86 1 1.15 1.29 1.44		4.5	17.8 19.8 21.8 23.8 25.8 29.8	2.1 2.4 2.6 2.9 3.1 3.6
2	6.8 7.8 9.8 11.8 13.8 15.8	0.16 0.19 0.23 0.28 0.33 0.38		21.8 23.8 25.8 29.8 31.8 34.8	1.58 1.73 1.88 2.2 2.3 2.5			31.8 34.8 37.8 39.8 44.8	3.8 4.2 4.5 4.8 5.4
	17.8 19.8	0.42 0.47	4	13.8 15.8 17.8	1.31 1.5 1.69		5	19.8 21.8 23.8	2.9 3.2 3.5
2.5	7.8 9.8 11.8 13.8 15.8 17.8 19.8 21.8 23.8	0.29 0.36 0.44 0.51 0.59 0.66 0.73 0.81 0.88		19.8 21.8 23.8 25.8 27.8 29.8 31.8 34.8 37.8	1.88 2.1 2.3 2.5 2.6 2.8 3 3.3 3.6	1.88 2.1 2.3 2.5 2.6 2.8 3 3.3	25.8 29.8 31.8 34.8 37.8 39.8 49.8	3.8 4.4 4.7 5.2 5.6 5.9 7.4	
3	9.8 11.8 13.8 15.8 17.8 19.8 21.8 23.8 25.8 27.8	0.52 0.63 0.74 0.84 0.95 1.06 1.16 1.27 1.38 1.48		33.0	3.0				

Remark For the names of the needle rollers, nominal dimensions are used.

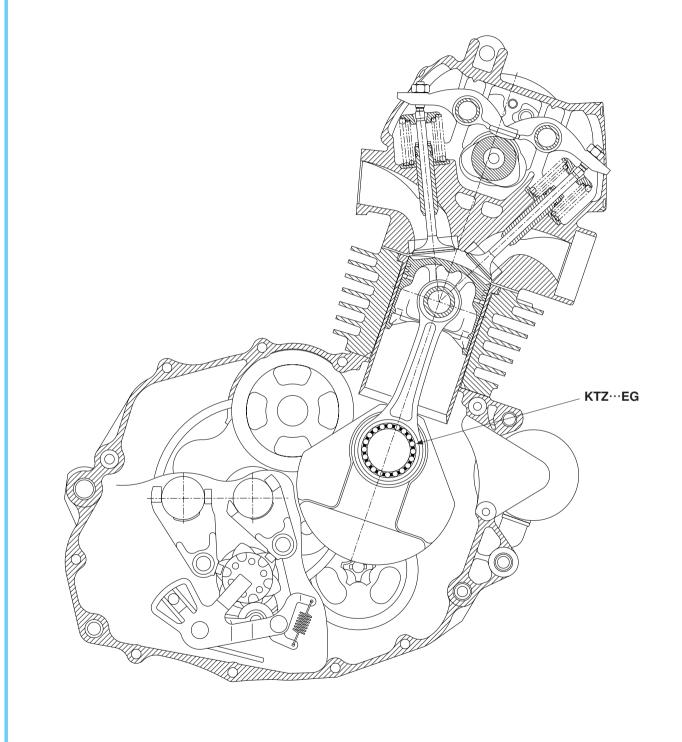
Needle Rollers other than those shown in the dimension table can also be manufactured. Please contact IIKI for further information.

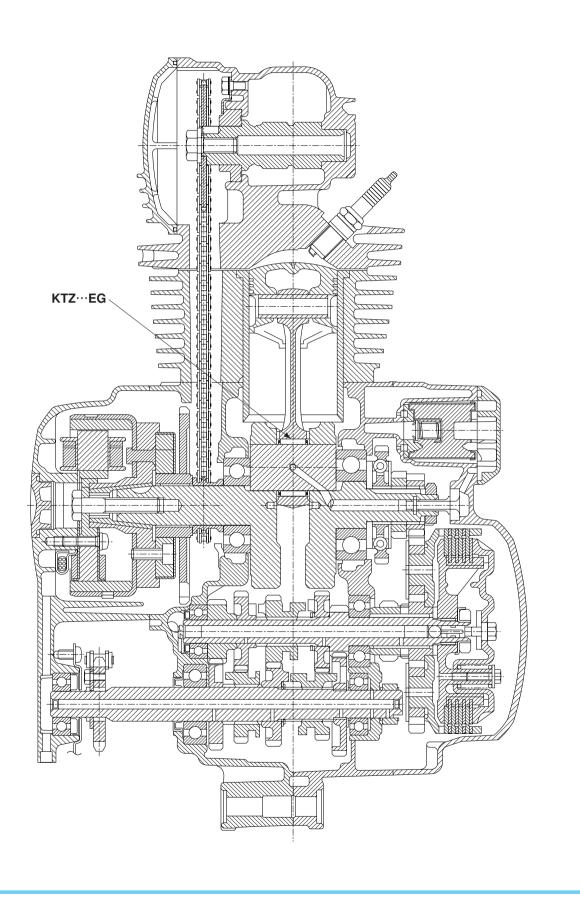

APPLICATIONS/ MISCELLANEOUS TABLES

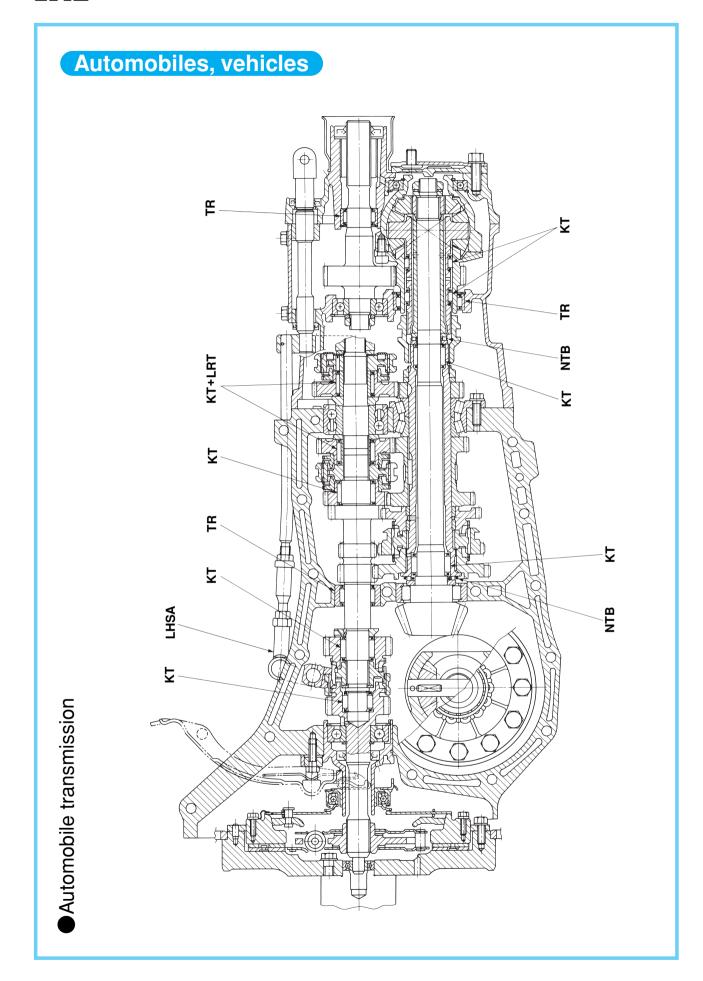

Applications 52	20
Miscellaneous Tables 55	52

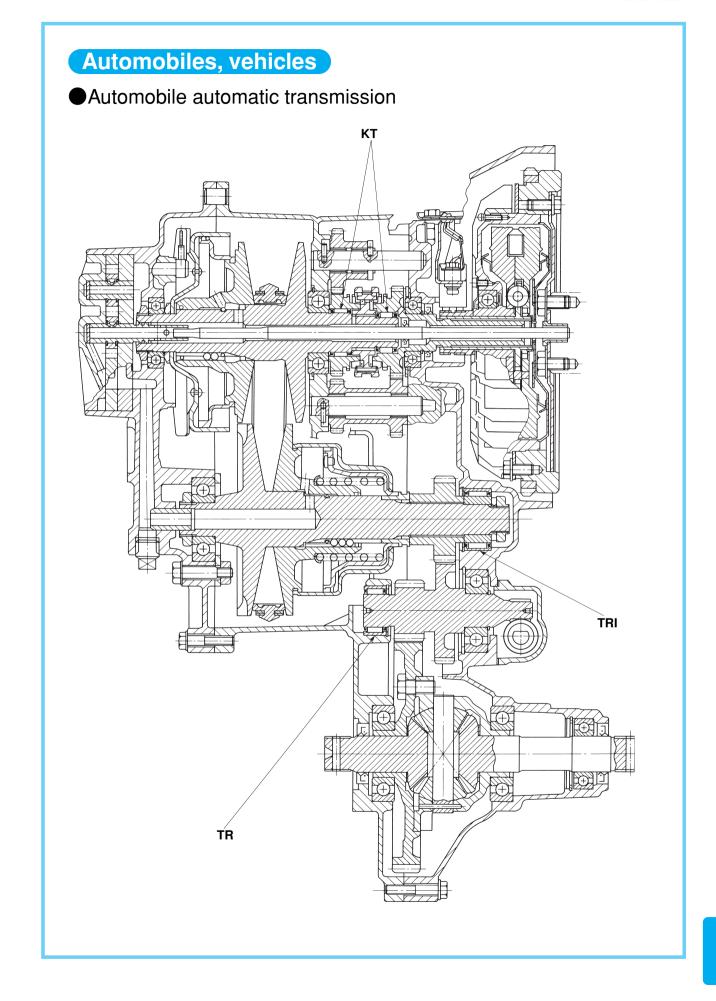
Automobiles, vehicles

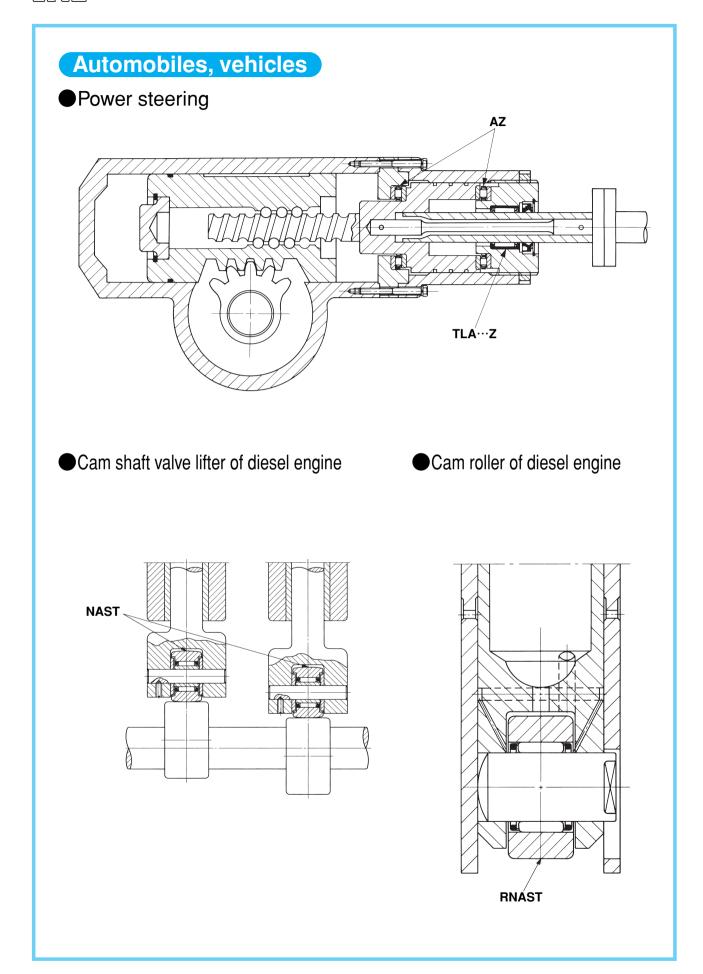
●Engine and transmission of 2-cycle motor cycle

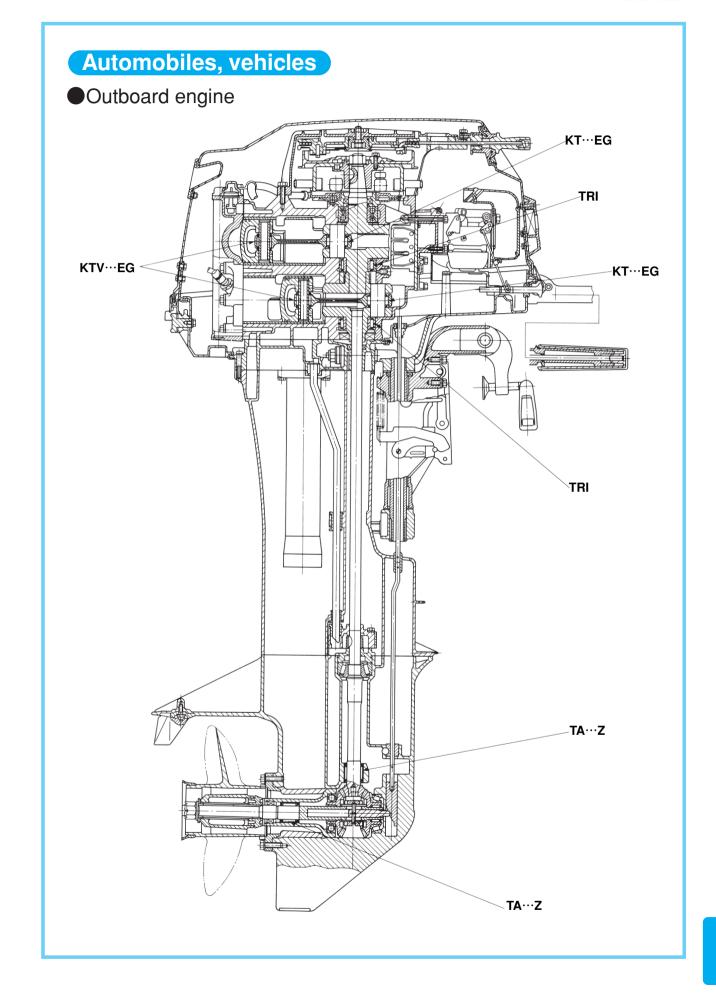


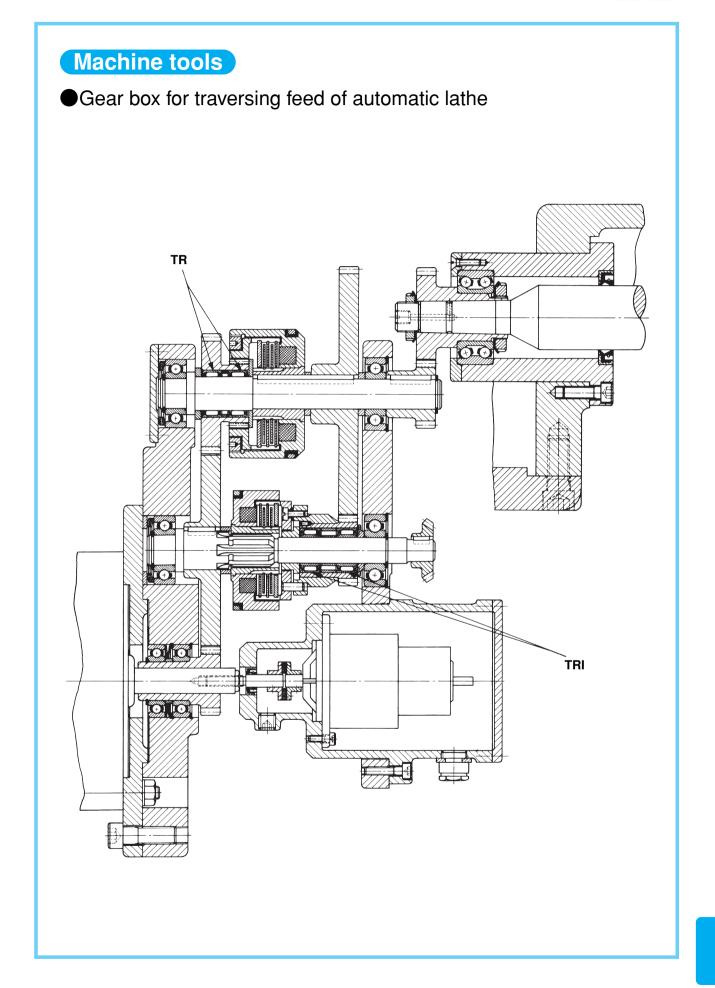


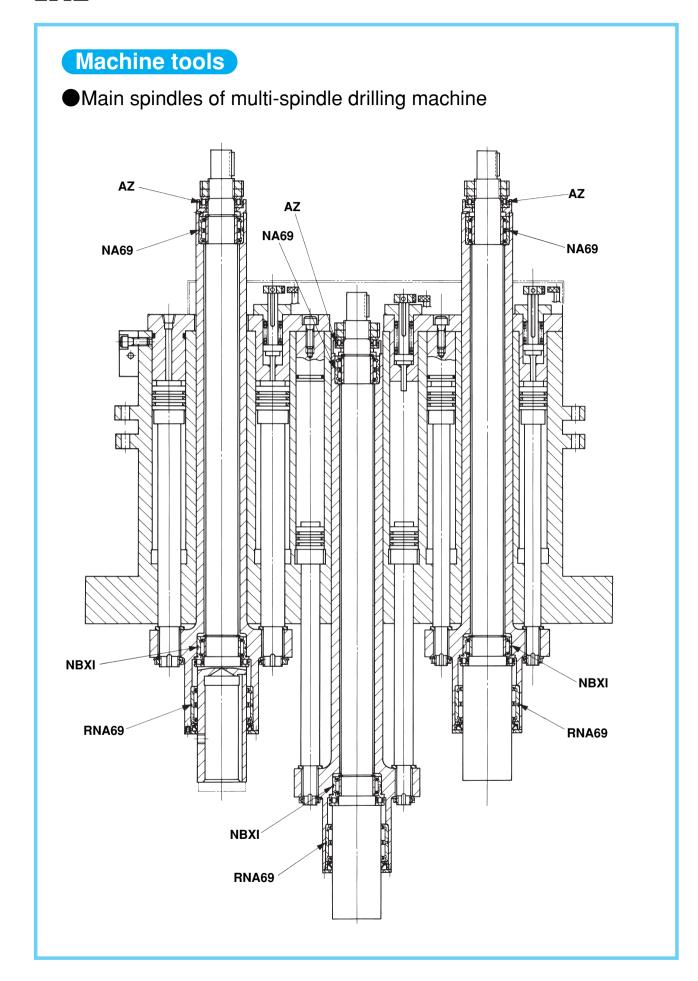


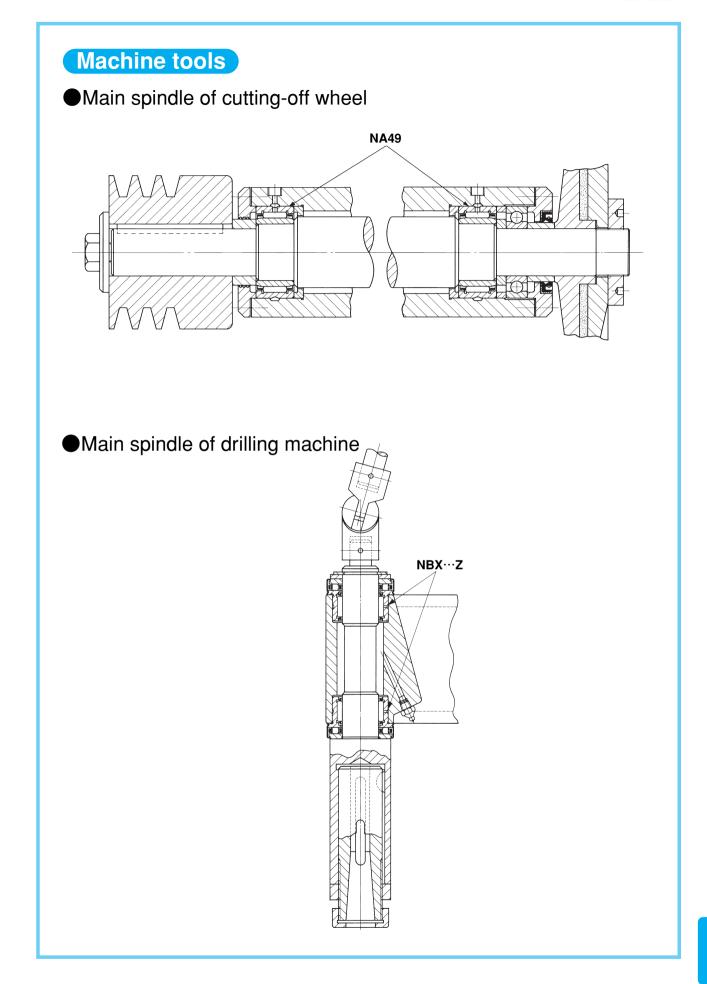

Automobiles, vehicles

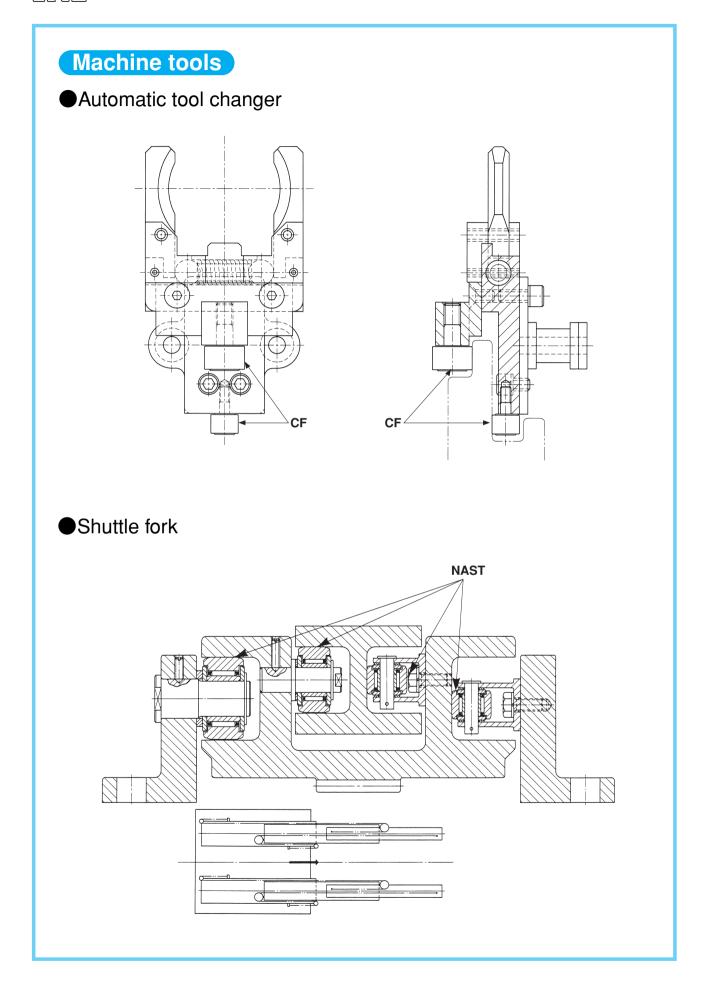

●Engine and transmission of 4-cycle motor cycle

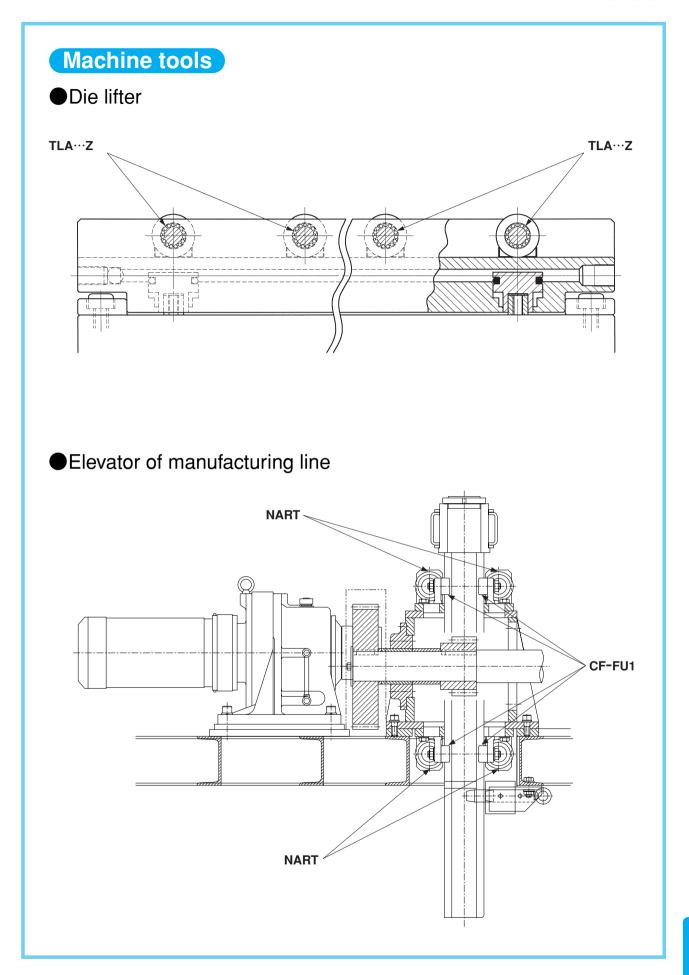


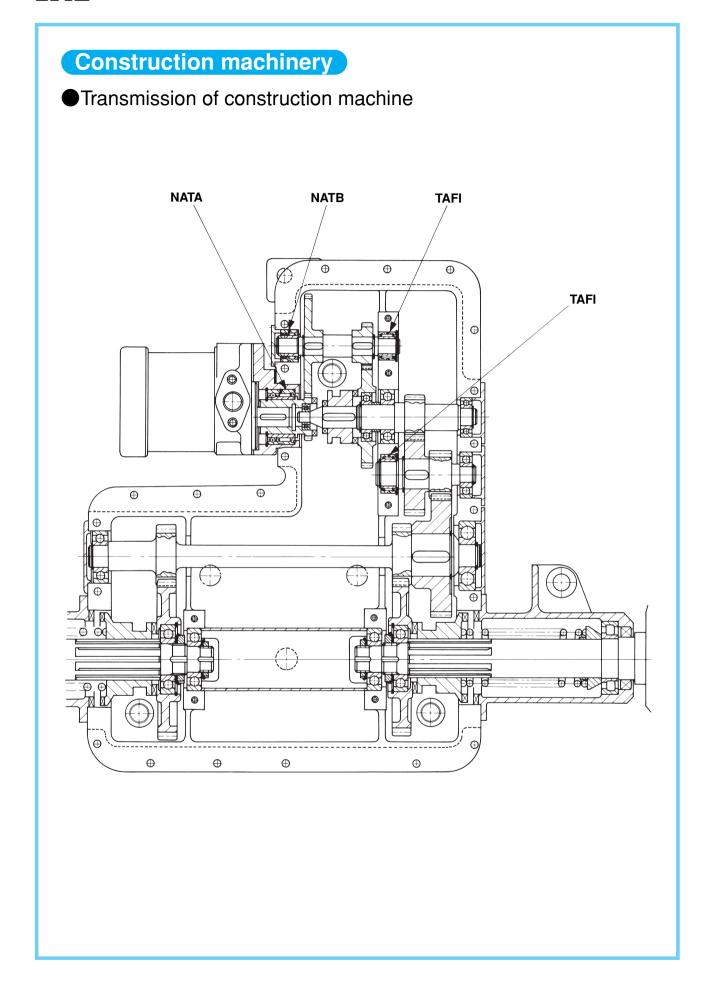


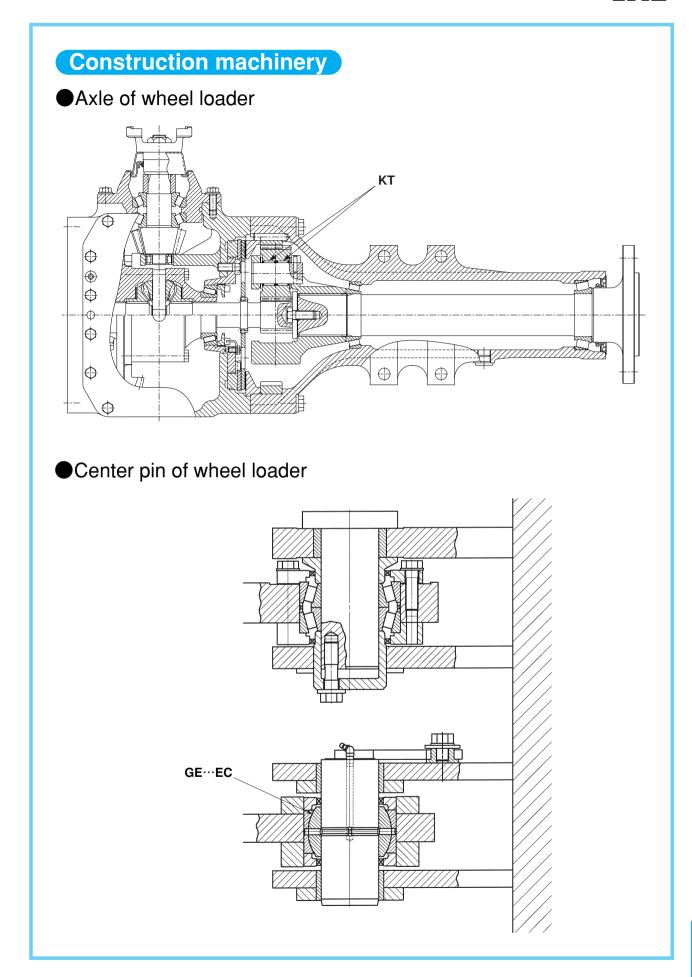


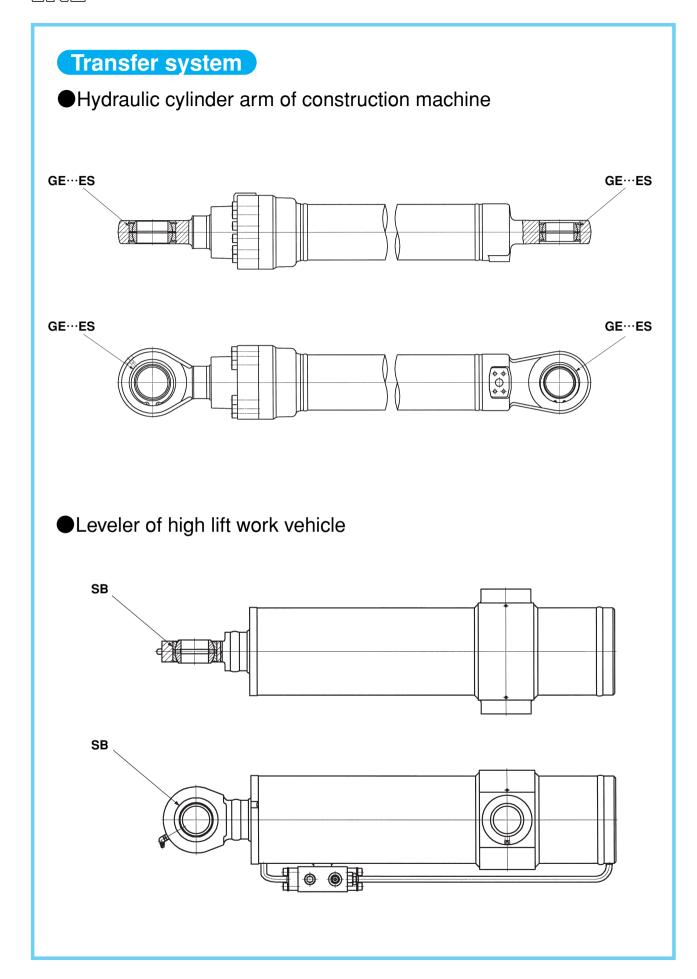


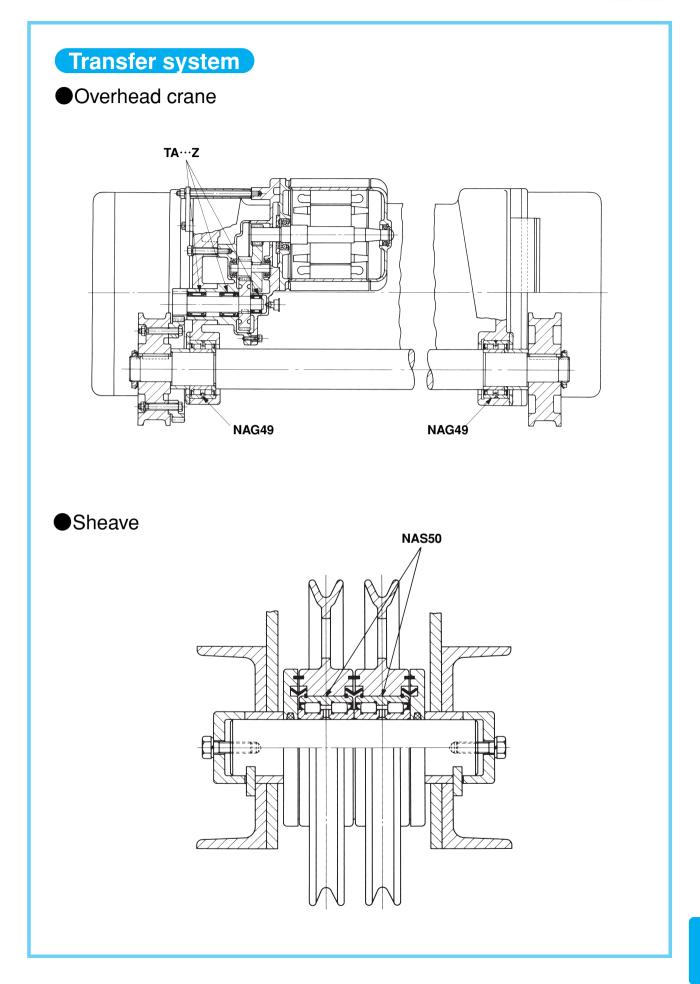


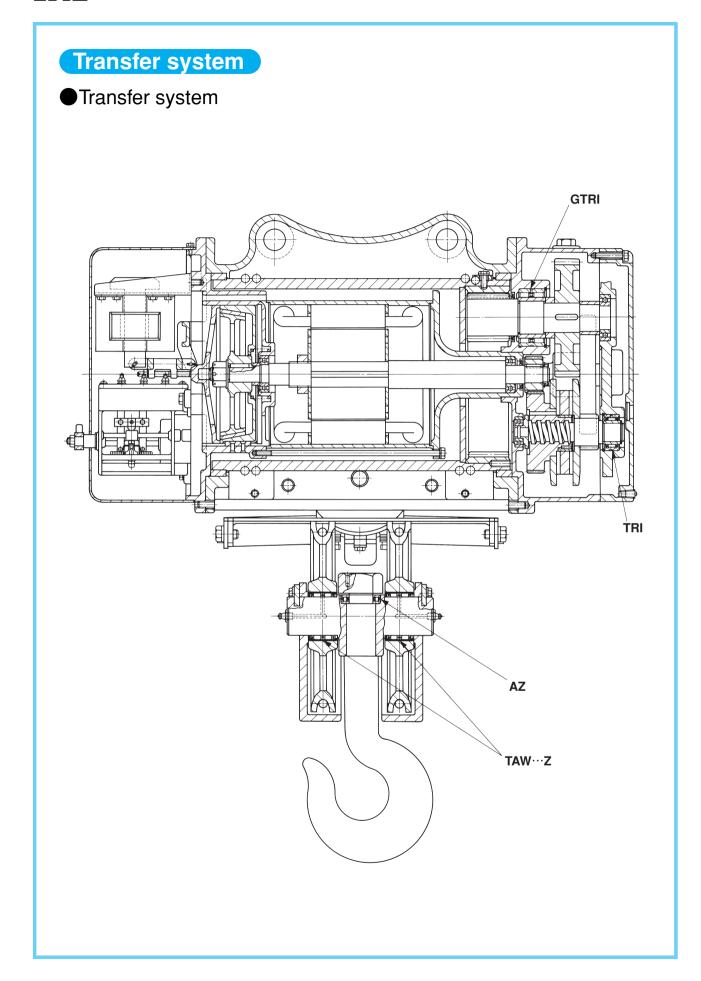

Machine tools ●Transmission of NC lathe NBX RNA49 NBX RNA49 NBX RNA49 NBX RNA49 NBX

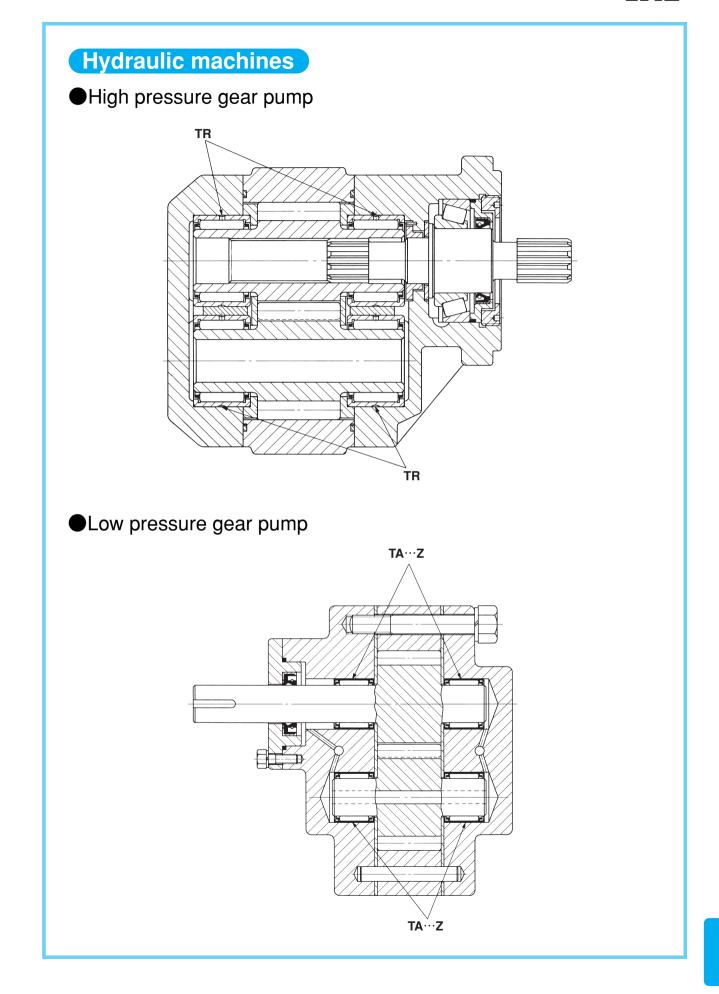


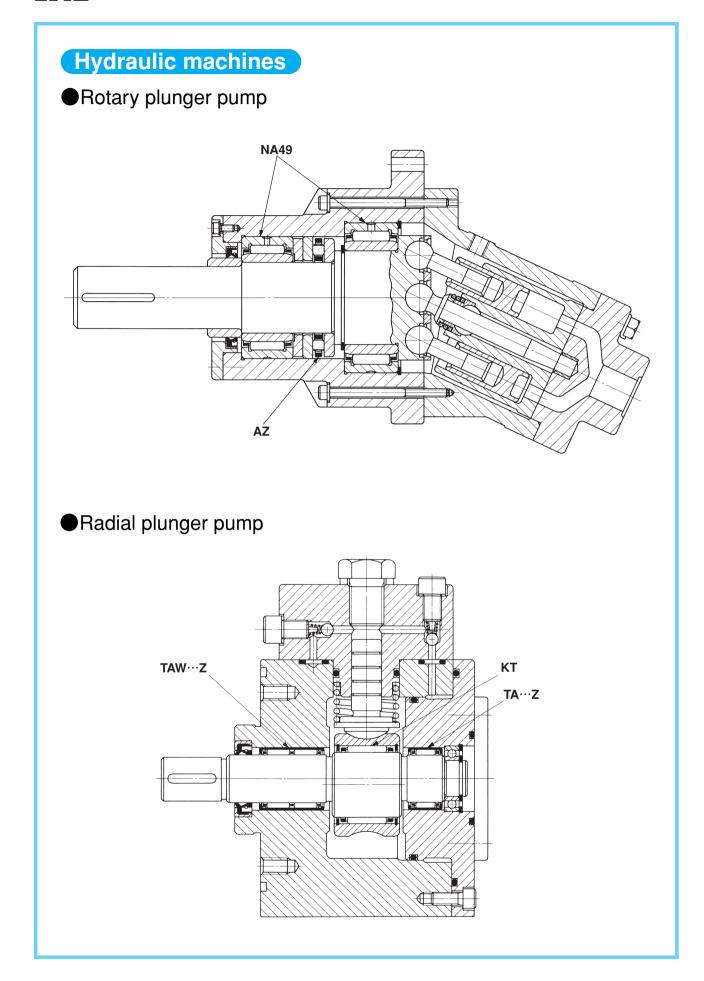


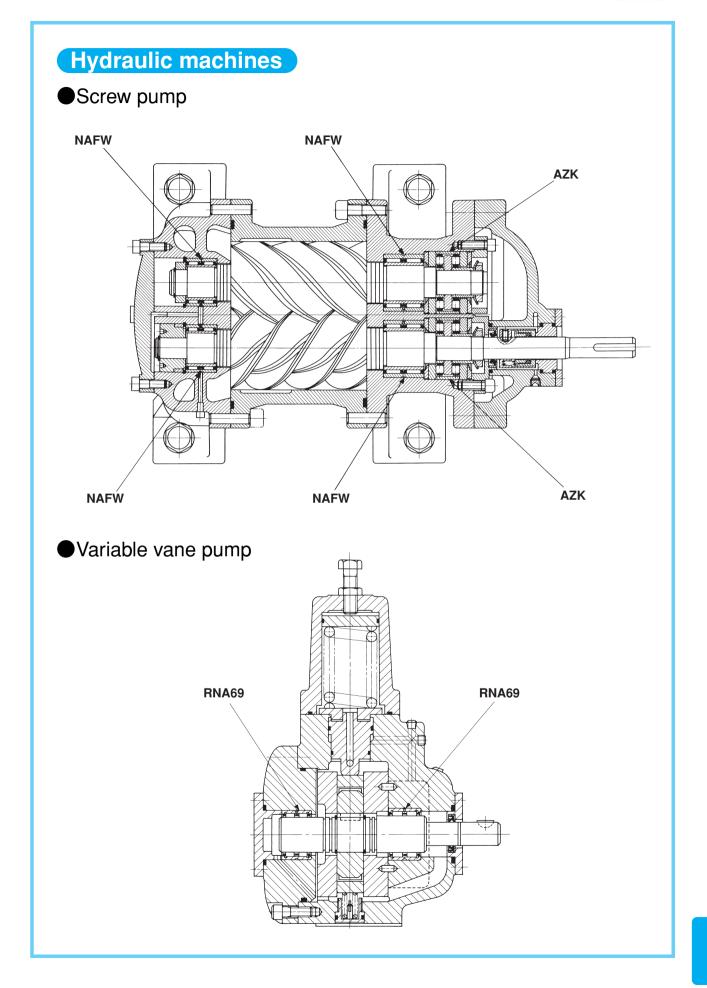


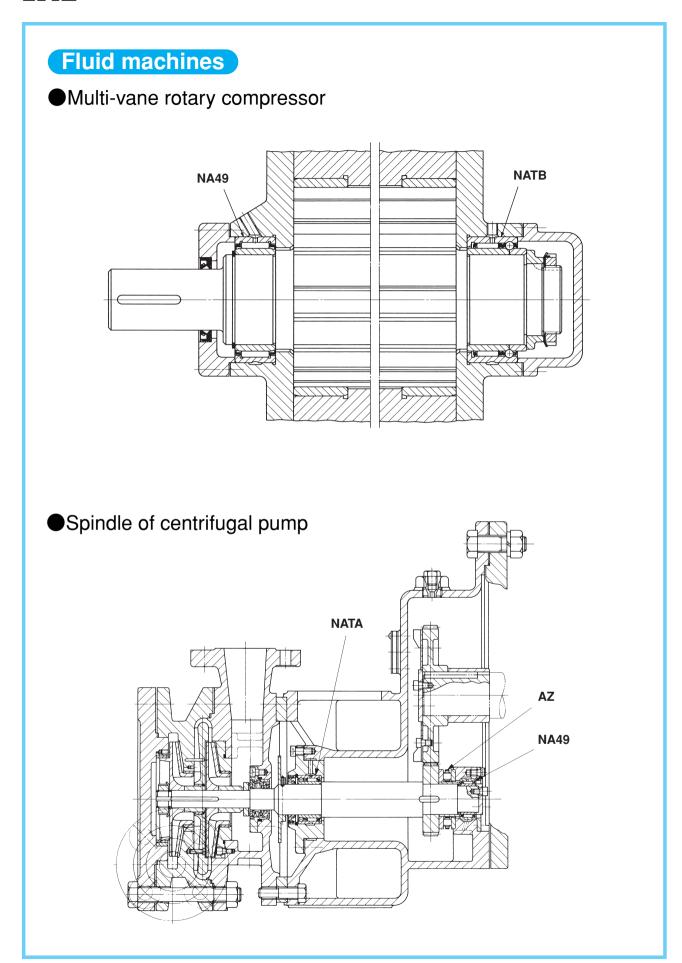


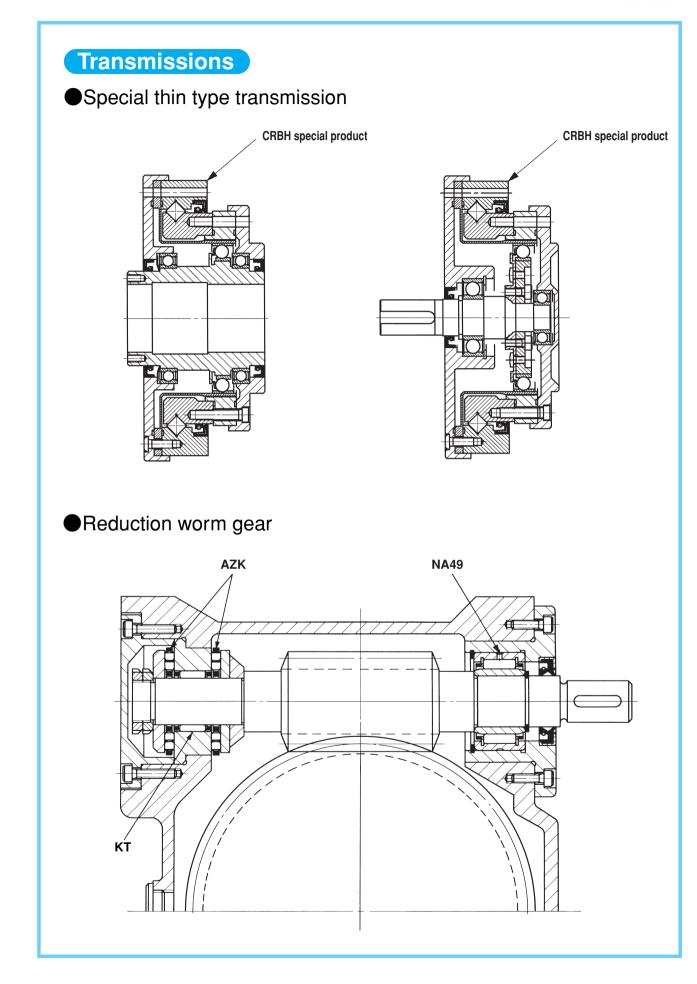


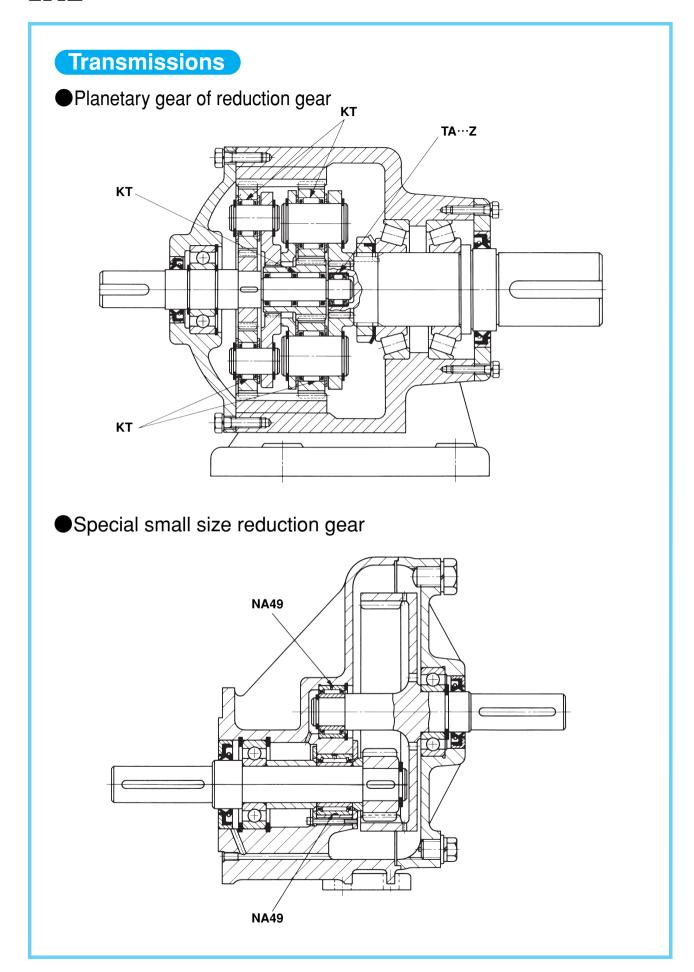


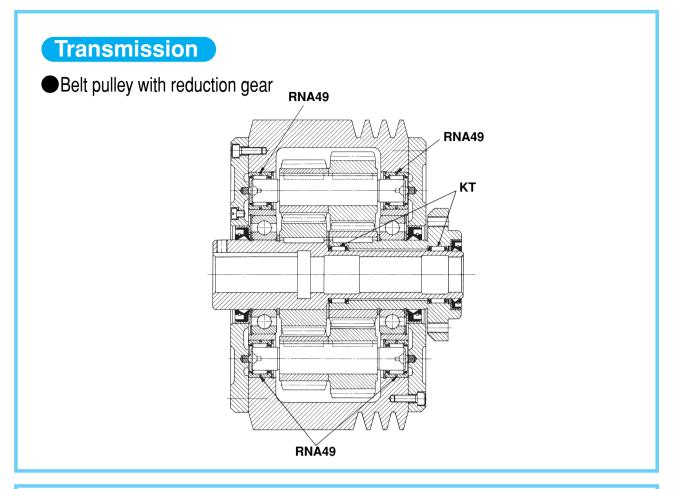


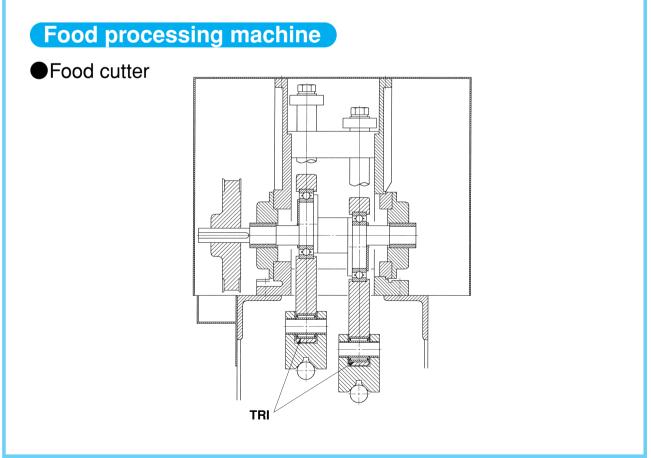


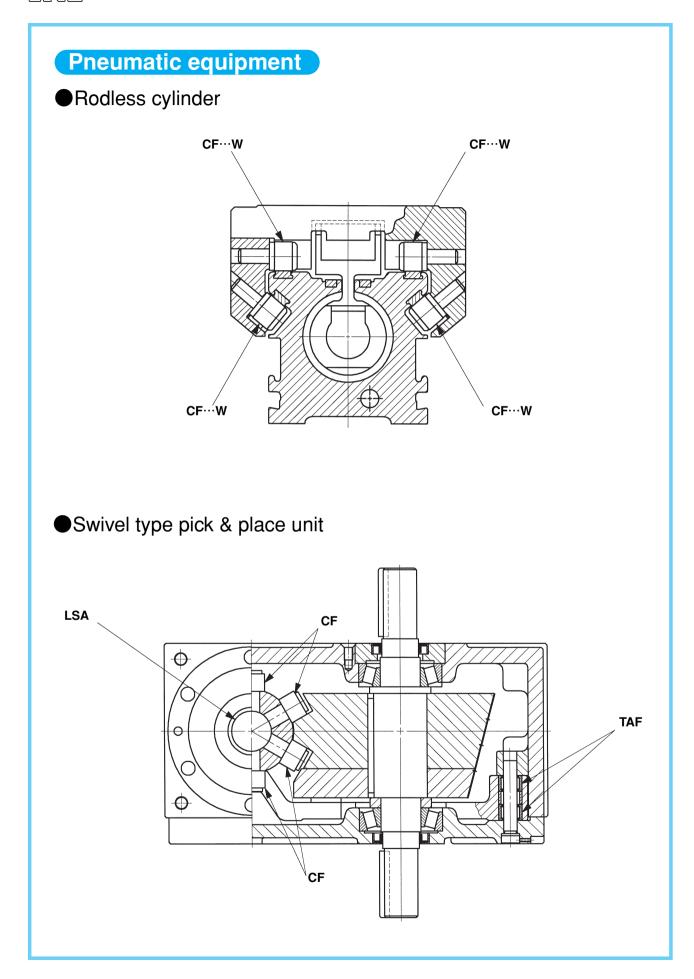


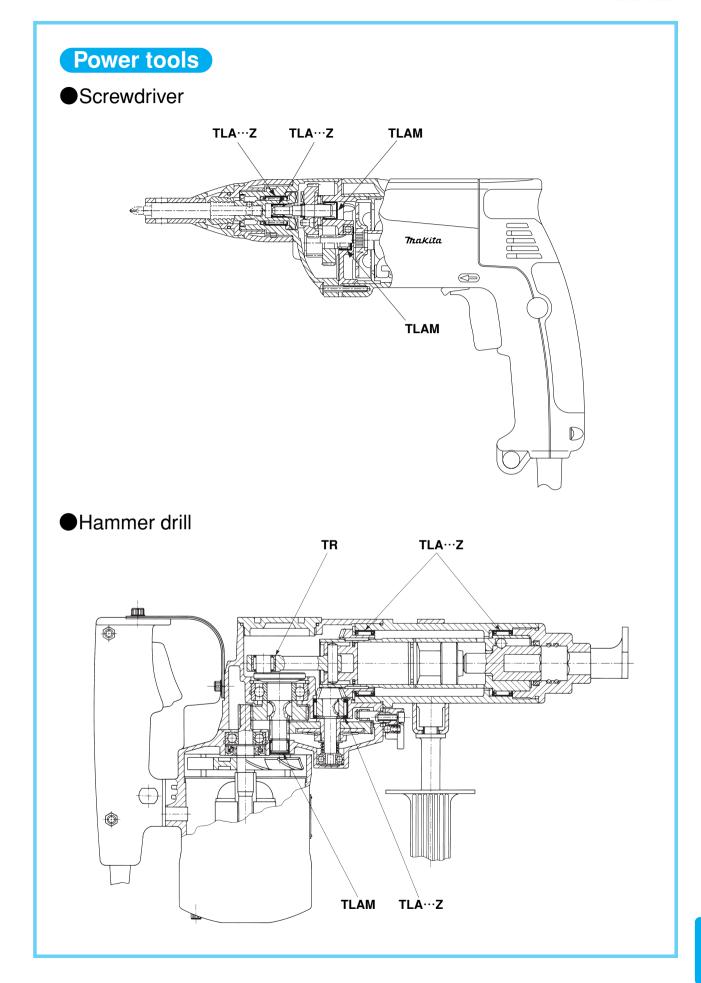


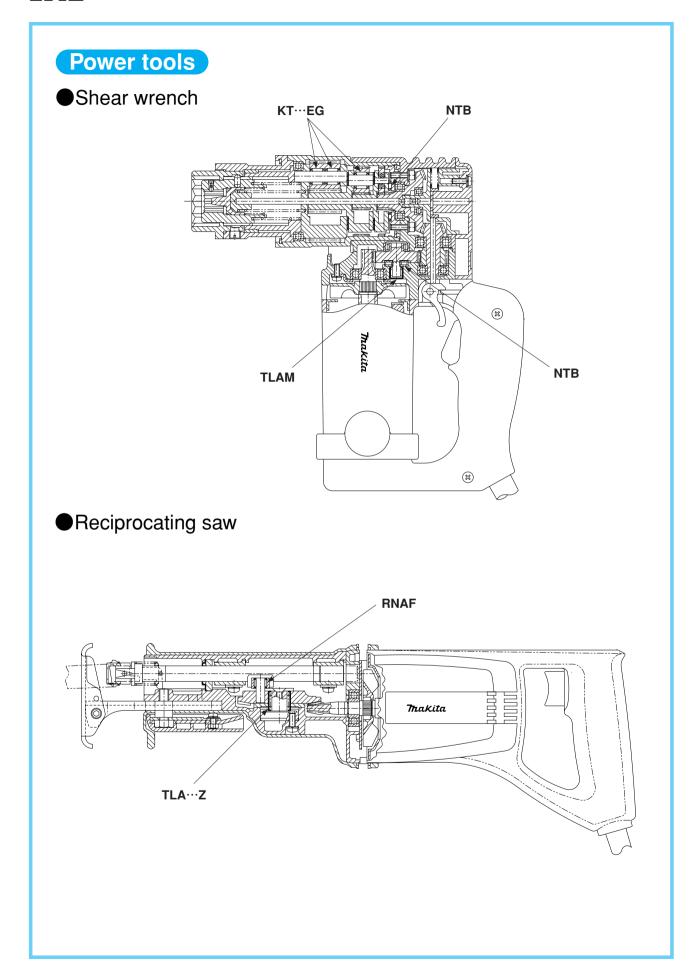


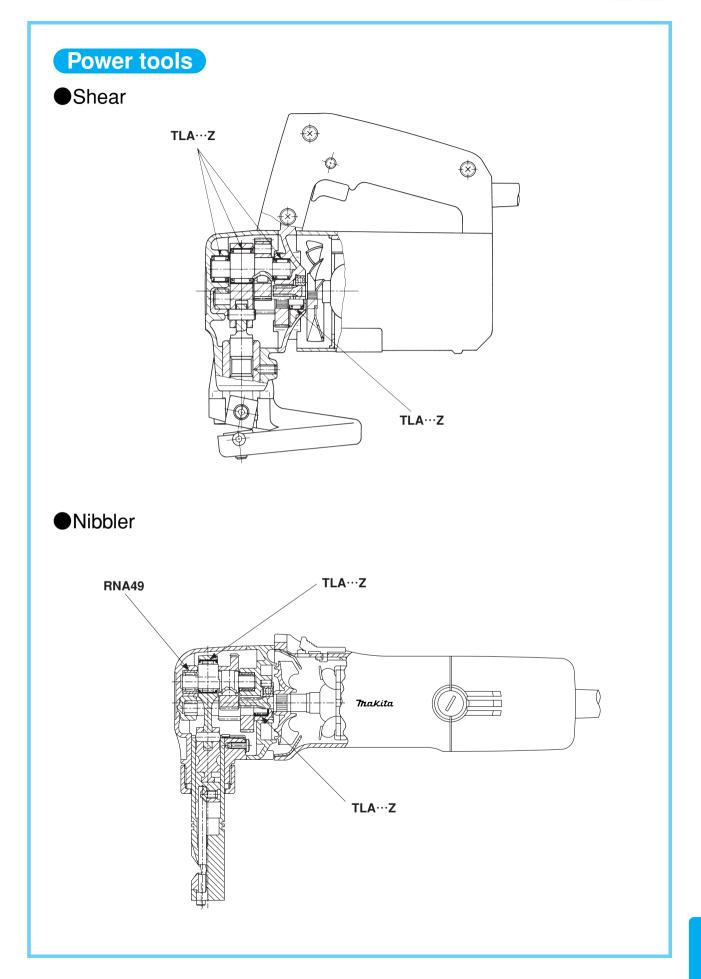


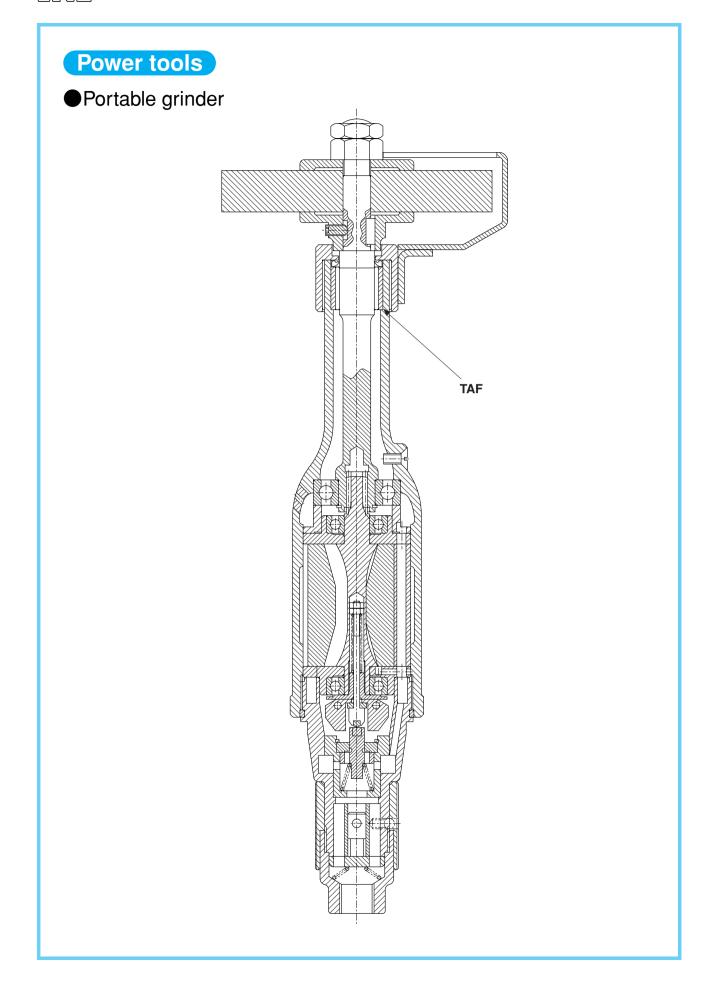


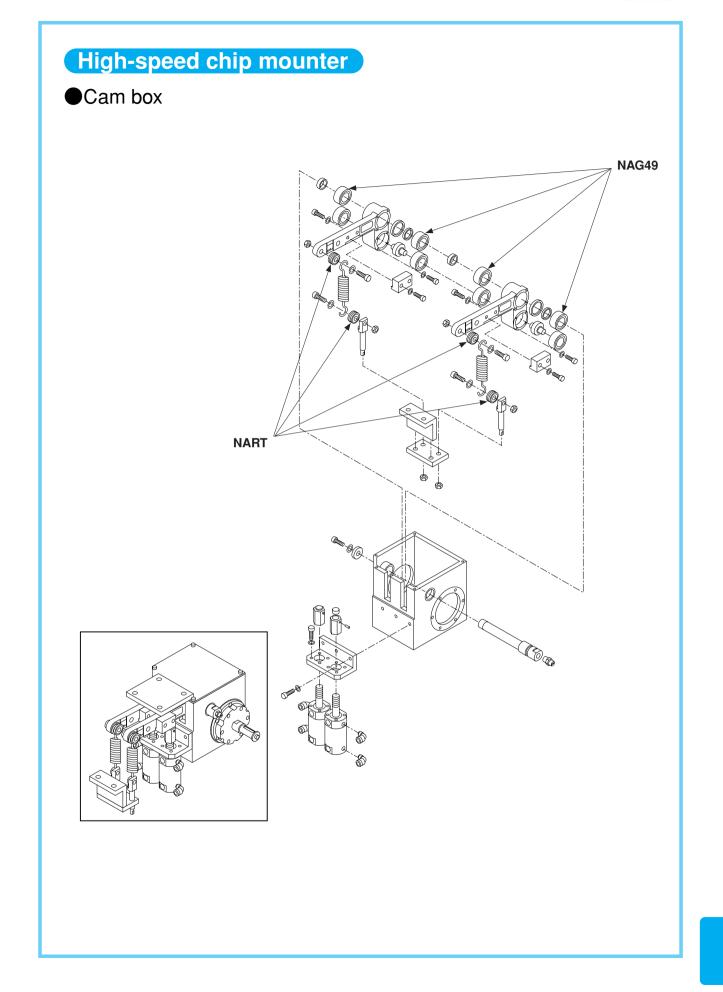












MISCELLANEOUS TABLES

Conversion Table of Units

Comparison table between SI units (system of international units), CGS units and gravitational system of units

Item System of units	Length	Mass	Time	Acceleration	Force	Stress	Pressure
SI units	m	kg	S	m/s ²	N	Pa	Pa
CGS units	cm	g	S	Gal	dyn	dyn/cm ²	dyn/cm ²
Grav. units	m	kgf•s²/m	s	m/s ²	kgf	kgf/m ²	kgf/m²

ion rates i	

Item	Unit name	Symbol	Conversion rate into SI	SI unit name	Symbol
Angle	Degree Minute Second	° , ,,	π/180 π/10 800 π/648 000	Radian	rad
Length	Meter Micronmeter Angstrom X-ray unit Nautical mile	m μ Å n mile	1 10 ⁻⁶ 10 ⁻¹⁰ ≈1.002 08×10 ⁻¹³ 1852	Meter	m
Area	Square meter Are Hectare	m² a ha	1 10 ² 10 ⁴	Square meter	m ²
Volume	Cubic meter Liter	m³ I, L	1 10 ⁻³	Cubic meter	m ³
Mass	Kilogram Ton Atomic mass unit	kg t u	1 10 ³ ≈1.660 57×10 ⁻²⁷	Kilogram	kg
Time	Second Minute Hour Day	s min h d	1 60 3 600 86 400	Second	s
Velocity	Meter per second Knot	m/s kn	1 1 852/3 600	Meter per second	m/s
Frequency and number of oscillations per time	Cycle	s ⁻¹	1	Hertz	Hz
Rotation speed	Rotation per minute	rpm	1/60	Per second	s ⁻¹
Angular velocity	Radian per second	rad/s	1	Radian per second	rad/s
Acceleration	Meter per square second G	m/s² G	1 9.806 65	Meter per square second	m/s²
Force	Kilogram force Ton force Dyne	kgf tf dyn	9.806 65 9 806.65 10 ⁻⁵	Newton	N
Moment of force	Kilogram force-meter	kgf•m	9.806 65	Newton-meter	N∙m
Stress and pressure	Kilogram force per square meter Kilogram force per square centimeter Kilogram force per square millimeter	kgf/m² kgf/cm² kgf/mm²	9.806 65 9.806 65×10 ⁴ 9.806 65×10 ⁶	Pascal	Pa

Energy	Power	Temperature	Viscosity	Kinematic viscosity	Magnetic flux	Magnetic flux density	Magnetic field intensity
J	W	K	Pa•s	m²/s	Wb	Т	A/m
erg kgf•m	erg/s kgf•m/s	°C °C	P kgf•s/m²	St m²/s	Mx —	Gs —	Oe —

Item	Unit name	Symbol	Conversion rate into SI	SI unit name	Symbol
Pressure	Hydro-column meter Mercurial column millimeter Torr Atmosphere Bar	mH ₂ O mmHg Torr atm bar	9 806.65 101 325/760 101 325/760 101 325 10 ⁵	Pascal	Pa
Energy	Erg IT calorie Kilogram force - meter Kilowatt hour Horse power hour (French) Electron volt	erg calı⊤ kgf∙m kW∙h PS∙h eV	10 ⁻⁷ 4.186 8 9.806 65 3.600×10 ⁶ ≈2.647 79×10 ⁶ ≈1.602 19×10 ⁻¹⁹	Joule	J
Power	Watt Horse power (French) Kilogram force -meter per second	W PS kgf•m/s	1 ≈735.5 9.806 65	Watt	W
Viscosity	Poise Centipoise Kilogram force-second per square meter	P cP kgf•s/m²	10 ⁻¹ 10 ⁻³ 9.806 65	Pascal-second	Pa•s
Kinematic viscosity	Stokes Centistokes	St cSt	10 ⁻⁴ 10 ⁻⁶	Square meter per second	m²/s
Temperature	Degree	°C	+273.15	Kelvin	K
Radioactivity Exposure dose Absorbed dose Dose equivalent	Curie Roentgen Rad Rem	Ci R rad rem	3.7×10 ¹⁰ 2.58×10 ⁻⁴ 10 ⁻² 10 ⁻²	Becquerel Coulomb per kilogram Gray Sievert	Bq C/kg Gy Sv
Magnetic flux	Maxwell	Mx	10-8	Weber	Wb
Magnetic flux density	Gamma Gauss	γ Gs	10 ⁻⁹ 10 ⁻⁴	Tesla	Т
Magnetic field intensity	Oersted	Oe	$10^{3}/4 \pi$	Ampere per meter	A/m
Quantity of electricity Electric potential difference Electrostatic capacity (Electric) resistance (Electric) conductance Inductance	Coulomb Volt Farad Ohm Siemens Henry	C > F Ω S H	1 1 1 1 1	Coulomb Volt Farad Ohm Siemens Henry	C V F Ω S H
Current	Ampere	Α	1	Ampere	Α

IKO

Inch-mm Conversion Table

1 inch = 25.4 mm

										= 23.4 111111
ind	ch Decimal	0"	1"	2"	3″	4"	5"	6"	7"	8"
raction	Decimal									
	0		25.400	50.800	76.200	101.600	127.000	152.400	177.800	203.200
1 / 64"	0.015625	0.397	25.797	51.197	76.597	101.997	127.397	152.797	178.197	203.597
1 / 32"	0.031250	0.794	26.194	51.594	76.994	102.394	127.794	153.194	178.594	203.994
3 / 64"	0.046875	1.191	26.591	51.991	77.391	102.791	128.191	153.591	178.991	204.391
1 / 16"	0.062500	1.588	26.988	52.388	77.788	103.188	128.588	153.988	179.388	204.788
	0.00_00			0=1000						
5 / 64"	0.078125	1.984	27.384	52.784	78.184	103.584	128.984	154.384	179.784	205.184
3 / 32"	0.093750	2.381	27.781	53.181	78.581	103.981	129.381	154.781	180.181	205.581
7 / 64"	0.109375	2.778	28.178	53.578	78.978	104.378	129.778	155.178	180.578	205.978
1 / 8"	0.125000	3.175	28.575	53.975	79.375	104.775	130.175	155.575	180.975	206.375
9 / 64"	0.140625	3.572	28.972	54.372	79.772	105.172	130.572	155.972	181.372	206.772
5 / 32"	0.156250	3.969	29.369	54.769	80.169	105.569	130.969	156.369	181.769	207.169
11 / 64"	0.171875	4.366	29.766	55.166	80.566	105.966	131.366	156.766	182.166	207.566
3 / 16"	0.187500	4.762	30.162	55.562	80.962	106.362	131.762	157.162	182.562	207.962
13 / 64"	0.203125	5.159	30.559	55.959	81.359	106.759	132.159	157.559	182.959	208.359
7 / 32"	0.218750	5.556	30.956	56.356	81.756	107.156	132.556	157.956	183.356	208.756
15 / 64"	0.234375	5.953	31.353	56.753	82.153	107.553	132.953	158.353	183.753	209.153
1 / 4"	0.250000	6.350	31.750	57.150	82.550	107.950	133.350	158.750	184.150	209.550
17 / 64"	0.265625	6.747	32.147	57.547	82.947	108.347	133.747	159.147	184.547	209.947
9 / 32"	0.281250	7.144	32.544	57.944	83.344	108.744	134.144	159.544	184.944	210.344
19 / 64"	0.296875	7.541	32.941	58.341	83.741	109.141	134.541	159.941	185.341	210.741
5 / 16"	0.312500	7.938	33.338	58.738	84.138	109.538	134.938	160.338	185.738	211.138
21 / 64"	0.328125	8.334	33.734	59.134	84.534	109.934	135.334	160.734	186.134	211.534
11 / 32"	0.343750	8.731	34.131	59.531	84.931	110.331	135.731	161.131	186.531	211.931
23 / 64"	0.359375	9.128	34.528	59.928	85.328	110.728	136.128	161.528	186.928	212.328
3 / 8"	0.375000	9.525	34.925	60.325	85.725	111.125	136.525	161.925	187.325	212.725
OF / CA!	0.000005	0.000	05.000	00.700	00.400	111 500	100,000	100.000	107 700	010 100
25 / 64"	0.390625	9.922	35.322	60.722	86.122	111.522	136.922	162.322	187.722	213.122
13 / 32"	0.406250	10.319	35.719	61.119	86.519	111.919	137.319	162.719	188.119	213.519
27 / 64"	0.421875	10.716	36.116	61.516	86.916	112.316	137.716	163.116	188.516	213.916
7 / 16"	0.437500	11.112	36.512	61.912	87.312	112.712	138.112	163.512	188.912	214.312
29 / 64"	0.453125	11.509	36.909	62.309	87.709	113.109	138.509	163.909	189.309	214.709
15 / 32"	0.453125	11.906	37.306	62.706	88.106	113.109	138.906	164.306	189.706	214.709
31 / 64"	0.484375	12.303	37.703	63.103	88.503	113.903	139.303	164.703	190.103	215.100
1/2"	0.404373	12.700	38.100	63.500	88.900	114.300	139.700	165.100	190.103	215.900
1 / 2	3.300000	12.700	00.100	00.000	00.000	117.000	100.700	100.100	100.000	210.000

in	ch									
Fraction	Decimal	0"	1″	2"	3″	4"	5″	6"	7"	8″
33 / 64"	0.515625	13.097	38.497	63.897	89.297	114.697	140.097	165.497	190.897	216.297
17 / 32"	0.531250	13.494	38.894	64.294	89.694	115.094	140.494	165.894	191.294	216.694
35 / 64"	0.546875	13.891	39.291	64.691	90.091	115.491	140.891	166.291	191.691	217.091
9 / 16"	0.562500	14.288	39.688	65.088	90.488	115.888	141.288	166.688	192.088	217.488
37 / 64"	0.578125	14.684	40.084	65.484	90.884	116.284	141.684	167.084	192.484	217.884
19 / 32"	0.593750	15.081	40.481	65.881	91.281	116.681	142.081	167.481	192.881	218.281
39 / 64"	0.609375	15.478	40.878	66.278	91.678	117.078	142.478	167.878	193.278	218.678
5 / 8"	0.625000	15.875	41.275	66.675	92.075	117.475	142.875	168.275	193.675	219.075
41 / 64"	0.640625	16.272	41.672	67.072	92.472	117.872	143.272	168.672	194.072	219.472
21 / 32"	0.656250	16.669	42.069	67.469	92.869	118.269	143.669	169.069	194.469	219.869
43 / 64"	0.671875	17.066	42.466	67.866	93.266	118.666	144.066	169.466	194.866	220.266
11 / 16"	0.687500	17.462	42.862	68.262	93.662	119.062	144.462	169.862	195.262	220.662
45 / 64"	0.703125	17.859	43.259	68.659	94.059	119.459	144.859	170.259	195.659	221.059
23 / 32"	0.718750	18.256	43.656	69.056	94.456	119.856	145.256	170.656	196.056	221.456
47 / 64"	0.734375	18.653	44.053	69.453	94.853	120.253	145.653	171.053	196.453	221.853
3 / 4"	0.750000	19.050	44.450	69.850	95.250	120.650	146.050	171.450	196.850	222.250
49 / 64"	0.765625	19.447	44.847	70.247	95.647	121.047	146.447	171.847	197.247	222.647
25 / 32"	0.781250	19.844	45.244	70.644	96.044	121.444	146.844	172.244	197.644	223.044
51 / 64"	0.796875	20.241	45.641	71.041	96.441	121.841	147.241	172.641	198.041	223.441
13 / 16"	0.812500	20.638	46.038	71.438	96.838	122.238	147.638	173.038	198.438	223.838
53 / 64"	0.828125	21.034	46.434	71.834	97.234	122.634	148.034	173.434	198.834	224.234
27 / 32"	0.843750	21.431	46.831	72.231	97.631	123.031	148.431	173.831	199.231	224.631
55 / 64"	0.859375	21.828	47.228	72.628	98.028	123.428	148.828	174.228	199.628	225.028
7 / 8"	0.875000	22.225	47.625	73.025	98.425	123.825	149.225	174.625	200.025	225.425
57 / 64"	0.890625	22.622	48.022	73.422	98.822	124.222	149.622	175.022	200.422	225.822
29 / 32"	0.906250	23.019	48.419	73.819	99.219	124.619	150.019	175.419	200.819	226.219
59 / 64"	0.921875	23.416	48.816	74.216	99.616	125.016	150.416	175.816	201.216	226.616
15 / 16"	0.937500	23.812	49.212	74.612	100.012	125.412	150.812	176.212	201.612	227.012
61 / 64"	0.953125	24.209	49.609	75.009	100.409	125.809	151.209	176.609	202.009	227.409
31 / 32"	0.968750	24.606	50.006	75.406	100.806	126.206	151.606	177.006	202.406	227.806
63 / 64"	0.984375	25.003	50.403	75.803	101.203	126.603	152.003	177.403	202.803	228.203

Hardness Conversion Table (Reference)

Rockwell C scale hardness	Vickers' hardness	Brinell h	ardness	Rockwell	hardness	Shore hardness
Load 1471N				A scale	B scale	
HRC	HV	Standard ball	Tungsten carbide ball	Load 588.4N Diamond circular cone	Load 980.7N 1/16" ball	HS
68	940	_	_	85.6	_	97
67	900	_	_	85.0	_	95
66	865	_	_	84.5	_	92
65	832	_	(739)	83.9	_	91
64	800	_	(722)	83.4	_	88
00	770		(705)	00.0		0.7
63	772	_	(705)	82.8	_	87
62	746	_	(688)	82.3	_	85
61	720	_	(670)	81.8	_	83
60	697	_	(654)	81.2	_	81
59	674	_	(634)	80.7	_	80
58	653	_	615	80.1	_	78
57	633	_	595	79.6	_	76
56	613	_	577	79.0	_	75
55	595	_	560	78.5	_	74
54	577	_	543	78.0	_	72
53	560	_	525	77.4	_	71
52	544	(500)	512	76.8	_	69
51	528	(487)	496	76.3	_	68
50	513	(475)	481	75.9	_	67
49	498	(464)	469	75.2	_	66
48	484	451	455	74.7	_	64
47	471	442	443	74.1	_	63
46	458	432	432	73.6	_	62
45	446	421	421	73.1	_	60
44	434	409	409	72.5	_	58
43	423	400	400	72.0	_	57
42	412	390	390	71.5	_	56
41	402	381	381	70.9	_	55
40	392	371	371	70.4	_	54
39	382	362	362	69.9	_	52

Rockwell C scale hardness	Vickers' hardness	Brinell h	ardness	Rockwell	hardness	Shore hardness
Load 1471N HRC	HV	Standard ball	Tungsten carbide ball	A scale Load 588.4N Diamond circular cone	B scale Load 980.7N 1/16" ball	HS
38	372	353	353	69.4	_	51
37	363	344	344	68.9	_	50
36	354	336	336	68.4	(109.0)	49
35	345	327	327	67.9	(108.5)	48
34	336	319	319	67.4	(108.0)	47
33	327	311	311	66.8	(107.5)	46
32	318	301	301	66.3	(107.0)	44
31	310	294	294	65.8	(106.0)	43
30	302	286	286	65.3	(105.5)	42
29	294	279	279	64.7	(104.5)	41
00	000	074	074	04.0	(4040)	44
28	286	271	271	64.3	(104.0)	41
27	279	264	264	63.8	(103.0)	40
26	272	258	258	63.3	(102.5)	38
25 24	266	253	253	62.8	(101.5)	38
24	260	247	247	62.4	(101.0)	37
23	254	243	243	62.0	100.0	36
22	248	237	237	61.5	99.0	35
21	243	231	231	61.0	98.5	35
20	238	226	226	60.5	97.8	34
(18)	230	219	219		96.7	33
(16)	222	212	212	_	95.5	32
(14)	213	203	203	_	93.9	31
(12)	204	194	194	_	92.3	29
(4.0)	400	407	407		00.7	00
(10)	196	187	187	_	90.7	28
(8)	188	179	179	_	89.5	27
(6)	180	171 165	171 165	_	87.1 95.5	26
(4)	173	165	165	_	85.5	25
(2)	166 160	158	158 152	_	83.5	24 24
(0)	160	152	102	_	81.7	∠ 4

IKO

Tolerance of Shaft Diameter

	Diameter M	b.	12	C1	12	d	6	е	6	e ⁻	12	f	5	f	6	g	5
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low
_	3	-140	- 240	— 60	— 160	— 20	- 26	- 14	— 20	— 14	-114	- 6	-10	— 6	— 12	– 2	— 6
3	6	-140	- 260	— 70	— 190	- 30	- 38	— 20	- 28	- 20	-140	-10	-15	-10	— 18	- 4	– 9
6	10	-150	- 300	- 80	- 230	— 40	— 49	- 25	- 34	- 25	-175	-13	-19	-13	- 22	– 5	-11
10	18	-150	- 330	- 95	- 275	- 50	— 61	- 32	- 43	- 32	-212	-16	-24	-16	— 27	- 6	-14
18	30	-160	- 370	-110	- 320	— 65	— 78	— 40	- 53	— 40	-250	-20	-29	-20	— 33	- 7	-16
30	40	-170	- 420	-120	- 370	- 80	– 96	– 50	- 66	- 50	-300	-25	-36	-25	– 41	– 9	00
40	50	-180	— 430	-130	- 380	- 80	— 96	_ 50	- 66	- 50	-300	-25	-36	—25	- 41	— 9	<u>-20</u>
50	65	-190	— 490	-140	- 440	-100	-119	– 60	— 79	- 60	-360	-30	-43	-30	– 49	-10	-23
65	80	-200	— 500	-150	— 450	-100	-119	_ 60	- 79	- 60	-360	-30	-43	-30	- 49	-10	_23
80	100	-220	- 570	-170	- 520	—120	—142	_ 72	- 94	– 72	-422	-36	—51	—36	– 58	-12	—27
100	120	-240	— 590	-180	— 530	-120	142	_ /2	- 94	- 72	-422	-36	-51	-36	- 56	-12	-21
120	140	-260	— 660	-200	— 600												
140	160	-280	— 680	-210	- 610	-145	-170	— 85	-110	- 85	-485	-43	-61	-43	- 68	-14	-32
160	180	-310	— 710	-230	— 630												
180	200	-340	- 800	-240	— 700												
200	225	-380	- 840	-260	— 720	-170	-199	-100	-129	-100	-560	-50	—70	-50	— 79	-15	-35
225	250	-420	— 880	-280	— 740												
250	280	-480	-1000	-300	- 820	-190	-222	-110	-142	-110	-630	-56	— 79	-56	- 88	-17	-40
280	315	-540	-1060	-330	- 850	190	222	110	142	110	030	36	79	36	00	17	40
315	355	-600	-1170	-360	- 930	-210	—246	-125	-161	-125	-695	-62	-87	-62	– 98	-18	-43
355	400	-680	-1250	-400	— 970	210	240	123	101	123	093	02	07	02	30	10	45
400	450	-760	-1390	-440	-1070	-230	—270	—135	—175	—135	—765	-68	—95	-68	-108	-20	—47
450	500	-840	-1470	-480	-1110	230	270	133	175	133	703	00	93	00	100	20	47

Nominal M		h [.]	12	js	:5	j!	5	js	6	j(6	j	7	k	5	k	6
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low
_	3	0	-100	+ 2	- 2	+2	- 2	+ 3	- 3	+ 4	- 2	+ 6	- 4	+ 4	0	+ 6	0
3	6	0	-120	+ 2.5	- 2.5	+3	– 2	+ 4	- 4	+ 6	– 2	+ 8	– 4	+ 6	+1	+ 9	+1
6	10	0	-150	+ 3	- 3	+4	– 2	+ 4.5	- 4.5	+ 7	– 2	+10	– 5	+ 7	+1	+10	+1
10	18	0	-180	+ 4	- 4	+5	– 3	+ 5.5	- 5.5	+ 8	- 3	+12	— 6	+ 9	+1	+12	+1
18	30	0	-210	+ 4.5	— 4.5	+5	– 4	+ 6.5	— 6.5	+ 9	– 4	+13	– 8	+11	+2	+15	+2
30	40	0	-250	+ 5.5	– 5.5	+6	_ 5	+ 8	– 8	+11	_ 5	+ 15	_ ₁₀	+13	+2	+18	+2
40	50	U U	230	1 3.3	3.3	10	,	1 0	· ·	, , ,	3	1 13	10	1 13	12	1 10	12
50	65	0	-300	+ 6.5	— 6.5	+6	_ 7	+ 9.5	- 9.5	+12	– 7	+18	_ ₁₂	+15	+2	+21	+2
65	80		000	1 0.0	0.0	10		1 0.0	0.0			1 10		1 10	- '-		
80	100	0	-350	+ 7.5	— 7.5	+6	_ 9	+11	-11	+13	_ 9	+20	—15	+18	+3	+25	+3
100	120													,			
120	140																
140	160	0	-400	+ 9	— 9	+7	-11	+12.5	-12.5	+14	-11	+22	-18	+21	+3	+28	+3
160	180																
180	200																
200	225	0	-460	+10	-10	+ 7	-13	+14.5	-14.5	+16	-13	+25	—21	+24	+4	+33	+4
225	250																
250	280	0	-520	+11.5	-11.5	+7	-16	+16	-16	+16	-16	+26	-26	+27	+4	+36	+4
280	315																
315	355	0	-570	+12.5	-12.5	+7	-18	+18	-18	+18	-18	+29	-28	+29	+4	+40	+4
355	400																
400	450	0	-630	+13.5	-13.5	+7	-20	+20	-20	+20	-20	+31	-32	+32	+5	+45	+5
450	500																

																	unit : μm
g	6	h	5	h	6	h	7	h	8	h	9	h [.]	10	h	11		Diameter M
High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Over	Incl.
– 2	– 8	0	- 4	0	- 6	0	-10	0	-14	0	- 25	0	- 40	0	- 60	_	3
- 4	-12	0	- 5	0	– 8	0	-12	0	-18	0	- 30	0	- 48	0	— 75	3	6
– 5	-14	0	— 6	0	— 9	0	-15	0	-22	0	— 36	0	— 58	0	— 90	6	10
– 6	-17	0	- 8	0	-11	0	-18	0	-27	0	— 43	0	— 70	0	-110	10	18
– 7	-20	0	— 9	0	-13	0	-21	0	-33	0	— 52	0	— 84	0	-130	18	30
– 9	—25	0	-11	0	—16	0	—25	0	-39	0	– 62	0	-100	0	-160	30	40
9	25	U	11	U	10	U	25	U	39	U	02	U	100	U	100	40	50
-10	_29	0	-13	0	—19	0	-30	0	—46	0		0	-120	0	—190	50	65
10	29	U	13	U	19	U	30	U	40	U	/4	U	120	0	190	65	80
-12	—34	0	—15	0	_ ₂₂	0	—35	0	-54	0	— 87	0	-140	0	-220	80	100
12	34	U	13	U	22	U	33	U	34	U	07	U	140	U	220	100	120
																120	140
-14	-39	0	-18	0	-25	0	-40	0	-63	0	-100	0	-160	0	-250	140	160
																160	180
																180	200
—15	-44	0	-20	0	-29	0	-46	0	-72	0	-115	0	—185	0	-290	200	225
																225	250
-17	—49	0	-23	0	—32	0	-52	0	—81	0	—130	0	-210	0	-320	250	280
17	49	J	23	0	32		52	J	01	0	130		210	J	320	280	315
-18	—54	0	-25	0	—36	0	-57	0	—89	0	—140	0	-230	0	—360	315	355
10	34	J	23		30		37	J	03		140		200		300	355	400
-20	—60	0	-27	0	-40	0	-63	0	-97	0	—155	0	-250	0	-400	400	450
20	- 55	J		J	40		3	J	3,	J	155	0	200	,	400	450	500

unit : μ m

m	15	m	16	n	5	n	6	р	6		Diameter M
High	Low	High	Low	High	Low	High	Low	High	Low	Over	Incl.
+ 6	+ 2	+ 8	+ 2	+ 8	+ 4	+10	+ 4	+ 12	+ 6	_	3
+ 9	+ 4	+12	+ 4	+13	+ 8	+16	+ 8	+ 20	+12	3	6
+12	+ 6	+15	+ 6	+16	+10	+19	+10	+ 24	+15	6	10
+15	+ 7	+18	+ 7	+20	+12	+23	+12	+ 29	+18	10	18
+17	+ 8	+21	+ 8	+24	+15	+28	+15	+ 35	+22	18	30
+20	+ 9	+25	+ 9	+28	 	+33	+17	+ 42	+26	30	40
T20	7	T25	Т 9	T20	T17	T33	T17	T 42	T20	40	50
+24	+11	+30	+11	+33	+20	+39	+20	+ 51	+32	50	65
1 24	1 11	1 30	1 11	1 33	1 20	1 39	1 20	1 31	1 32	65	80
+28	+13	+35	+13	+38	+23	+45	+23	+ 59	+37	80	100
1 20	1 10	1 33	1 13	1 30	1 23	1 43	1 23	1 33	1 37	100	120
										120	140
+33	+15	+40	+15	+45	+27	+52	+27	+ 68	+43	140	160
										160	180
										180	200
+37	+17	+46	+17	+51	+31	+60	+31	+ 79	+50	200	225
										225	250
+43	+20	+52	+20	+57	+34	+66	+34	+ 88	+56	250	280
1 43	120	1 32	1 20	1 37	1 34	1 00	1 34	1 00	1 30	280	315
+46	+21	+57	+21	+62	+37	+73	+37	+ 98	+62	315	355
1 40	121	137	121	1 02	131	173	137	1 30	1 02	355	400
+50	+23	+63	+23	+67	+40	+80	+40	+108	+68	400	450
1 30	1 23	1 03	1 23	107	1 40	1 00	1 40	1 100	1 00	450	500

IKO

unit : μ m

450

500

400

+33

—7

Tolerance of Housing Bore Diameter

	Diameter m	B [.]	12	E	7	E.	11	E.	12	F	6	F	7	G	6	G	i7
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low
_	3	+ 240	+140	+ 24	+ 14	+ 74	+ 14	+114	+ 14	+ 12	+ 6	+ 16	+ 6	+ 8	+ 2	+12	+ 2
3	6	+ 260	+140	+ 32	+ 20	+ 95	+ 20	+140	+ 20	+ 18	+10	+ 22	+10	+12	+ 4	+16	+ 4
6	10	+ 300	+150	+ 40	+ 25	+115	+ 25	+175	+ 25	+ 22	+13	+ 28	+13	+14	+ 5	+20	+ 5
10	18	+ 330	+150	+ 50	+ 32	+142	+ 32	+212	+ 32	+ 27	+16	+ 34	+16	+17	+ 6	+24	+ 6
18	30	+ 370	+160	+ 61	+ 40	+170	+ 40	+250	+ 40	+ 33	+20	+ 41	+20	+20	+ 7	+28	+ 7
30	40	+ 420	+170	+ 75	+ 50	+210	+ 50	+300	+ 50		+25	+ 50	+25	+25	+ 9	+34	
40	50	+ 430	+180	T /5	T 50	+ 210	+ 50	+300	T 50	+ 41	T25	T 50	+25	T25	99 -	+34	+ 9
50	65	+ 490	+190	+ 90	+ 60	+250	+ 60	+360	+ 60	+ 49	+30	+ 60	+30	+29	+10	+40	+10
65	80	+ 500	+200	T 90	T 60	T250	7 60	T360	7 60	T 49	+30	7 60	+ 30	T29	710	T40	710
80	100	+ 570	+220	+107	+ 72	+292	+ 72	+422	+ 72	+ 58	+36	+ 71	+36	+34	+12	+47	+12
100	120	+ 590	+240	1 107	1 /2	1 292	1 72	1 422	1 /2	1 36	1 30	1 /1	1 30	1 34	1 12	147	1 12
120	140	+ 660	+260														
140	160	+ 680	+280	+125	+ 85	+335	+ 85	+485	+ 85	+ 68	+43	+ 83	+43	+39	+14	+54	+14
160	180	+ 710	+310														
180	200	+ 800	+340														
200	225	+ 840	+380	+146	+100	+390	+100	+560	+100	+ 79	+50	+ 96	+50	+44	+15	+61	+15
225	250	+ 880	+420														
250	280	+1000	+480	+162	+ 110	+430	+110	+630	+110	+ 88	+56	+108	+56	+49	+ 17	+69	 +17
280	315	+1060	+ 540	1 102	1 110	1 430	1 110	1 030	1 110	1 00	1 30	1 100	1 30	1 43	1 17	1 03	1 17
315	355	+1170	+600	+182	+125	+485	+125	+695	+125	+ 98	+62	+119	+62	+54	+18	+ 75	+ 18
355	400	+1250	+680	1 102	1 123	1 403	1 123	1 033	1 123	1 30	1 02	1119	1 02	1 34	1 10	173	1 10
400	450	+1390	+760	+198	+135	+535	+135	+765	+135	+108	+68	+131	+68	+60	+20	+83	+20
450	500	+1470	+840	1 130	1 133	1 333	1 133	1 703	1 133	1 100	1 00	1 131	1 00	1 00	1 20	1 03	1 20

Nominal M		JS	67	J	7	К	5	К	6	К	.7	N	16	M	17	N	6
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low
_	3	+ 5	– 5	+ 4	— 6	0	- 4	0	— 6	0	-10	– 2	– 8	-2	-12	- 4	-10
3	6	+ 6	— 6	+ 6	— 6	0	– 5	+2	— 6	+ 3	– 9	- 1	- 9	0	-12	– 5	-13
6	10	+ 7	– 7	+ 8	– 7	+1	– 5	+2	– 7	+ 5	-10	– 3	-12	0	-15	– 7	-16
10	18	+ 9	– 9	+10	- 8	+2	— 6	+2	– 9	+ 6	-12	– 4	-15	0	-18	– 9	-20
18	30	+10	-10	+12	– 9	+1	– 8	+2	-11	+ 6	-15	– 4	—17	0	-21	-11	-24
30	40	+12	—12	+14	_ ₁₁	+2	– 9	+3	—13	+ 7	—18	_ 4	-20	0	-25	—12	-28
40	50	1 12	12	1 14	'''	12		13	10	' '	10		20	0	25	12	20
50	65	 +15	—15	+18	—12	+3	-10	+4	—15	+ 9	_ ₂₁	– 5	-24	0	-30	—14	-33
65	80	1 10	10	1 10	12	10	10	17	10	1 3	۲۱	J	24	U	00	1-7	
80	100	+17	-17	+22	—13	+2	-13	+4	—18	+ 10	_ ₂₅	_ 6	-28	0	-35	—16	-38
100	120		.,	'		· -											
120	140																
140	160	+20	-20	+26	-14	+3	-15	+4	-21	+12	-28	– 8	-33	0	-40	-20	-45
160	180																
180	200	١.															
200	225	+23	-23	+30	-16	+2	-18	+5	-24	+13	-33	– 8	-37	0	-46	-22	-5 1
225	250																
250	280	+26	-26	+36	-16	+3	-20	+5	-27	+16	-36	– 9	-41	0	-52	-25	—57
280	315																
315	355	+28	-28	+39	-18	+3	-22	+ 7	-29	+17	-40	-10	-46	0	-57	-26	-62
355	400																
400 450	450 500	+31	-31	+43	-20	+2	-25	+8	-32	+18	-45	-10	-50	0	-63	-27	-67
450	500																

Н	6	Н	17	Н	8	Н	9	H.	10	H ⁻	11	JS	S6	J	6	Nominal M	
High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Over	Incl.
+ 6	0	+10	0	+14	0	+ 25	0	+ 40	0	+ 60	0	+ 3	- 3	+ 2	-4	_	3
+ 8	0	+12	0	+18	0	+ 30	0	+ 48	0	+ 75	0	+ 4	– 4	+ 5	-3	3	6
+ 9	0	+15	0	+22	0	+ 36	0	+ 58	0	+ 90	0	+ 4.5	- 4.5	+ 5	-4	6	10
+11	0	+18	0	+27	0	+ 43	0	+ 70	0	+110	0	+ 5.5	- 5.5	+ 6	-5	10	18
+13	0	+21	0	+33	0	+ 52	0	+ 84	0	+130	0	+ 6.5	— 6.5	+ 8	- 5	18	30
+16	0	+25	0	+39	0	+ 62	0	+100	0	+160	0	+ 8	_ 8	+10	-6	30	40
1 10		123	0	1 00	0	1 02	0	1 100	0	1 100	0	1 0		1 10	0	40	50
+19	0	+30	0	+46	0	+ 74	0	+120	0	+190	0	+ 9.5	– 9.5	+13	-6	50	65
113		1 00	0	1 70		1 / -		1 120		1 130		1 0.0	0.0	1 10		65	80
+22	0	+35	0	+54	0	+ 87	0	+140	0	+220	0	+11	-11	+16	-6	80	100
		1 00	ŭ			, 0,		1		1 ==0				1 .0		100	120
																120	140
+25	0	+40	0	+63	0	+100	0	+160	0	+250	0	+12.5	-12.5	+18	- 7	140	160
																160	180
																180	200
+29	0	+46	0	+72	0	+115	0	+185	0	+290	0	+14.5	-14.5	+22	- 7	200	225
																225	250
+32	0	+52	0	+81	0	+130	0	+210	0	+320	0	+16	—16	+25	— 7	250	280
1 02	0	1 02	Ü	101	J	1 100	0	1210	0	1 020	J	1 10	10	1 23	,	280	315
+36	0	+ 57	0	+89	0	十 140	0	+230	0	+360	0	+ 18	—18	+29	— 7	315	355
1 30	U	1 37	U	100	U	1 140	U	1 200	U	1 300	U	1 10	10	1 23	,	355	400

unit : μ m

+20 -20

N	7	Р	6	Р	P7		R7		7	Nominal Diameter	
High	Low	High	Low	High	Low	High	Low	High	Low	Over	Incl.
- 4	-14	- 6	-12	- 6	— 16	— 10	- 20	- 14	- 24	_	3
- 4	-16	— 9	-17	– 8	- 20	- 11	— 23	— 15	— 27	3	6
- 4	-19	-12	-21	– 9	- 24	- 13	- 28	— 17	- 32	6	10
– 5	-23	-15	-26	-11	- 29	— 16	- 34	— 21	— 39	10	18
– 7	-28	-18	-31	-14	- 35	- 20	— 41	— 27	— 48	18	30
– 8	-33	—21	-37	-17	– 42	– 25	- 50	- 34	— 59	30	40
- 8	_33	-21	-37	-17	- 42	_ 25	_ 50	- 34	- 59	40	50
– 9	—39	-26	-45	—21	— 51	- 30	— 60	- 42	— 72	50	65
— 9	_39	-26	-45	-21	- 51	- 32	— 62	— 48	— 78	65	80
-10	—45	-30	-52	-24	_ 59	- 38	— 73	— 58	— 93	80	100
-10	-45	-30	-52	-24	_ 59	— 41	— 76	— 66	— 101	100	120
						— 48	— 88	— 77	-117	120	140
-12	-52	-36	-61	-28	– 68	— 50	— 90	— 85	-125	140	160
						— 53	— 93	— 93	-133	160	180
						— 60	-106	-105	-151	180	200
-14	-60	-41	-70	-33	— 79	— 63	-109	-113	-159	200	225
						— 67	-113	-123	-169	225	250
-14	-66	-47	— 79	-36	– 88	— 74	-126	-138	-190	250	280
14	00	47	19	30	00	— 78	-130	-150	-202	280	315
-16	—73	-51	—87	-41	– 98	— 87	-144	-169	-226	315	355
10	73	31	07	41	30	— 93	-150	-187	-244	355	400
-17	-80	-55	-95	-45	-108	-103	-166	-209	-272	400	450
17	00	55	93	43	106	-109	-172	-229	-292	450	500

560 561

+40

0

+63

+97

0

+155

0

+250

0

+400 0

1N = 0.1019716 kgf 1kgf = 9.80665 N

N-lbf Conversion Table

IN-IDI	COIIV	ersion i	abie				1N = 0.224809	9 lbf 1lb	of = 4.44822 N
N		lbf		N		lbf	N		lbf
4.448	1	0.225		151.24	34	7.643	298.03	67	15.062
8.896	2	0.450		155.69	35	7.868	302.48	68	15.287
13.345	3	0.674		160.14	36	8.093	306.93	69	15.512
17.793	4	0.899		164.58	37	8.318	311.38	70	15.737
22.241	5	1.124		169.03	38	8.543	315.82	71	15.961
26.689	6	1.349		173.48	39	8.768	320.27	72	16.186
31.138	7	1.574		177.93	40	8.992	324.72	73	16.411
35.586	8	1.798		182.38	41	9.217	329.17	74	16.636
40.034	9	2.023		186.83	42	9.442	333.62	75	16.861
44.482	10	2.248		191.27	43	9.667	338.06	76	17.085
48.930	11	2.473		195.72	44	9.892	342.51	77	17.310
53.379	12	2.698		200.17	45	10.116	346.96	78	17.535
57.827	13	2.923		204.62	46	10.341	351.41	79	17.760
62.275	14	3.147		209.07	47	10.566	355.86	80	17.985
66.723	15	3.372		213.51	48	10.791	360.31	81	18.210
71.171	16	3.597		217.96	49	11.016	364.75	82	18.434
75.620	17	3.822		222.41	50	11.240	369.20	83	18.659
80.068	18	4.047		226.86	51	11.465	373.65	84	18.884
84.516	19	4.271		231.31	52	11.690	378.10	85	19.109
88.964	20	4.496		235.76	53	11.915	382.55	86	19.334
93.413	21	4.721		240.20	54	12.140	386.99	87	19.558
97.861	22	4.946		244.65	55	12.364	391.44	88	19.783
102.31	23	5.171		249.10	56	12.589	395.89	89	20.008
106.76	24	5.395		253.55	57	12.814	400.34	90	20.233
111.21	25	5.620		258.00	58	13.039	404.79	91	20.458
115.65	26	5.845		262.44	59	13.264	409.24	92	20.682
120.10	27	6.070		266.89	60	13.489	413.68	93	20.907
124.55	28	6.295		271.34	61	13.713	418.13	94	21.132
129.00	29	6.519		275.79	62	13.938	422.58	95	21.357
133.45	30	6.744		280.24	63	14.163	427.03	96	21.582
137.89	31	6.969		284.69	64	14.388	431.48	97	21.806
142.34	32	7.194		289.13	65	14.613	435.93	98	22.031
146.79	33	7.419		293.58	66	14.837	440.37	99	22.256

How to use: For example, to convert 20 N into lbf, find the number 20 in the center of the first column. By referring to the lbf column on the right, it will be found that 20 N equals 4.496 lbf.

To convert 20 lbf into N, refer to the N column on the left and it will be found that 20 lbf equals 88.964 N.

N-kgf Conversion Table

									9
N		kgf	N		kgf		N		kgf
9.8066	1	0.1020	333.43	34	3.4670		657.05	67	6.8321
19.613	2	0.2039	343.23	35	3.5690		666.85	68	6.9341
29.420	3	0.3059	353.04	36	3.6710		676.66	69	7.0360
39.227	4	0.4079	362.85	37	3.7729		686.47	70	7.1380
49.033	5	0.5099	372.65	38	3.8749		696.27	71	7.2400
58.840	6	0.6118	382.46	39	3.9769		706.08	72	7.3420
68.647	7	0.7138	392.27	40	4.0789		715.89	73	7.4439
78.453	8	0.8158	402.07	41	4.1808		725.69	74	7.5459
88.260	9	0.9177	411.88	42	4.2828		735.50	75	7.6479
98.066	10	1.0197	421.69	43	4.3848		745.31	76	7.7498
107.87	11	1.1217	431.49	44	4.4868		755.11	77	7.8518
117.68	12	1.2237	441.30	45	4.5887		764.92	78	7.9538
127.49	13	1.3256	451.11	46	4.6907		774.73	79	8.0558
137.29	14	1.4276	460.91	47	4.7927		784.53	80	8.1577
147.10	15	1.5296	470.72	48	4.8946		794.34	81	8.2597
156.91	16	1.6315	480.53	49	4.9966		804.15	82	8.3617
166.71	17	1.7335	490.33	50	5.0986		813.95	83	8.4636
176.52	18	1.8355	500.14	51	5.2006		823.76	84	8.5656
186.33	19	1.9375	509.95	52	5.3025		833.57	85	8.6676
196.13	20	2.0394	519.75	53	5.4045		843.37	86	8.7696
205.94	21	2.1414	529.56	54	5.5065		853.18	87	8.8715
215.75	22	2.2434	539.37	55	5.6084		862.99	88	8.9735
225.55	23	2.3453	549.17	56	5.7104		872.79	89	9.0755
235.36	24	2.4473	558.98	57	5.8124		882.60	90	9.1774
245.17	25	2.5493	568.79	58	5.9144		892.41	91	9.2794
254.97	26	2.6513	578.59	59	6.0163		902.21	92	9.3814
264.78	27	2.7532	588.40	60	6.1183		912.02	93	9.4834
274.59	28	2.8552	598.21	61	6.2203		921.83	94	9.5853
284.39	29	2.9572	608.01	62	6.3222		931.63	95	9.6873
294.20	30	3.0591	617.82	63	6.4242		941.44	96	9.7893
304.01	31	3.1611	627.63	64	6.5262		951.25	97	9.8912
313.81	32	3.2631	637.43	65	6.6282		961.05	98	9.9932
323.62	33	3.3651	647.24	66	6.7301		970.86	99	10.0952
020.02	00	0.0001	U-7.L-	- 00	0.7001	ı	0,0.00	- 00	10.0002

How to use: For example, to convert 20 N into kgf, find the number 20 in the center of the first column. By referring to the kgf column on the right, it will be found that 20 N equals 2.0394 kgf.

To convert 20 kgf into N, refer to the N column on the left and it will be found that 20 kgf equals 196.13 N.

• Temperature Conversion Table

Ten	Temperature Conversion Table								$C = \frac{5}{9} (F$	-32) F	$= 32 + \frac{9}{5}$ C	
°C		°F		°C		°F	°C		°F	°C		°F
-73.3	-100	-148.0		-2.2	28	82.4	16.1	61	141.8	34.4	94	201.2
-62.2	- 80	-112.0		-1.7	29	84.2	16.7	62	143.6	35.0	95	203.0
-51.1	- 60	- 76.0		-1.1	30	86.0	17.2	63	145.4	35.6	96	204.8
-40.0	- 40	- 40.0		-0.6	31	87.8	17.8	64	147.2	36.1	97	206.6
-28.9	- 20	- 4.0		0	32	89.6	18.3	65	149.0	36.7	98	208.4
-17.8	0	32.0		0.6	33	91.4	18.9	66	150.8	37.2	99	210.2
-17.2	1	33.8		1.1	34	93.2	19.4	67	152.6	37.8	100	212
-16.7	2	35.6		1.7	35	95.0	20.0	68	154.4	43.3	110	230
-16.1	3	37.4		2.2	36	96.8	20.6	69	156.2	48.9	120	248
-15.6	4	39.2		2.8	37	98.6	21.1	70	158.0	54.4	130	266
-15.0	5	41.0		3.3	38	100.4	21.7	71	159.8	60.0	140	284
-14.4	6	42.8		3.9	39	102.2	22.2	72	161.6	65.6	150	302
-13.9	7	44.6		4.4	40	104.0	22.8	73	163.4	71.1	160	320
-13.3	8	46.4		5.0	41	105.8	23.3	74	165.2	76.7	170	338
-12.8	9	48.2		5.6	42	107.6	23.9	75	167.0	82.2	180	356
-12.2	10	50.0		6.1	43	109.4	24.4	76	168.8	87.8	190	374
-11.7	11	51.8		6.7	44	111.2	25.0	77	170.6	93.3	200	392
-11.1	12	53.6		7.2	45	113.0	25.6	78	172.4	121.1	250	482
-10.6	13	55.4		7.8	46	114.8	26.1	79	174.2	149	300	572
-10.0	14	57.2		8.3	47	116.6	26.7	80	176.0	177	350	662
- 9.4	15	59.0		8.9	48	118.4	27.2	81	177.8	204	400	752
- 8.9	16	60.8		9.4	49	120.2	27.8	82	179.6	232	450	842
- 8.3	17	62.6		10.0	50	122.0	28.3	83	181.4	260	500	932
- 7.8	18	64.4		10.6	51	123.8	28.9	84	183.2	288	550	1022
- 7.2	19	66.2		11.1	52	125.6	29.4	85	185.0	316	600	1112
- 6.7	20	68.0		11.7	53	127.4	30.0	86	186.8	343	650	1202
- 6.7 - 6.1	21	69.8		12.2	54	127.4	30.6	87	188.6	371	700	1202
- 6.1 - 5.6	22	71.6		12.2	55	131.0	31.1	88	190.4	399	750	1382
- 5.0	23	73.4		13.3	56	132.8	31.7	89	192.2	427	800	1472
- 4.4	24	75.2		13.9	57	134.6	32.2	90	194.0	454	850	1562
	0.5				5 0			0.4		105	000	
- 3.9	25	77.0		14.4	58	136.4	32.8	91	195.8	482	900	1652
- 3.3	26	78.8		15.0	59	138.2	33.3	92	197.6	510	950	1742
- 2.8	27	80.6		15.6	60	140.0	33.9	93	199.4		1000	1832

How to use: For example, to convert 20°C into °F, find the number 20 in the center of the first column. By referring the °F column on the right, it will be found that 20°C equals 68.0°F.

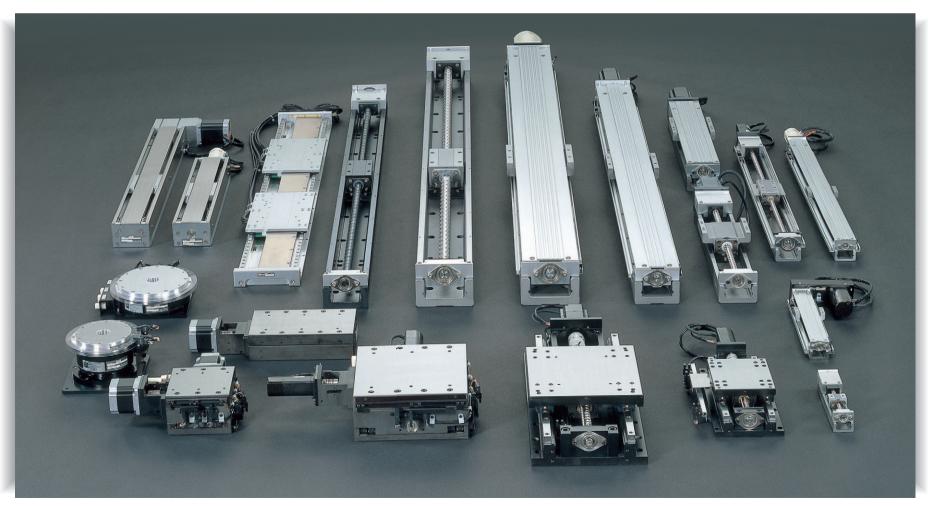

To convert 20°F into °C, refer to the °C column on the left and it will be found that 20°F equals -6.7°C.

Grease names and the characteristics (Reference)

Sort	Name	Supplier	Thickener of metallic soap	Con- sistency	Dropping point (°C)	Service range(¹) (°C)	Remarks
	ALVANIA GREASE No.1	SHELL	Li	326	180	-35~+120	General, Centralized greasing
Φ	ALVANIA GREASE No.2	SHELL	Li	273	182	-25~+120	General, Centralized greasing
rpos	ALVANIA GREASE No.3	SHELL	Li	232	183	-20~+135	General
General purpose	DAPHNE EPONEX GREASE No.2	IDEMITSU	Li	276	195	-20~+120	General
ener	COSMO GREASE DYNAMAX No.2	соѕмо	Li	280	188	-20~+120	General
G	MULTINOC GREASE 2	NIPPON OIL	Li	278	212	-30~+125	General
	MOBILAX GREASE No.2	MOBIL	Li	280	196	-35~+120	General
ø	ALVANIA GREASE RA	SHELL	Li	252	183	-40~+130	Low temperature
Low temperature	BEACON 325	ESSO	Li	280	193	(+160) -60~+120	Low temperature, Low torque
edue	ISOFLEX LDS 18 SPECIAL A	KLÜBER	Li	280	≧185	−60~+130	Low temperature, High speed,Extreme pressure
ow te	ISOFLEX SUPER LDS 18	KLÜBER	Li	280	≧185	−60∼+130	Low temperature, High speed,Low noise
۲	LT GREASE No.2	JAPAN ENERGY	Li	275	181	−50∼+150	Low temperature
ange	TEMPREX N3	ESSO	Li Complex	235	≧300	(+200) -20~+160	Wide temperature range, High temperature
ure ra	AEROSHELL GREASE 7	SHELL	Microgel	288	≧260	−73∼+149	Wide temperature range, Low temperature
perat	MULTEMP PS No.2	KYODO YUSHI	Li	275	190	−50∼+130	Wide temperature range, For low temperature & low noise
Wide temperature range	MULTEMP SRL	KYODO YUSHI	Li	242	192	−50∼+150	Wide temperature range, For low temperature & low noise
Wid	MULTINOC WIDE No.2	NIPPON OIL	Li+special Na	247	203	-40~ + 135	Wide temperature range
e e	ALVANIA EP-2	SHELL	Li	276	187	-20~+110	Extreme pressure, Centralized greasing
Extreme pressure	MOLYKOTE BR2-PLUS	DOW CORNING	Li	265	185	-30~+150	With MoS ₂ , Extreme pressure
<u> </u>	MOLUB-ALLOY #777-2	CASTROL	Li	280	182	0~+135	With MoS ₂ , Extreme pressure
	G 40M	SHIN-ETSU	Li	260	≧200	-30~+200	Wide temperatur range, Superior at high temperature with stable anti-oxidation and water proof, Chemically inert
	G 40H	SHIN-ETSU	Li	220	≧200	-30~+200	Wide temperatur range, Superior at high temperature with stable anti-oxidation and water proof, Chemically inert
	KRYTOX 240AD	DU PONT	Fluorinated	275	None	-30~+288	Stabl at high temperature, Chemically inert, Anti-solvent
Others	BARRIERTA L55/2	KLÜBER	Fluorinated	No.2	None	(+250) -35~+220	General, Low evaporation at high temperature, Chemically inert
Ó	BARRIERTA IMI/V	KLÜBER	Fluorinated	No.2	None	-50~+220	For high vacuum
	DEMNUM GREASE L-200	DAIKIN	Fluorinated	280	None	-60~+300	Stabl at high temperature, Anti- solvent, Chemically inert
	DOLIUM GREASE R	SHELL	Polyurea	281	249	-30~+150	Heat resistant, Superior at high temperature with stable anti-oxidation
	STAMINA GREASE RL2	SHELL	Polyurea	268	271	-20~+180	Heat resistant, Superior at high temperature with stable anti-oxidation
Note	e(1): Figures in parentheses show t	he maximum allov	wable temper	ature in verv	short time or	eration, and they	are not applicable for continuous

Note(1): Figures in parentheses show the maximum allowable temperature in very short time operation, and they are not applicable for continuous operation.

Remark When using these products, see individual manufacturer's catalogs.


Presentation of Linear Motion Rolling Guide and Mechatronics Series

"Linear Motion Rolling Guide Series" being a leader of growth and "Mechatronics Series" being a pioneer of the next generation

Nippon Thompson Co., Ltd. has been developing various products related to linear motion rolling guides. With their high quality and excellent functional characteristics recognized, IKD is supplying its products to a wide range of different applications.

The following IXIII linear motion rolling guide series and mechatronics series show a remarkable increase in sales in advanced industries including semiconductor manufacturing equipment requiring precise positioning, and are also expected to grow further in the high technology industry.

For details, refer to the "General Catalog for Linear Motion Rolling Guide Series" and "Catalog of Mechatronics Series".

Presentation of Linear Motion Rolling Guide Series

Linear Way Series

LWL·LWLF

and lightweight Linear Way. The slide unit of the ball-retained type is free from concern that balls may drop out and is easy to handle. The standard type LWL···B and the wide type LWLF···B suitable for use in a single row of track rail are available. Each of these types are classified into short type, standard type, and high-rigidity long type. The user can se-

lect the most suitable type fit for each application out of abundant size variations. In particular, the stainless steel type that has excellent corrosion resistance, is most suitable for machines and equipment operated in clean rooms such as medical equipment, disk read devices, and semiconductor manufacturing equipment.

Available with:

Capillary plates

Interchangeable series
Stainless steel types

LWE

Way with a compact slide unit. This realizes space saving and can greatly extend the range of design with its abundant size variations.

"Lower, Narrower, Shorter,..." In every phase, **LWE** is in pursuit of compactness. Its standard type has a slide unit whose length has
been shortened by 86% compared with other

Furthermore, shorter types are also available. Such abundant size variations can meet diversified needs. With high accuracy, large load capacity, good load balance, and other merits, the Linear Way E Series is widely used for linear motion rolling guides.

Available with:

Interchangeable series
Stainless steel types
Capillary plates

LWH

In the recognized Linear Way Series, IICD Linear Way H Series comprises of high-rigidity products that are resistant to complex loads.

In addition to the standard flanged type, a slim type with a small width, a slime type with a smaller sectional height, and other types are available in various size variations. In addition, another type that has higher rigidity with

a longer slide unit and more effective balls, but with the same sectional height, is available.

The Linear Way H Series obtains high-accuracy, stable, and smooth linear motion and is widely used in machine tools, industrial robots, assembly equipment, inspection equipment, etc. Its excellent performance has been practically proven.

Available with:

Interchangeable series

Stainless steel types

Capillary plates

LWU

The **Linear Way U** is Linear Motion Rolling Guide equipment provided with a raceway groove inside the track rail with a U-shaped sectional area and a slide unit inside the raceway.

Adopting the U-shaped track rail improves the rigidity for moment and torsion of the track rail. Ac-

cordingly, Linear Way U can be used in situations where the track rail is fixed on the mounting base, at the cantilever position or at both ends, and also used as a structural member of machines and equipment. Thus, the degree of freedom in design can be extended by free and optional configurations.

U-shape Track Rail with new conception

Available with:

Capillary plates

Presentation of Linear Motion Rolling Guide Series 2

Linear Motion Rolling Guide Series with Special Environment Specifications

Various product groups and special specifications for special environments

Stainless steel type Linear Way and Linear Roller Way

Stainless steel is used for their steel made parts. These products have excellent corrosion resistance and are most suitable for environments that are adversely affected by oil or where water splashes.

Highly Sealed Linear Way H

lent dust protection properties. The type with a track rail mounted in the upper direction (LWH···MU) provides higher sealing perfor-

This is a highly sealed type that has excelmance.

Type with capillary plate

Linear Motion Rolling Guide Series The capillary plate slide in contact with the raceway of the track rail. This supplies the lubricant in the plate to the raceway surface,

pared. Any of them can be freely mounted on the same track rail.

Accuracy interchangeability

The three classes of Ordinary, High, and Precision class are set as accuracy taining classes so that the interchangeable series can be used for applications requiring high traveling accuracy. As mutual height variation among multiple sets is controlled at a high accuracy level so that the interchangeable series may be used securely when track rails are used in parallel form.

High rigidity interchangeability

High-accuracy dimensional control is exerted by using a simple structure. This has realized interchangeability of preloaded slide units.

The interchangeable series can be used for applications requiring one-rank higher rigidity.

" IIK I Interchangeable" is a system that permits free combination changes and replacement of slide units and track rails (or outer rings and spline shafts) while completely main-

accuracy and preload.

Unit interchangeability

Various types of slide unit with different sectional shapes and lengths are pre-

Low-noise Linear Way E LWE…Q

thereby greatly reducing maintenance.

The IKO Low-noise Linear Way E provides smooth and quiet motion even in a high-speed area. This product contributes to noise reduction in machines and equipment requiring high productivity.

LRX

Linear Roller Way Super X making the most of the characteristics of rollers is Linear Motion Rolling Guide equipment which has realized smooth motion, high reliability, and high accuracy because four-row cylindrical rollers are arranged in high-rigidity casing and the cylindrical rollers of each row are arranged in parallel form without crossing at right angles.

LRX has the same mounting dimensions as those of the ball type. This requires no design

change of machines and equipment. Flanged type LRX and block type LRXD are available. Each of these types can be subdivided into short type, standard type, and long type, although its sectional dimensions are the same. That is, a total of 6 types are available.

Four-row roller specification

Presentation of Linear Motion Rolling Guides 3

Other Linear Motion Rolling Guides

LSAG

Using a two-row and four-contact point structure, LASG is a very compact Ball Spline G Series with high rigidity and a small outer ring diameter.

For outer ring shapes, there are two shapes, the standard type (cylindrical shape) LSAG and the flanged type LSAGF. The standard type and the flanged type include 2 types of different outer ring length, a standard type and a highrigidity long type, both of which have the same sectional dimensions.

For spline shafts, solid shaft and hollow shaft are aveilable. A spline shaft made of stainless steel is also available. LSAG is most suitable for applications requiring smooth linear motion and accurate positioning in the direction of rotation.

Available with:

Interchangeable series **Capillary plate**

LSB

Block Type Ball Spline has excellent spine functions and maintainability and easy mounting of the Linear Way.

Available with:

Interchangeable series Stainless steel type

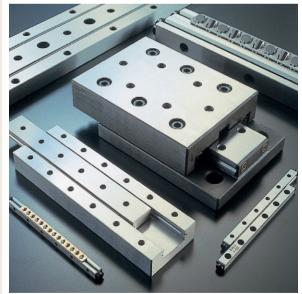
LMG

Available with:

Interchangeable series

LMG is Linear Bushing G adopting a shaft with raceway grooves to achieve both high rigidity and high load capacity.

BWU


Stainless steel type

BWU is a compact Linear Slide with high precision and high rigidity that is made entirely of stainless steel. This Linear Slide is the most suitable for precision equipment operated in clean rooms.

BSP·BSPG·BSR

These are very small and lightweight precision Linear Slides. They can be widely used as functional parts for precision linear motion.

CRW-CRWU

Available with:

Stainless steel type

These are high-reliability Crossed Roller Way Series with very small frictional resistance, very high accuracy and high rigidity.

Presentation of Mechatronics Series

Mechatronics Series

TU Series

IK Precision Positioning Table TU is a compact and slim positioning table with good load balance and high resistance to complex loads, in which the side table is arranged inside the Ushape track rail. Six types with a track rail width of 40 \sim 130mm are available. Each slide table length can be selected as required. Different table specifications includ-

ing ball screw, motor, sensor, etc. can be selected. This allows each user to configure the most suitable positioning table for each application.

Abundant options meet diversified market needs such as a motor loopback specification, table with bellows, table with bridge cover, and table finished by black chrome surface treatment.

Linear Motor Table LT

The IIK Linear Motor Table LT is a compact and lightweight directdrive positioning table with a very small sectional height in which an AC servo-motor and an optional linear scale are integrated in a moving table and a bed made of aluminum alloy.

The IK Linear Motor Table LT employs a C-shaped magnet yoke, and a coil board is sandwiched between two stator magnets. It pro-

vides a high thrust of 450N though its height is only 40 mm. The moving table is as light as 1.5 kg but provides high thrust. It permits high acceleration and deceleration exceeding 10 G. (In the case of

Using advanced servo technology, this product achieves high static stability and high-speed stability.

Long-stroke Series

- Standard type which has been practically used in many fields.
- Stable characteristics in parallel use together with Linear Way

High-rigidity Series

- High reliability and high accuracy with component parts strictly selected
- High rigidity and large mounting weight

TSLH-CTLH

Table Module Series

- Multi-axis tables up to 3 axes avail-
- Lightweight and compact in addition to a simple structure

Compact Series

- Compact structure with a small sectional height
- High reliability and high accuracy achieved by using Crossed Roller Way

TS-CT

TSL

High-speed Long Stroke Series

- High-speed type using a timing belt drive
- Stable and high traveling performance in parallel use together with Linear Way

Precision Rotary Table

- High-speed and high-resolution rotation positioning table
- High accuracy and high rigidity achieved by using Crossed Roller Bearing

Nano-linear

- Direct drive type with high speed and high response
- Maximum thrust of 25 N achieved with a sectional height of 14 mm

NT

- Direct drive type with high speed and high response Simple shape with a very small
- sectional height

NSC

Equipment Related to Electrical Devices

- Program controller with high functions and high operability
- Driver for motor drive specially designed
- Compactly integrated control unit

Index of Model Codes

CF···FWBUUR 364 Cam Followers

Α			CF···M	342	Cam Followers
AR	514	Cir-clips for Needle Roller Bearings	CF···R	342	Cam Followers
AS	274	Thrust Bearings	CF···RM	342	Cam Followers
AZ	278	Thrust Bearings	CF···UU	342	Cam Followers
AZK	278	Thrust Bearings	CFUUM	342	Cam Followers
			CFUUR	342	Cam Followers
В			CFUURM	342	Cam Followers
BA···Z	94	Shell Type Needle Roller Bearings	CF···V	346	Cam Followers
BAM	94	Shell Type Needle Roller Bearings	CF···VB	344	Cam Followers
BAMW	112	Shell Type Needle Roller Bearings	CF···VBM	344	Cam Followers
BAW…Z	112	Shell Type Needle Roller Bearings	CF···VBR	344	Cam Followers
BHA···Z	94	Shell Type Needle Roller Bearings	CF···VBRM	344	Cam Followers
BHAM	94	Shell Type Needle Roller Bearings	CF···VBUU	344	Cam Followers
BR	186	Machined Type Needle Roller Bearings	CF···VBUUM	344	Cam Followers
BR···UU	214	Machined Type Needle Roller Bearings	CF···VBUUR	344	Cam Followers
BRI	190	Machined Type Needle Roller Bearings	CF···VBUURM	344	Cam Followers
BRI…UU	218	Machined Type Needle Roller Bearings	CF…VM	346	Cam Followers
		,,	CF···VR	346	Cam Followers
С			CF···VRM	346	Cam Followers
CF	342	Cam Followers	CF···VUU	346	Cam Followers
CF···B	340	Cam Followers	CF···VUUM	346	Cam Followers
CF···BM	340	Cam Followers	CF···VUUR	346	Cam Followers
CF···BR	340	Cam Followers	CF···VUURM	346	Cam Followers
CF···BRM	340	Cam Followers	CF···WBR	362	Cam Followers
CF···BUU	340	Cam Followers	CF···WBUUR	362	Cam Followers
CF···BUUM	340	Cam Followers	CF-FU1	366	Cam Followers
CF···BUUR	340	Cam Followers	CF-RU1	366	Cam Followers
CF···BUURM	340	Cam Followers	CF-SFU	368	Cam Followers
CF···FB	348	Cam Followers	CFE	356	Cam Followers
CF···FBR	348	Cam Followers	CFE···B	354	Cam Followers
CF···FBUU	348	Cam Followers	CFE···BR	354	Cam Followers
CF···FBUUR	348	Cam Followers	CFE···BUU	354	Cam Followers
CF···FWBR	364	Cam Followers	CFE···BUUR	354	Cam Followers
OF EMPHIE	004	Out I Ullowers	OFF D	050	Oaiii i OilOWGIS

CFE···R

356 Cam Followers

Index of Model Codes

Machined Type Needle Roller Bearings Machined Type Needle Roller Bearings Machined Type Needle Roller Bearings Machined Type Needle Roller Bearings

CFEUU	356	Cam Followers	CR···VBR	384	Cam Followers
CFEUUR	356	Cam Followers	CR···VBUU	384	Cam Followers
CFE····V	360	Cam Followers	CR···VBUUR	384	Cam Followers
CFE···VB	358	Cam Followers	CR···VR	386	Cam Followers
CFE···VBR	358	Cam Followers	CR···VUU	386	Cam Followers
CFEVBUU	358	Cam Followers	CR···VUUR	386	Cam Followers
CFEVBUUR	358	Cam Followers	CRB	424	Cross Roller Bearings
CFE···VR	360	Cam Followers	CRBUU	428	Cross Roller Bearings
CFEVUU	360	Cam Followers	CRBC	424	Cross Roller Bearings
CFEVUUR	360	Cam Followers	CRBCUU	428	Cross Roller Bearings
CFES	352	Cam Followers	CRBH···A	422	Cross Roller Bearings
CFES···B	350	Cam Followers	CRBHAUU	423	Cross Roller Bearings
CFES···BR	350	Cam Followers	CRBS	430	Cross Roller Bearings
CFES···BUU	350	Cam Followers	CRBS····AUU	432	Cross Roller Bearings
CFES···BUUR	350	Cam Followers	CRBSV	430	Cross Roller Bearings
CFES···R	352	Cam Followers	CRBSVUU	432	Cross Roller Bearings
CFESUU	352	Cam Followers	CRH····V	390	Cam Followers
CFESUUR	352	Cam Followers	CRH···VB	388	Cam Followers
CFS	372	Cam Followers	CRHVBUU	388	Cam Followers
CFS···F	374	Cam Followers	CRHVUU	390	Cam Followers
CFS···FW	378	Cam Followers	CRY…V	410	Roller Followers
CFS···FV	374	Cam Followers	CRY…VUU	410	Roller Followers
CFS···V	372	Cam Followers			
CFS···W	376	Cam Followers	D		
CR	382	Cam Followers	DS	497	Seals for Needle Roller Bearings
СК…В	380	Cam Followers			
CR···BR	380	Cam Followers	G		
CR···BUU	380	Cam Followers	GBR	194	Machined Type Needle Roller Beari
CRBUUR	380	Cam Followers	GBR····UU	222	Machined Type Needle Roller Beari
CR···R	382	Cam Followers	GBRI	198	Machined Type Needle Roller Beari
CRUU	382	Cam Followers	GBRI…UU	226	Machined Type Needle Roller Beari
CRUUR	382	Cam Followers	GE···E	448	Spherical Bushings
CR···V	386	Cam Followers	GE···EC	460	Spherical Bushings
CR···VB	384	Cam Followers	GE···EC-2RS	460	Spherical Bushings
					=

Index of Model Codes

GE···ES	448	Spherical Bushings
GE···ES-2RS	448	Spherical Bushings
GE…G	452	Spherical Bushings
GE····GS	452	Spherical Bushings
GE····GS-2RS	452	Spherical Bushings
GS	274	Thrust Bearings
GTR	148	Machined Type Needle Roller Bearings
GTRI	170	Machined Type Needle Roller Bearings
IRB	303	Inner Rings
IRT	298	Inner Rings
K		
KT	122	Needle Roller Cages for General Usage
KT···EG	138	Needle Roller Cages for Engine Connecting Rods
KTV···EG	139	Needle Roller Cages for Engine Connecting Rods
KTW	126	Needle Roller Cages for General Usage
L		
LHS	484	L-Balls
LHSA	482	L-Balls
LRB	318	Inner Rings
LRBZ	318	Inner Rings
LRBZ···B	318	Inner Rings
LRT	306	Inner Rings
LRT···S	401	Inner Rings
LRTZ	306	Inner Rings
N		
NA 48	180	Machined Type Needle Roller Bearings
NA 49	168	Machined Type Needle Roller Bearings
NA 49···UU	208	Machined Type Needle Roller Bearings

NA 69	168	Machined Type Needle Roller Bearings
NA 69···UU	208	Machined Type Needle Roller Bearings
NAF	240	Needle Roller Bearings with Separable Cage
NAFW	240	Needle Roller Bearings with Separable Cage
NAG 49	252	Roller Bearings
NAG 49···UU	258	Roller Bearings
NART…R	404	Roller Followers
NART…UUR	404	Roller Followers
NART…VR	404	Roller Followers
NART…VUUR	404	Roller Followers
NAS 50···UUNR	264	Roller Bearings
NAS 50···ZZNR	264	Roller Bearings
NAST	401	Roller Followers
NAST…R	401	Roller Followers
NAST…ZZ	402	Roller Followers
NAST…ZZR	402	Roller Followers
NAST…ZZUU	402	Roller Followers
NAST…ZZUUR	402	Roller Followers
NATA 59	292	Combined Type Needle Roller Bearings
NATB 59	292	Combined Type Needle Roller Bearings
NAU 49	252	Roller Bearings
NAU 49···UU	258	Roller Bearings
NAX	288	Combined Type Needle Roller Bearings
NAX…Z	288	Combined Type Needle Roller Bearings
NAXI	290	Combined Type Needle Roller Bearings
NAXI…Z	290	Combined Type Needle Roller Bearings
NBX	288	Combined Type Needle Roller Bearings
NBX…Z	288	Combined Type Needle Roller Bearings
NBXI	290	Combined Type Needle Roller Bearings
NBXI…Z	290	Combined Type Needle Roller Bearings
NTB	274	Thrust Needle bearings
NUCF…R	370	Roller Followers
NURT	408	Roller Followers

0	
OS 496 Seals for Needle Roller B	earings
P	
PB 470 PILLOBALLs	
PHS 471 PILLOBALLs	
PHS···EC 476 PILLOBALLs	
PHSA 475 PILLOBALLS	
PHSB 473 PILLOBALLs	
POS 472 PILLOBALLS	
POSB 474 PILLOBALLS	
POS···EC 477 PILLOBALLS	
PRC 486 PILLOBALLS	
R	
RNA 48 162 Machined Type Needle R	oller Bearings
RNA 48 162 Machined Type Needle R RNA 49 146 Machined Type Needle R	_
	oller Bearings
RNA 49 146 Machined Type Needle R	oller Bearings
RNA 49 146 Machined Type Needle R RNA 49···UU 202 Machined Type Needle R	oller Bearings oller Bearings
RNA 49 146 Machined Type Needle R RNA 49···UU 202 Machined Type Needle R RNA 69 148 Machined Type Needle R	coller Bearings coller Bearings coller Bearings coller Bearings
RNA 49 146 Machined Type Needle R RNA 49···UU 202 Machined Type Needle R RNA 69 148 Machined Type Needle R RNA 69···UU 202 Machined Type Needle R	coller Bearings coller Bearings coller Bearings coller Bearings Separable Cage
RNA 49 146 Machined Type Needle RRNA 49UU 202 Machined Type Needle RRNA 69 148 Machined Type Needle RRNA 69UU 202 Machined Type Needle RRNA 69UU 202 Machined Type Needle RRNAF 234 Needle Roller Bearings with	coller Bearings coller Bearings coller Bearings coller Bearings Separable Cage
RNA 49 146 Machined Type Needle R RNA 49…UU 202 Machined Type Needle R RNA 69 148 Machined Type Needle R RNA 69…UU 202 Machined Type Needle R RNAF 234 Needle Roller Bearings with	coller Bearings coller Bearings coller Bearings coller Bearings Separable Cage
RNA 49 146 Machined Type Needle R RNA 49…UU 202 Machined Type Needle R RNA 69 148 Machined Type Needle R RNA 69…UU 202 Machined Type Needle R RNAF 234 Needle Roller Bearings with RNAFW 234 Needle Roller Bearings with RNAST 400 Roller Followers	coller Bearings coller Bearings coller Bearings coller Bearings Separable Cage
RNA 49 146 Machined Type Needle R RNA 49…UU 202 Machined Type Needle R RNA 69 148 Machined Type Needle R RNA 69…UU 202 Machined Type Needle R RNAF 234 Needle Roller Bearings with RNAFW 234 Needle Roller Bearings with RNAST 400 Roller Followers	coller Bearings coller Bearings coller Bearings coller Bearings Separable Cage
RNA 49 146 Machined Type Needle RRNA 49···UU 202 Machined Type Needle RRNA 69 148 Machined Type Needle RRNA 69···UU 202 Machined Type Needle RRNAF 234 Needle Roller Bearings with RNAFW 234 Needle Roller Bearings with RNAST 400 Roller Followers RNAST···R 400 Roller Followers	coller Bearings coller Bearings coller Bearings coller Bearings Separable Cage
RNA 49 146 Machined Type Needle RRNA 49···UU 202 Machined Type Needle RRNA 69 148 Machined Type Needle RRNA 69···UU 202 Machined Type Needle RRNAF 234 Needle Roller Bearings with RNAFW 234 Needle Roller Bearings with RNAST 400 Roller Followers RNAST···R 400 Roller Followers	coller Bearings coller Bearings coller Bearings coller Bearings Separable Cage
RNA 49 146 Machined Type Needle R RNA 49···UU 202 Machined Type Needle R RNA 69 148 Machined Type Needle R RNA 69···UU 202 Machined Type Needle R RNAF 234 Needle Roller Bearings with RNAFW 234 Needle Roller Bearings with RNAST 400 Roller Followers RNAST···R 400 Roller Followers S SB 444 Spherical Bushings SB···A 444 Spherical Bushings	coller Bearings coller Bearings coller Bearings coller Bearings Separable Cage
RNA 49 146 Machined Type Needle R RNA 49···UU 202 Machined Type Needle R RNA 69 148 Machined Type Needle R RNA 69···UU 202 Machined Type Needle R RNAF 234 Needle Roller Bearings with RNAFW 234 Needle Roller Bearings with RNAST 400 Roller Followers RNAST···R 400 Roller Followers S SB 444 Spherical Bushings SB···A 444 Spherical Bushings	coller Bearings coller Bearings coller Bearings coller Bearings Separable Cage

SNM	492	Super Flexible Nozzle
SNPT	492	Super Flexible Nozzle
I		
TA···Z	74	Shell Type Needle Roller Bearings
TAF	146	Machined Type Needle Roller Bearings
TAFI	168	Machined Type Needle Roller Bearings
TAM	74	Shell Type Needle Roller Bearings
TAMW	88	Shell Type Needle Roller Bearings
TAW…Z	88	Shell Type Needle Roller Bearings
TLA···UU	116	Shell Type Needle Roller Bearings
TLA···Z	74	Shell Type Needle Roller Bearings
TLAM	74	Shell Type Needle Roller Bearings
TLAMW	84	Shell Type Needle Roller Bearings
TLAW···Z	84	Shell Type Needle Roller Bearings
TR	148	Machined Type Needle Roller Bearings
TRI	170	Machined Type Needle Roller Bearings
TRU	252	Roller Bearings
TRU···UU	258	Roller Bearings
W		
WR	512	Cir-clips for Needle Roller Bearings
WS	274	Thrust Bearings
Υ		
YB	94	Shell Type Needle Roller Bearings
YBH	96	Shell Type Needle Roller Bearings
YT	74	Shell Type Needle Roller Bearings
YTL	74	Shell Type Needle Roller Bearings

Index of Model Codes

CAT-5502C(1519 ①) ©All rights reserved SAS

Printed in Japan 2003.07

NIPPON THOMPSON CO., LTD.

Head office :19-19 Takanawa 2-chome Minato-ku, Tokyo 108-8586, Japan

Phone :Tokyo(03)3448-5850
Fax :(03)3447-7637
E-mail :ntt@ikonet.co.jp

URL:http://www.ikont.co.jp/eg/

Plant : Gifu, Kamakura

Nippon Thompson Co., Ltd.

ASEAN REPRESENTATIVE OFFICE 586 Luang Road, Pomprab Pomprab Satrupai, Bangkok Thailand 10100 Phone: 0-2623-3699

Fax: 0-2623-0716 E-mail: iko@anet.net.th

Overseas Subsidiary Companies

IKO International, Inc.

East coast

91 Walsh Drive
Parsippany, NJ 07054
U.S.A.
Phone: (973)402-0254
Toll Free: 1-800-922-0337
Fax: (973)402-0441
E-mail: eco@ikonet.co.jp

Midwesi

 500 East Thorndale Avenue Wood Dale, IL 60191 U.S.A. Phone: (630)766-6464 Toll Free: 1-800-323-6694 Fax: (630)766-6869 E-mail: mwo@ikonet.co.jp

West coast

O 20170 South Western Avenue Torrance, CA 90501 U.S.A. Phone:(310)609-3988 Toll Free:1-800-252-3665 Fax:(310)609-3916 E-mail:wco@ikonet.co.jp

Southeast

2150 Boggs Road, Suite 100 Duluth, GA 30096 U.S.A. Phone:(770)418-1904 Toll Free:1-800-874-6445 Fax:(770)418-9403 E-mail:seo@ikonet.co.jp

Southwest

 8105 N. Beltline Road Suite 130, Irving, TX 75063 U.S.A. Phone: (972)929-1515 Toll Free: 1-800-295-7886 Fax: (972)915-0060 E-mail: swo@ikonet.co.jp

Nippon Thompson Europe B.V.

The Netherlands

Sheffieldstraat 35-39 3047 AN Rotterdam The Netherlands Phone:010-4626868 Fax:010-4626099 E-mail:nte@ikonet.co.jp

Germany

Mündelheimer Weg 56 40472 Düsseldorf Germany Phone: 0211-414061 Fax: 0211-427693 E-mail: ntd@ikonet.co.jp

Donaustaufer Str. 200 93059 Regensburg Germany Phone:0941-447737 Fax:0941-447747

UK

2 Vincent Avenue, Crownhill Milton Keynes Bucks MK8 OAB United Kingdom Phone:01908-566144 Fax:01908-565458 E-mail:sales@iko.co.uk

Spain

O Autovia Madrid-Barcelona, Km. 43,700 Polig. Ind. AIDA, A-8, Ofic. 2, 1^a 19200-Azuqueca de Henares Guadalajara, Spain Phone: 949-263390 Fax: 949-263113 E-mail: nts@ikonet.co.jp

France

Roissypole Le Dôme
2 rue de La Haye
BP 10950 Tremblay en France
95733 Roissy C. D. G. Cedex
France
Phone:01-48165739
Fax:01-48165746
E-mail:ntf@ikonet.co.jp